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In this work we study the nonnegative solutions of the elliptic system

in the superlinear case µδ > 1, which blow up near the boundary of a domain of R N , or at one isolated point. In the radial case we give the precise behavior of the large solutions near the boundary in any dimension N . We also show the existence of infinitely many solutions blowing up at 0. Furthermore, we show that there exists a global positive solution in R N \ {0} , large at 0, and we describe its behavior. We apply the results to the sign changing solutions of the biharmonic equation

.

Introduction

This article is concerned with the nonnegative large solutions of the elliptic system ∆u = |x| a v δ ∆v = |x| b u µ , (1.1) in two cases: solutions in a bounded domain Ω in R N , which blow up at the boundary, that is

lim d(x,∂Ω)→0 u(x) = lim d(x,∂Ω)→0 v(x) = ∞, (1.2) 
where d(x, ∂Ω) is the distance from x to ∂Ω; or solutions in Ω\ {0} which blow up at 0 :

lim x→0 u(x) = ∞ or lim x→0 v(x) = ∞. (1.3)
We study the superlinear case, where µ, δ > 0, and

D = µδ -1 > 0, (1.4) 
and a, b are real numbers such that a, b > max{-2, -N }.

(

First we recall some well-known results in the scalar case of the Emden-Fowler equation

∆U = U Q (1.6)
with Q > 1. Concerning the boundary blow-up problem, there exists a unique solution U in Ω such that lim d(x,∂Ω)→0 U (x) = ∞, and near ∂Ω U (x) = Cd(x, ∂Ω) -2/(Q-1) (1 + o(1)),

where C = C(Q). Several researchs on the more general equation ∆U = p(x)f (U )

have been done with different assumptions on f and on the weight p, with asymptotic expansions near ∂Ω , see for instance [START_REF] Bandle | Large' solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior[END_REF], [START_REF] Bandle | On second order effects in the boundary behavior of large solutions of semilinear elliptic problems[END_REF], [7], [START_REF] Pino | The infuence of domain geometry in boundary blow-up elliptic problems[END_REF], [START_REF] Lazer | Asymptotic behavior of solutions of boundary blowup problems[END_REF], [START_REF] Loewner | Partial differential equations invariant under conformal or projective transformations[END_REF], [START_REF] Marcus | Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF], [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF], [START_REF] Véron | Semilinear elliptic equations with uniform blowup on the boundary[END_REF]; see also [START_REF] Bandle | On the solutions of quasilinear elliptic problems with boundary blow-up[END_REF], [START_REF] Díaz | Explosive solutions of quasilinear elliptic equations: Existence and uniqueness[END_REF] for quasilinear equations. These results rely essentially on the comparison principle valid for this equation, and the construction of supersolutions and subsolutions.

The existence and the behavior of solutions of (1.6) in Ω\ {0} which blow up at 0:

lim x→0 U (x) = ∞,
called large (or singular) at 0, have also been widely investigated during the last decades, see for example [START_REF] Véron | Singularities of solutions of second order quasilinear equations[END_REF], and the references therein. There exists a particular solution in R N \ {0} whenever Q < N/(N -2) or N = 1, 2, given by U * (x) = C * |x| -2/(Q-1) , with C * = C * (Q, N ).

If Q ≥ N/(N -2), there is no large solution at 0, and the singularity is removable. If Q < N/(N -2) or N = 2, any large solution satisfies lim |x|→0 |x| 2/(Q-1) U = C * , or lim

|x|→0 |x| N -2 U = α > 0 if N > 2, lim |x|→0 |ln |x|| U = α > 0, if N = 2.
(1.7)

There exist solutions of each type, distinct from U * . Moreover, up to a scaling, there exists a unique positive radial solution in R N \ {0}, such that (1.7) holds and lim |x|→∞ |x| 2/(Q-1) U = C * , see [START_REF] Véron | Singularities of solutions of second order quasilinear equations[END_REF] and also [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF].

In Section 2 we consider the blow up problem of system (1.1) at the boundary.

Up to our knowledge all the known results for systems are related with systems for which some comparison properties hold, for example ∆u = u s v δ , ∆v = u µ v m , where s, m > 1, δ, µ > 0, and δµ ≤ (s -1)(m -1), of competitive type, see [START_REF] García-Melián | Boundary blow-up solutions to elliptic systems of competitive type[END_REF], or δ, µ < 0, of cooperative type, see [START_REF] Davila | Boundary blow-up solutions of cooperative systems[END_REF]; see also some extensions to problems with weights in [START_REF] Mu | Large solutions for an elliptic system of competitive type: existence, uniqueness and asymptotic behavior[END_REF], or with quasilinear operators in [START_REF] García-Melián | Large solutions for an elliptic system of quasilinear equations[END_REF], [START_REF] Wang | Boundary blow-up solutions for a cooperative system of quasinear equation[END_REF], [START_REF] Wu | Existence of boundary blow-up solutions for a class of quasilinear elliptic systems with critical case[END_REF], and cooperative systems of Lotka-Volterra in [START_REF] García-Melián | Existence and uniqueness of positive large solutions to some cooperative elliptic systems[END_REF].

On the contrary the problem (1.1)-(1.2) has been the object of very few works, because it brings many difficulties. The main one is the lack of a comparison principle for the system. As a consequence all the methods of supersolutions, subsolutions and comparison, valid for the case of a single equation fail.

Until now the existence of large solutions is an open question in the nonradial case. In the radial case the problem was studied in [START_REF] García-Melián | The solvability of an elliptic system under a singular boundary condition[END_REF], without weights: a = b = 0. It was shown that there are infinitely many nonnegative radial solutions to (1.1) which blow up at the boundary of a ball provided that (1.4) holds, and no blow up occurs otherwise. In particular, there exist solutions even in the case where either u or v vanishes at 0. This shows the lack of a Harnack inequality, even in the radial case. The precise behavior of the solutions was obtained in [START_REF] García-Melián | The solvability of an elliptic system under a singular boundary condition[END_REF] for N = 1, a = b = 0, where system (1.1) is autonomous, with an elaborate proof wich could not be extended to higher dimension.

Our first main result solves this question in any dimension, with possible weights, and moreover we give an expansion of order 1 of the solutions:

Theorem 1.1 Let (u, v) be any radial nonnegative solution of (1.1) defined for r ∈ (r 0 , R), r 0 ≥ 0, unbounded at r = R. Then lim r→R u(r) = lim r→R v(r) = ∞,
and u, v admit the following expansions near R :

u(r) = A 1 d(r) -γ (1 + O(d(r))), v(r) = B 1 d(r) -ξ (1 + O(d(r))), (1.8) 
where d(r) = Rr is the distance to the boundary, and

γ = 2(1 + δ) D , ξ = 2(1 + µ) D , (1.9 
)

A 1 = (γ(γ + 1)(ξ(ξ + 1)) δ ) 1/D , B 1 = (ξ(ξ + 1)(γ(γ + 1)) µ ) 1/D . (1.10)
Our proof is essentially based on a new dynamical approach of system (1.1), initiated in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF]: we reduce the problem to a quadratic, in general nonautonomous, system of order 4, which, under the assumptions of Theorem 1.1, can be reduced to a nonautonomous perturbation of a quadratic system of order 2. We then show the convergence of the solution of the original system to a suitable fixed point by using the perturbation arguments of [START_REF] Logemann | Non-autonomous systems: asymptotic behavior and weak invariance principles[END_REF]. Theorem 1.1 can be applied to sign changing solutions of some elliptic systems, in particular to the biharmonic equation, where δ = 1:

Corollary 1.2 Let µ > 1, b ∈ R. Then any radial solution u of the problem ∆ 2 u = |x| b |u| µ in (r 0 , R), u(R) = ∞, (1.11 
)

satisfies u(r) = Ad(r) -4/(µ-1) (1 + O(d(r))), (1.12 
)

with A µ-1 = 8(µ + 3)(µ + 1)(3µ -1)(µ -1) -4 .
We notice here a case where we find an explicit solution: for N > 4 and µ = N +4 N -4 , equation ∆ 2 u = u µ admits the solution in the ball B(0, 1), In Section 3 we consider the problem of large solutions at the origin, that is (1.1)- (1.3).

u(r) = C(1 -r 2 ) (4-N )/2 , C 8/(N -4) = N (N -4)(N 2 -4), and v = ∆u = C(N -4)(1-r 2 ) -N/2 (N -2r 2 ) ≥ 0,
System (1.1) admits a particular radial positive solution (u * , v * ), given by

u * (r) = A N r -γ a,b , v * (r) = B N r -ξ a,b , r = |x|, (1.13) 
where

γ a,b = (2 + a) + (2 + b)δ D > 0, ξ a,b = (2 + b) + (2 + a)µ D > 0, (1.14) 
A D N = γ a,b (γ a,b -N + 2) (ξ a,b (ξ a,b -N + 2)) δ , B D N = ξ a,b (ξ a,b -N + 2) (γ a,b (γ a,b -N + 2)) µ , whenever min {γ a,b , ξ a,b } > N -2, or N = 1, 2. (1.15)
Note that in particular γ 0,0 = γ, ξ 0,0 = ξ.

The problem has been initiated in [START_REF] Yarur | Nonexistence of positive singular solutions for a class of semilinear elliptic systems[END_REF] and [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF], see also [START_REF] Yarur | A priori estimates for positive solutions for a class of semilinear elliptic systems[END_REF]. Let us recall an important result of [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF] giving upper estimates for system (1.1) in the nonradial case, stated for N ≥ 3, but its proof is valid for any N ≥ 1. It is not based on supersolutions, but on estimates of the mean value of u, v on spheres: Keller-Osserman type estimates [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF]. Let Ω be a domain of R N (N ≥ 1), containing 0, and u, v ∈ C 2 (Ω\ {0}) be any nonnegative subsolutions of (1.1), that is,

-∆u + |x| a v δ ≤ 0, -∆v + |x| b u µ ≤ 0,
with µ, δ satisfying (1.4). Then there exists C = C(a, b, δ, µ, N ) such that near x = 0,

u(x) ≤ C |x| -γ a,b , v(x) ≤ C |x| -ξ a,b . (1.16)
Moreover, one finds in [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF] a quite exhaustive study about all the possible behaviors of the solutions (radial or not) in Ω\ {0}.

Here we complete those results by proving the existence of local radial solutions large at 0 of each of the types described in [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF], see Propositions 3.2, 3.4 in Section 3. By using these results, we obtain our second main result in this work, which is the following global existence theorem:

Theorem 1.3 Assume that N ≥ 2 and that (1.15) holds. Then there exists a radial positive global solution of system (1.1) in R N \ {0}, large near 0, unique up to a scaling, such that

lim r→∞ r γ a,b u = A N , lim r→∞ r ξ a,b v = B N ; (1.17)
and, for N > 2, and up to a change of u, µ, a, into v, δ, b, when δ < N +a N -2 , it satisfies

lim r→0 r N -2 u = α > 0,        lim r→0 r N -2 v = β > 0, if µ < N +b N -2 , lim r→0 r (N -2)µ-(2+b) v = β > 0, if µ > N +b N -2 , lim r→0 r N -2 |ln r| -1 v = β > 0, if µ = N +b N -2 ,
and for N = 2, lim

r→0 |ln r| -1 u = α > 0, lim r→0 |ln r| -1 v = β > 0.
Our proof also relies on the dynamical approach of system (1.1) in dimension N by a quadratic autonomous system of order 4, given in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF]. Finally we give an application to the biharmonic equation:

Corollary 1.4 Let N > 2. Assume that 1 < µ < N +2+b N -2 .
There exists a positive global solution, unique up to a scaling, of equation

∆ 2 u = |x| b u µ in R N \ {0} , such that lim r→0 r N -2 u = α > 0, lim r→∞ r (4+b)/(µ-1) u = C, where C µ-1 = (4 + b)(N + 2 + b -(N -2)µ) (2µ + 2 + b)(N + b -(N -4)µ) (µ -1) -4 .
2 Large solutions at the boundary This section is devoted to the study of the boundary blow up problem for nonnegative radial solutions of (1.1). We begin by observing that system (1.1) admits a scaling invariance: if (u, v) is a solution, then for any θ > 0,

r → (θ γ a,b u(θr), θ ξ a,b v(θr)), (2.1) 
where γ a,b , ξ a,b are defined in (1.14), is also a solution.

Existence and estimates of large solutions

We say that a nonnegative solution (u, v) of (1.1) defined in (0, R)

is regular at 0 if u, v ∈ C 2 (0, R) ∩ C([0, R)). Then u, v ∈ C 1 ([0, R)) when a, b ≥ -1, and moreover u ′ (0) = v ′ (0) = 0 when a, b > -1, and u, v ∈ C 2 ([0, R)) when a, b ≥ 0.
We first give an existence and uniqueness result for regular solutions:

Proposition 2.1 Assume (1.5) and only that D = δµ -1 = 0. Then for any u 0 , v 0 ≥ 0, there exists a unique local regular solution (u, v) with initial data (u 0 , v 0 ).

The result follows from classical fixed point theorem when u 0 , v 0 > 0, by writing the problem in an integral form:

u(r) = u 0 + r 0 τ 1-N τ 0 θ N -1+a v δ (θ)dθ, v(r) = v 0 + r 0 τ 1-N τ 0 θ N -1+b u µ (θ)dθ.
In the case u 0 > 0 = v 0 , the existence can be obtained from the Schauder fixed point theorem, and the uniqueness by using monotonicity arguments as in [START_REF] García-Melián | The solvability of an elliptic system under a singular boundary condition[END_REF]. We give an alternative proof in Section 3, using the dynamical system approach introduced in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], which can be extended to more general operators.

Next we show that all the nontrivial regular solutions blow up at some finite R > 0, and give the first upper estimates for any large solution. Our proofs are a direct consequence of estimates (1.16). Proposition 2.2 (i) Assume (1.4) and (1.5). For any regular nonnegative solution (u, v) ≡ (0, 0), there exists R such that u and v are unbounded near R.

(ii) Any solution (u, v) which is nonnegative in an interval (r 0 , R) and unbounded at R, satisfies lim

r→R u = lim r→R v = lim r→R u ′ = lim r→R v ′ = ∞. (2.2)
and there exists

C = C(N, δ, µ) > 0 such that near r = R, u(r) ≤ C(R -r) -γ , v(r) ≤ C(R -r) -ξ . (2.3) 
Proof. (i) Let (u, v) be any nontrivial regular solution. Suppose first that v 0 > 0. Then from (1.1), r N -1 u ′ is positive for small r, and nondecreasing, hence u is increasing. If the solution is entire, then it satisfies (1.16) near ∞: indeed by the Kelvin transform, the functions

u(x) = |x| 2-N u(x/ |x| 2 ), v(x) = |x| 2-N v(x/ |x| 2 ),
satisfy in B(0, 1)\ {0} the system

-∆u + |x| a v δ = 0, -∆v + |x| b u µ = 0, where a = (N -2)δ -(N + 2 + a), b = (N -2)µ -(N + 2 + b), and γ a,b , ξ a,b are replaced by N -2 -γ a,b , N -2 -ξ a,b .
Then the estimate (1.16) for (u, v) implies the one for (u, v) and thus u tends to 0 at ∞, which is contradictory. Furthermore, from

u ≤ u 0 + r 2+a (2 + a)(N + a) v δ , v ≤ v 0 + r 2+b (2 + b)(N + b) u µ ,
u and v blow up at the same point R > 0.

(ii) Since r N -1 u ′ is increasing, it has a limit as r → R. If this limit is finite, then u ′ is bounded, implying that u has a finite limit; this contradicts our assumption. Thus (2.2) holds. By (2.1) we can assume R = 1 and make the transformation

r = Ψ(s) = (1 + (N -2)s) -1/(N -2) , if N = 2, e -s , if N = 2, (2.4) 
(in particular r = 1s if N = 1), so that s describes an interval (0, s 0 ], s 0 > 0, and we get the system

u ss = F (s)v δ v ss = G(s)u µ (2.5) with F (s) = r 2N -2+a , G(s) = r 2N -2+b ; (2.6) hence lim s→0 F = lim s→0 G = 1. Then -u ss + 1 2 v δ ≤ 0 -v ss + 1 2 u µ ≤ 0
in some interval (0, s 1 ], thus from the Keller-Osserman estimates (1.16), there exists C = C(N, δ, µ) > 0 such that u(s) ≤ Cs -γ , v(s) ≤ Cs -ξ , near s = 0 and (2.3) follows.

The precise behavior near the boundary

In this section we prove Theorem 1.1.

Scheme of the proof

Consider a solution blowing up at R = 1. In the case of dimension N = 1, and a = b = 0, we have that F ≡ G ≡ 1 in (2.6), and we are concerned with the system

u ss = v δ v ss = u µ . (2.7)
Following the ideas of [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], we are led to make the substitution

X(t) = - su s u , Y (t) = - sv s v , Z(t) = sv δ u s , W (t) = su µ v s ,
where t = ln s, t describes (-∞, t 0 ], and we obtain the autonomous system

       X t = X [X + 1 + Z] , Y t = Y [Y + 1 + W ] , Z t = Z [1 -δY -Z] , W t = W [1 -µX -W ] .
(2.8)

We study the solutions in the region where X, Y ≥ 0 and Z, W ≤ 0. In this region system (2.8) admits two fixed points

O = (0, 0, 0, 0), M 0,1 = (γ, ξ, -1 -γ, -1 -ξ) (2.9)
where γ and ξ are defined in (1.9). We intend to show that trajectories associated to the large solutions converge to M 0,1 . Observe that system (2.7) has a first integral, which is a crucial point in what follows:

u s v s - u µ+1 µ + 1 - v δ+1 δ + 1 = C, equivalently e -2t uv(XY + XZ δ + 1 + Y W µ + 1 ) = C.
Since any large solution at r = 1 satisfies lim r→1 u = lim r→1 v = ∞, we obtain

XY + XZ δ + 1 + Y W µ + 1 = o(e 2t )
as t → -∞. Thus, eliminating W , we get the nonautonomous system of order 3

   X t = X [X + 1 + Z] , Y t = Y [Y + 1] -(µ + 1)X(Y + Z δ+1 ) + o(e 2t ), Z t = Z [1 -δY -Z] .
(2.10) which appears as a perturbation of system

   X t = X [X + 1 + Z] , Y t = Y [Y + 1] -(µ + 1)X(Y + Z δ+1 ), Z t = Z [1 -δY -Z] .
(2.11) Moreover, by using a suitable change of variables, system (2.10) reduces to a nonautonomous system of order 2, and we can show that the last system behaves like an autonomous one. Then we come back to the initial system and deduce the convergence.

In the case N ≥ 1 or a, b not necessarily equal to 0, we first reduce the problem to a system similar to (2.8), but nonautonomous, and we prove that it is a perturbation of (2.8). Moreover we produce an identity that plays the role of a first integral, allowing us to reduce to a double perturbation of (2.11). We manage with the two perturbations in order to conclude.

Steps of the proof

Our proof relies strongly in a result due to Logemann and Ryan, see [START_REF] Logemann | Non-autonomous systems: asymptotic behavior and weak invariance principles[END_REF]. We state it below for the convenience of the reader. 

sup c∈C ess sup τ ≥T ||h(τ, x) -h * (x)|| < ε Assume that x is a bounded solution of equation x τ = h(τ, x) on R + such that x(0) = x 0 .
Then the ω-limit set of x is non empty, compact and connected, and invariant under the flow generated by h * .

The proof of Theorem 1.1 requires some important lemmas. By scaling we still assume that R = 1.

Lemma 2.4 Let (u, v) be any fixed solution of system (1.1) in [r 0 , 1), unbounded at 1. Let us set t = log s, where s = Ψ -1 (r) is defined in (2.4). Let F, G be defined by (2.6). Then the functions

X(t) = - su s u > 0, Y (t) = - sv s v > 0, Z(t) = sF (s)v δ u s < 0, W (t) = sG(s)u µ v s < 0, (2.12) 
satisfy the (in general nonautonomous) system

       X t = X [X + 1 + Z] , Y t = Y [Y + 1 + W ] , Z t = Z [1 -δY -Z -α(t)] , W t = W [1 -µX -W -β(t)] , (2.13) 
where

α(t) = 2N -2 + a 1 + (N -2)e t e t , β(t) = 2N -2 + b 1 + (N -2)e t e t .
(2.14)

Moreover we recover u, v by the relations

u = s -γ F -1 D G -δ D (|Z|X) 1 D (|W |Y ) δ D , v = s -ξ F -µ D G -1 D (|W |Y ) 1 D (|Z|X) µ D . (2.15)
Proof. Since (u, v) is unbounded, (2.2) holds. We make the substitution (2.4), which leads to system (2.5), with F, G given by (2.6). Clearly we can assume that u s < 0 and v s < 0 on (0,

s 0 ], lim s→0 |u s | = lim s→0 |v s | = lim s→0 u = lim s→0 v = ∞.
Then we can define X, Y, Z, W by (2.12) and we obtain system (2.13) with we have

α(t) = -s F ′ (s) F (s) , β(t) = -s G ′ (s) G(
XY + XZ δ + 1 + Y W µ + 1 = ̟(t) µ + 1 , (2.17 
̟(t) = O(e t ) as t → -∞.
Proof. We establish some integral inequalities, playing the role of a first integral, then we use them to prove (2.16), and finally we deduce the behavior of ̟.

(i) Integral inequalities. Let σ, θ ∈ R and set

H σ,θ (s) = r 2-N u s v s -F (s) v δ+1 δ + 1 -G(s) u µ+1 µ + 1 - σvu s + θuv s 1 + (N -2)s = r 2-N uve -2t XY + X(Z + ᾱ(t)) δ + 1 + Y (W + β(t)) µ + 1 , where ᾱ(t) = σ(δ + 1)s 1 + (N -2)s and β(t) = θ(µ + 1)s 1 + (N -2)s .
It can be easily verified that

H ′ σ,θ (s) = (N -2-σ-θ)u s v s +F (s) v δ+1 δ + 1 (N +a-σ(δ+1))+G(s) u µ+1 µ + 1 (N +b-θ(µ+1)). (2.18)
By choosing first the constants σ = σ 1 > 0 and θ = θ 1 > 0 large enough, we obtain that H ′ σ 1 ,θ 1 (s) < 0 and thus H σ 1 ,θ 1 (s) ≥ -C 1 for some t C 1 > 0; next choosing σ = σ 2 < 0 and θ = θ 2 < 0 and large enough in absolute value, we obtain that H ′ σ 2 ,θ 2 (s) > 0 and thus H σ 2 ,θ 2 (s) ≤ C 2 for some C 2 > 0. Hence, there exists functions ᾱi (t), βi (t), i = 1, 2, which are O(e t ) as t → -∞, and such that

XY + X(Z + ᾱ1 (t)) δ + 1 + Y (W + β1 (t)) µ + 1 ≥ -C 1 r N -2 e 2t uv (2.19) XY + X(Z + ᾱ2 (t)) δ + 1 + Y (W + β2 (t)) µ + 1 ≤ C 2 r N -2 e 2t uv . (2.20) 
(ii) Estimates from below in (2.16). Using that u ss ≤ v δ and multiplying by 2u s < 0 we obtain

(u 2 s ) s ≥ 2v δ u s = (2v δ u) s -2δv δ-1 uv s > (2v δ u) s since v s < 0 in (0, s 0 ], hence u 2 s -2v δ u ≤ C = (u 2 s -2v δ u)(s 0 ); since lim s→0 v δ u = ∞, it follows that u 2
s ≤ (5/2)v δ u on (0, s 1 ] , for sufficiently small s 1 . Using the same method for the second equation, we obtain from (2.12) that

X(t) ≤ 3 |Z(t)| , Y (t) ≤ 3 |W (t)| , on (-∞, t 1 ] . (2.21)
Also, from the generalized L'Hôpital's rule,

lim s→0 |Z| F = lim s→0 sv δ -u s ≤ lim s→0 δsv δ-1 v s + v δ -u ss = lim s→0 δY -1 F ,
and by symmetry δlim

s→0 Y ≥ 1 + lim s→0 |Z|, µlim s→0 X ≥ 1 + lim s→0 |W |. (2.22) 
Suppose now that lim t→-∞ X = 0. From (2.22), lim t→-∞ X ≥ 1/µ, hence there is a sequence {t n } → -∞ of local minima of X such that lim n→∞ X(t n ) = 0, and from the definition of X in (2.12), X(t n ) > 0 for all n sufficiently large. At each t n we have that X t (t n ) = 0 and X tt (t n ) ≥ 0. From (2.13), using that X(t n ) = 0, we have that 

X(t n ) + 1 = |Z(t n )| and hence |Z(t n )| > 1. Since X tt (t n ) = X(t n )Z t (t n ), it follows that Z t (t n ) ≥ 0,
X|Z| δ + 1 + Y |W | µ + 1 + C 4 e t , (2.24) 
for some C 3 , C 4 > 0. Then we deduce (2.17).

Next we show that a convenient combination of our solution (X, Y, Z, W ) satisfies a system of order 2. We have Lemma 2.6 Under the assumptions of Theorem 1.1, and with the above notations, let

x(τ ) = - X(t) Z(t) , y = - Y (t) Z(t) , τ = - t t Z(σ)dσ. (2.

25)

Then (x, y) lies in the region

R 0 := {(x, y) | 1/k 2 ≤ x ≤ k 2 , 1 δ + 1 + 1 2(µ + 1)k 4 ≤ y ≤ k 2 }
for τ ≥ τ > 0, and satisfies

x τ = x(-x -δy + 2) + ̟ 1 (τ ) y τ = ( 1 δ+1 -y)((δ + 1)y -(µ + 1)x) + ̟ 2 (τ ), (2.26) 
where ̟ 1 (τ ) = O(e -Kτ ) and ̟ 2 (τ ) = O(e -Kτ ) for some K > 0, as τ → ∞.

Proof. We first reduce system (2.13) to a system of order 3: from relation (2.17) we eliminate W in the system (2.13) and obtain

   X t = X [X + 1 + Z] , Y t = Y [Y + 1] -(µ + 1)X(Y + Z δ+1 ) + ̟(t), Z t = Z [1 -δY -Z -α(t)] ,
which is a perturbation of system (2.11). Next, defining x = -X Z , y = -Y Z , we get the system for any τ ≥ 0 from (2.16), and from (2.17), for τ ≥ τ > 0,

x t = Z [x(2 -x -δy) + ̟ 1 ] y t = Z ( 1 δ+1 -y)((δ + 1)y -(µ + 1)x) + ̟ 2 with ̟ 1 = - α(t)X Z 2 = O(e t ), ̟ 2 = ̟(t) -α(t)Y Z 2 = O(e t ), (2.27 
y - 1 δ + 1 = 1 XZ ( Y W µ + 1 + o(1)) ≥ 1 2(µ + 1)k 4 ,
ending the proof.

Hence system (2.26) appears as an exponential perturbation of an autonomous system that we study now: Lemma 2.7 Consider the system

x τ = x(2 -x -δy) y τ = (y -1 δ+1 )((µ + 1)x -(δ + 1)y).
(2.29)

The fixed points of system (2.29) are O = (0, 0), and

j 0 = 0, 1 δ + 1 , ℓ 0 = δ + 2 δ + 1 , 1 δ + 1 , m 0 = (x 0 , y 0 ) = 2(δ + 1) µδ + 2δ + 1 , 2(µ + 1) µδ + 2δ + 1 ,
and m 0 is a sink. Any solution of the system (2.29) which stays in the region R 0 converges to the fixed point m 0 as τ → ∞.

Proof. The point m 0 is a sink: the eigenvalues of the linearized system of (2.29) at m 0 are the roots ℓ 1 , ℓ 2 of equation

ℓ 2 + δµ + 3 + 2µ + 2δ µδ + 2δ + 1 ℓ + 2 µδ + 2µ + 1 µδ + 2δ + 1 = 0, equivalently (γ + 1)ℓ 2 + (γ + ξ + 1)ℓ + 2(ξ + 1) = 0, (2.30) 
and they have negative real part. Next we show that (2.29) has no limit cycle in (0, ∞) × (1/(δ + 1), ∞). Let B = x p (y -1 δ+1 ) -q , where p, q are parameters. Writing (2.29) under the form x τ = F(x, y), y t = G(x, y), we obtain

∇ • (B(F, G)) = B x x τ + B η y τ + B(F x + G y ) := M B,
where

M = (µ -1 -p -q(µ + 1))x -(pδ -q(δ + 1) + 3δ + 2) (y - 1 δ + 1
) + p(δ + 2) + q(δ + 1) + 1 δ + 1 .

Choosing q = µδ+2δ+2 µδ+2δ+1 and p = µ -1q(µ + 1), we find that

(δ + 1)M = -( µδ + 2µ + 1 µδ + 2δ + 1 + δ + 2) < 0.
Hence, by the Bendixson-Dulac Theorem, system (2.29) has no limit cycle. From the Poincaré-Bendixon Theorem, the ω-limit set Γ of any solution of (2.29) lying in R 0 is fixed point, of a union of fixed points and connecting orbits. But m 0 is the unique fixed point in R 0 . Then any solution in R 0 converges to m 0 as τ → ∞.

Remark 2.8 It is easy to prove that there exists a connecting orbit joining the two points ℓ 0 and m 0 , but it is not located in R 0 .

We can now conclude.

Proof of Theorem 1.1. (i) Convergence for system (2.26). From Proposition 2.3, the ω-limit set Σ of our solution (x, y) of (2.26) is nonempty, compact, connected and contained in R 0 , and Σ = ℓ∈Σ,τ ≥τ ϕ(τ, ℓ), where ϕ(τ, ℓ) denotes the trajectory of (2.29) such that ϕ(τ , ℓ) = ℓ. Since lim τ →∞ ϕ(τ, ℓ) = m 0 , there holds m 0 ∈ Σ. Since m 0 is a sink of (2.29), then from the standard stability theory, see for example [6, Theorem 3.1, page 327], (x, y) converges to m 0 .

(ii) Convergence for system (2.13). By setting g(t) = 1/Z, we find from (2.28) that g ′ +(1-α)g = 1δy, hence by L'Hôpital's rule,

lim t→-∞ Z = lim t→-∞ (e t t (1-α) ) ′ (ge t t (1-α) ) ′ = lim t→-∞ 1 -α 1 -δy = - µδ + 2δ + 1 µδ -1 = -(1 + γ) = Z 0 . Hence lim t→-∞ X = -lim t→-∞ xZ = 2(δ + 1) µδ -1 = γ = X 0 , lim t→-∞ Y = lim t→-∞ yZ = 2(µ + 1) µδ -1 = ξ = Y 0 .
Finally, from (2.17), we obtain lim t→-∞ W = -(1 + ξ) = W 0 . That means (X, Y, Z, W ) converges to M 0,1 defined at (2.9). Then from (2.15) we deduce the estimates

u(r) = A 1 d -γ (1 + o(1)), v(r) = B 1 d -ξ (1 + o(1))
where A 1 , B 1 are given by and (1.10).

(iii) Expansion of u and v. We first consider system (2.26). Setting x = x 0 + x, y 0 + ỹ, we find a system of the form

(x τ , ỹτ ) = A(x, ỹ) + Q(x, ỹ) + (̟ 1 , ̟ 2 )
where (x, ỹ) → (0, 0) , the eigenvalues ℓ 1 , ℓ 2 of A satisfy max(Re(ℓ 1 , ℓ 2 )) = -m < -1/(γ+1), and Q is quadratic and ̟ 1 (τ ), ̟ 2 (τ ) = O(e -Kτ ). There exists an euclidian structure with a scalar product where A(x, ỹ), (x, ỹ) ≤ -m (x, ỹ) 2 . Then the function τ → η(τ ) = (x, ỹ) (τ ) satisfies an inequality of the type η τ ≤ -(mε)η + Ce -Kτ for any ε > 0 and τ large enough. Then η(τ ) = O(e -Kτ ) + O(e -(m-ε)τ ).

(2.31)

Then the convergence of (x, y) to (x 0 , y 0 ) is exponential. From (2.28), the convergence of Z to Z 0 is exponential. Writing τ under the form

τ = c + Z 0 t + ∞ t (Z 0 -Z),
we deduce that τ = c + Z 0 t + O(e kt ) for some k > 0. From (2.27) we obtain that 

̟ 1 , ̟ 2 = O(e -K 0 τ ) with K 0 = 1/ |Z 0 | ; taking K = K 0 = 1/(γ +
u(r) = A 1 s -γ (1 + O(s)), v(r) = B 1 s -ξ (1 + O(s))
and the expansion (1.8) follows from (2.4).

Proof of Corollary 1. 

The set of initial data for blow up

Here we suppose a = b = 0. By scaling, for any ρ > 0 there exists solutions which blow up at ρ. Let us call ρ(u 0 , v 0 ) the blow-up radius of a regular solution with initial data (u 0 , v 0 ). From (2.1), we find

ρ(λ γ u 0 , λ ξ v 0 ) = λ -1 ρ(u 0 , v 0 ).
Then for any (u 0 , v 0 ) ∈ S 1 there is a unique λ such that ρ(λ γ u 0 , λ ξ v 0 ) = 1. Thus there exist infinitely many solutions blowing up at R = 1, including in particular two unique solutions with respective initial data (ū 0 , 0) and (0, v0 ). Using monotonicity properties, it was shown in [START_REF] García-Melián | The solvability of an elliptic system under a singular boundary condition[END_REF] that the set

S = (u 0 , v 0 ) ∈ [0, ∞) × [0, ∞) : lim r→1 u = lim r→1 v = ∞ is contained in [0, ū0 ] × [0, v0 ].
Next we give some properties of S extending some results of [START_REF] García-Melián | The solvability of an elliptic system under a singular boundary condition[END_REF] to higher dimensions.

Proposition 2.9 Let N ≥ 1. If min {δ, µ} ≥ 1, then S is a simple curve joining the two points (ū 0 , 0) and (0, v0 ).

with t = ln r, so system (3.1) becomes

       X t = X [X -(N -2) + Z] , Y t = Y [Y -(N -2) + W ] , Z t = Z [N + a -δY -Z] , W t = W [N + b -µX -W ] . (3.3) 
One recovers u and v by the formulas As mentioned in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], system (3.3) is independent of ε i , i = 1, 2, and thus it allows to study system (3.1) in a unified way. In our case ε 1 = ε 2 = -1, then XZ = -r a+2 v δ /u and Y W = r b+2 u µ /v, thus we are led to study (3.3) in the region

u=r -γ a,b ( |ZX|) 1/D ( |W Y |) δ/D , v=r -ξ a,b |W Y |) 1/D |ZX| µ/D , (3.4 
R = {(X, Y, Z, W ) | XZ ≤ 0, Y W ≤ 0}.
This system is quadratic, and it admits four invariant hyperplanes: X = 0, Y = 0, Z = 0, W = 0. The trajectories located on these hyperplanes do not correspond to a solution of system (3.1), and they are called nonadmissible. System (3.3) has sixteen fixed points, including O = (0, 0, 0, 0). The main one is

M 0 = (X 0 , Y 0 , Z 0 , W 0 ) = (γ a,b , ξ a,b , N -2 -γ a,b , N -2 -ξ a,b ) ,
which is interior to R whenever (1.15) holds; it corresponds to the particular solution (u * , v * ) given in (1.13). Among the other fixed points, as we see below,

N 0 = (0, 0, N + a, N + b), R 0 = (0, -(2 + b), N + a + (2 + b)δ, N + b) , S 0 = (-(2 + a), 0, N + a, N + b + (2 + a)µ) ,
are linked to the regular solutions, and

A 0 = (N -2, N -2, 0, 0), G 0 = (N -2, 0, 0, N +b-(N -2)µ), H 0 = (0, N -2, N +a-(N -2)δ, 0), P 0 = (N -2, (N -2)µ -2 -b, 0, (N + b -(N -2)µ)), Q 0 = ((N -2)δ -2 -a, N -2, N + a -(N -2)δ, 0),
and M 0 are linked to the large solutions near 0. Notice that

P 0 ∈ R for 2+b N -2 < µ < N +b N -2 and Q 0 ∈ R for 2+a N -2 < δ < N +a N -2 .
We are not concerned by the other fixed points

I 0 = (N -2, 0, 0, 0), J 0 = (0, N -2, 0, 0), K 0 = (0, 0, N + a, 0), L 0 = (0, 0, 0, N + b),
which correspond to non admissible solutions, from [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], and

C 0 = (0, -(2 + b), 0, N + b) , D 0 = (-(2 + a), 0, N + a, 0) ,
which can be shown as non admissible as t → -∞.

Proposition 3.2 Assume N > 2.

(i) If δ < N +a N -2 and µ < N +b N -2 , then there exist solutions (u, v) to (1.1) such that

lim r→0 r N -2 u = α > 0, lim r→0 r N -2 v = β > 0. (3.5) If δ > N +a N -2 or µ > N +b N -2 , there exist no such solutions. (ii) Let γ a,b > N -2 and let µ < 2+b N -2 or µ > N +b N -2 . Then there exist solutions (u, v) of (1.1) such that lim r→0 r N -2 u = α > 0, lim r→0 r (N -2)µ-(2+b) v = β(α) > 0, (3.6 
)

with β(α) = α µ /((N -2)µ -N -b)((N -2)µ -2 -b). If γ a,b < N -2, there exist no such solutions. (iii) If µ < 2+b N -2 then there exist solutions (u, v) of (1.1) such that lim r→0 r N -2 u = α > 0, lim r→0 v = β > 0. (3.7) If µ > 2+b N -2
there exist no such solutions.

Proof. (i) We study the behaviour of the solutions of (3.3) near A 0 as t → -∞. The linearization at A 0 gives, with

X = N -2 + X, Y = N -2 + Ỹ , Xt = (N -2) X + Z , Ỹt = (N -2) Ỹ + W , Z t = λ 3 Z, W t = λ 4 W,
with eigenvalues

λ 1 = λ 2 = (N -2) > 0, λ 3 = N + a -(N -2)δ, λ 4 = N + b -(N -2)µ.
If δ < N +a N -2 and µ < N +b N -2 , then we have λ 3 , λ 4 > 0; the unstable manifold V u has dimension 4, then there exists an infinity of trajectories converging to A 0 as t → -∞, interior to R, then admissible, with Z, W < 0. The solutions satisfy lim t→-∞ e -λ 3 t Z = Z 0 < 0 and lim (3.4), the corresponding solutions (u, v) of (1.1) satisfy (3.5). If δ > N +a N -2 or µ > N +b N -2 , then λ 3 < 0 or λ 4 < 0, respectively, and V u has at most dimension 3, and it satisfies Z = 0 or W = 0 respectively. Therefore there is no admissible trajectory converging at -∞.

t→-∞ e -λ 4 t W = W 0 < 0, with lim t→-∞ X = lim t→-∞ Y = N -2. Hence from
(ii) Here we study the behaviour near P 0 . Setting P 0 = (N -2, Y * , 0, W * ), with

Y * = (N -2)µ -2 -b, W * = N + b -(N -2)µ,
the linearization at P 0 gives, with

X = N -2 + X, Y = Y * + Ỹ , W = W * + W , Xt = (N -2) X + Z , Ỹt = Y * Ỹ + W , Z t = λ 3 Z, Wt = W * -µ X -W .
By direct computation we obtain that the eigenvalues are

λ 1 = N -2 > 0, λ 2 = Y * , λ 3 = N + a -δY * = D(γ a,b -(N -2)), λ 4 = -W * .
Assume first that γ a,b > N -2. Then λ 3 > 0. If µ > N +b N -2 , then also λ 2 , λ 4 > 0 and thus V u has dimension 4, then there exist an infinity of admissible trajectories, with Z < 0, converging as t → -∞. If µ < 2+b N -2 , then λ 2 , λ 4 < 0, thus V u has dimension 2, and V u ∩{Z = 0} has dimension 1, thus there also exist an infinity of admissible trajectories with Z < 0 converging when t → -∞. Then lim (iii) We consider the behaviour near G 0 . The linearization at G 0 gives, with

t→-∞ e -λ 3 t Z = C 3 < 0, lim t→-∞ X = N -2, lim
X = N -2 + X, W = N + b -(N -2)µ + W , Xt = (N -2) X + Z , Y t = (2 + b -(N -2)µ)Y, Z t = (N + a)Z, W t = (N + b -(N -2)µ) -µ X -W ,
and the eigenvalues are

λ 1 = N -2 > 0, λ 2 = 2 + b -(N -2)µ, λ 3 = N + a > 0, λ 4 = (N -2)µ -N -b. If µ < 2+b
N -2 , then λ 2 , λ 4 < 0. Then V u has dimension 3, and V u ∩ {Y = 0} and V u ∩ {Z = 0} have dimension 2. This implies that V u must contain admissible trajectories such that X > 0 (because N -2 > 0), Y < 0, Z < 0 and W > 0 (because

N + b -(N -2)µ > 0). Clearly, lim t→-∞ X = N -2 and lim t→-∞ W = N + b -(N -2)µ > 0. Moreover, lim t→-∞ e -λ 2 t Y = C 2 < 0 and lim t→-∞
e -λ 3 t Z = C 3 < 0, thus (3.7) follows from (3.4). Let now µ > 2+b N -2 , so that λ 2 < 0. If µ < N +b N -2 , then λ 4 < 0, V u has dimension 2, and also V u ∩ {Y = 0}, hence V u = V u ∩ {Y = 0}, and there exists no admissible trajectory. If µ > N +b N -2 , then λ 4 > 0, V u has dimension 3 and also V u ∩ {Y = 0}, there is no admissible trajectory.

Remark 3.3 If µ > N +b N -2
, in (ii) the two functions u, v are large near 0. If µ < 2+b N -2 , then u is large near 0 and v tends to 0.

Next we study the behavior near M 0 , which is the most interesting one. Proposition 3.4 Assume N ≥ 1 and (1.15). Then (up to a scaling) there exist infinitely many solutions defined near r = 0 such that

lim r→0 r γ a,b u = A N , lim r→0 r ξ a,b v = B N . Proof. Setting X = X 0 + X, Y = Y 0 + Ỹ , Z = Z 0 + Z, W = W 0 + W , the linearized system is        Xt = X 0 ( X + Z), Ỹt = Y 0 ( Ỹ + W ), Zt = Z 0 (-δ Ỹ -Z), Wt = W 0 (-µ X -W ).
As described in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], the eigenvalues are the roots λ 1 , λ 2 , λ 3 , λ 4 , of the characteristic polynomial

f (λ) = det     X 0 -λ 0 X 0 0 0 Y 0 -λ 0 Y 0 0 δ |Z 0 | |Z 0 | -λ 0 µ |W 0 | 0 0 |W 0 | -λ     = (λ -X 0 )(λ + Z 0 )(λ -Y 0 )(λ + W 0 ) -δµX 0 Y 0 Z 0 W 0 , (3.8) 
where we recall that X 0 , Y 0 > 0 and Z 0 , W 0 < 0. We write f in the form

f (λ) = λ 4 + E 0 λ 3 + F 0 λ 2 + G 0 λ -H 0 , with        E 0 = Z 0 -X 0 + W 0 -Y 0 , F 0 = (Z 0 -X 0 )(W 0 -Y 0 ) -X 0 Z 0 -Y 0 W 0 , G 0 = -Y 0 W 0 (Z 0 -X 0 ) -X 0 Z 0 (W 0 -Y 0 ), H 0 = DX 0 Y 0 Z 0 W 0 . We note that E 0 < 0, F 0 > 0 and 2G 0 = -E 0 [Y 0 Z 0 + X 0 W 0 ] < 0. From (1.4) we have H 0 > 0, hence λ 1 λ 2 λ 3 λ 4 < 0.
Hence there exist two real roots λ 3 < 0 < λ 4 , with

λ 4 > max({X 0 , Y 0 , |Z 0 | , |W 0 |} from (3.8)
, and two roots λ 1 , λ 2 , which may be real or complex. From the form of f (λ) in (3.8), we also see easily that if the roots λ 1 , λ 2 are real, they are positive. Next we claim that Re λ 1 > 0. Suppose Re λ 1 = 0. Then f (i Im λ 1 ) = 0, then G 2 0 = E 0 F 0 G 0 + E 2 0 H 0 , and thus, dividing by

E 0 , 0 = G 2 0 -E 0 F 0 G 0 + E 2 0 H 0 = E 2 0 4 [Y 0 Z 0 + X 0 W 0 ] 2 + 2 [Y 0 Z 0 + X 0 W 0 ] F 0 -4H 0 , hence [Y 0 Z 0 + X 0 W 0 + F 0 ] 2 = F 2 0 + 4H 0 > F 2 0 ; but Y 0 Z 0 + X 0 W 0 + F 0 = (X 0 -W 0 )(Y 0 -Z 0 ) ∈ (0, F 0 )
which is a contradiction. Since Re λ 1 is a continuous function of (δ, µ), it is sufficient to find a value (µ, δ) satisfying (1.15) for which it is positive. Taking δ = µ, the equation in λ reduces to two equations of order 2:

f (λ) = (λ -X 0 ) 2 (λ -|Z 0 |) 2 -δ 2 X 2 0 Z 2 0 = λ 2 -(X 0 + |Z 0 |)λ -(δ -1)X 0 |Z 0 | λ 2 -(X 0 + |Z 0 |)λ + (1 + δ)X 0 |Z 0 | ,
and X 0 + |Z 0 | > 0, thus the claim is proved. Then V u has dimension 3 and V s has dimension 1. Hence the result follows.

Remark 3.5 In the case N = 1, two roots are explicit: λ 3 = -1, λ 4 = 2 + γ + ξ, and λ 1 , λ 2 are the roots of equation 

λ 2 -(1 + γ + ξ)λ + 2(1 + γ)(1 + ξ) = 0. ( 3 

Global results

Here we prove our second main result.

Proof of Theorem 1.3. From the proof of Proposition 3.4, the linearization at M 0 admits a unique real eigenvalue λ 3 < 0. From (3.8) a generating eigenvector (u 1 , u 2 , u 3 , u 4 ) satisfies u 1 u 3 < 0 and u 2 u 4 < 0, and hence it is of the form u = (-α 2 , -β 2 , σ 2 , ρ 2 ), oru. There exist precisely two trajectories T u and T -u converging to M 0 as t → ∞ and the convergence of X, Y, Z, W is monotone near t = ∞; from (3.4), the corresponding solutions (u, v) of system (1.1) satisfy (1.17). We consider the trajectory T u corresponding to u. Let us show that the convergence is monotone in all R. Notice that neither of the components can vanish, since system (1.1) is of Kolmogorov type. Near t = ∞, X and Y are increasing, and Z, W are decreasing. Suppose that there exists a greatest value t 1 such that X has a minimum local at t 1 , hence X tt (t 1 ) = X(t 1 )Z t (t 1 ) ≥ 0, Z(t 1 ) = N -2 -X(t 1 ), thus Z t (t 1 ) ≥ 0 . Then there exists t 2 ≥ t 1 such that Z t (t 2 ) = 0, and Z tt (t 2 ) = -δZ(t 2 )Y t (t 2 ) ≤ 0, Z(t 2 ) = N + a -δY (t 2 ), then Y t (t 2 ) ≤ 0. There exists t 3 ≥ t 2 such that Y t (t 3 ) = 0, and

Y tt (t 3 ) = Y (t 3 )W t (t 3 ) ≥ 0, Y (t 3 ) = N -2 -W (t 3 ).
There exists t 4 ≥ t 3 such that W t (t 4 ) = 0 and W tt (t 4 ) = -W (t 4 )X t (t 4 ) ≤ 0. From the definition of t 1 , this implies t 4 = t 1 , and then all the conditions above imply that (X, Y, Z, W )(t 1 ) = M 0 , which is impossible. Hence X stays strictly monotone, and similarly Y, Z, W also stay strictly monotone. Since X, Y > 0, and Y, Z < 0, then T u is bounded, hence defined on R and converges to some fixed point L = (l 1 , l 2 , l 3 , l 4 ) of the system as t → -∞ and necessarily l 1 < X 0 , l 2 < Y 0 , l 3 > Z 0 , l 4 > W 0 .

• Case N > 2. First we note that along T u we always have X, Y > N -2. Indeed, if at some point t we have X(t) = N -2, then X t (t) = (N -2)Z(t) < 0, which is contradictory. Hence the possible values for L are A 0 , or P 0 when µ ≥ N +b N -2 , or Q 0 when δ ≥ N +a N -2 , since I 0 is nonadmissible. By hypothesis, γ a,b > N -2, then either µ < N +b N -2 or δ < N +a N -2 . We can assume that δ < N +a N -2 . Then Q 0 ∈ R, then L = A 0 or P 0 . When µ < N +b N -2 , then L = A 0 . When µ > N +b N -2 , from Proposition 3.2(i), we have L = A 0 , thus L = P 0 . In the limit case µ = N +b N -2 , we find P 0 = A 0 . From the linearization at A 0 we have

λ 1 = λ 2 = N -2 > 0, λ 3 = N + a -(N -2)δ > 0, λ 4 = 0.
Coming back to the proof of Proposition 3.2(i), we find that the convergence of Z and X = X -(N -2) to 0 are exponential. From the fourth equation in (3.3) we see that W t + W 2 > 0, hence -1/W ≤ C|t| near -∞. Then, there exists m > 0 such that

W t = W 2 (-1 -µW -1 X) = W 2 (-1 + O(e mt );
integrating over (t, t 0 ), t 0 < 0, we obtain that W (t) = t • Case N = 2. Then necessarily L = O = (0, 0, 0, 0). The eigenvalues of the linearized problem at this point are 0, 0, 2 + a, 2 + b. Since Z t = Z(2 + a -δY -Z) and Y and Z tend to 0 as t tends to -∞, Z converges exponentially to 0, and similarly W . Since X t ≤ X 2 , it follows that X ≥ C |t| -1 near -∞. Then

X t = X 2 (1 + Z/X) = X 2 (1 + O(e mt ))
for some m > 0, hence X = -1/t + O(t -2 ), then the function t → ϕ = u(t)/t satisfies ϕ t /ϕ = O(t -2 ), then ϕ has a finite limit, hence u(r)/ ln r has a finite positive limit, and similarly for v.

  and (1.8) and (1.12) hold with γ = N -4 2 , ξ = N 2 .

Theorem 2 . 3

 23 [START_REF] Logemann | Non-autonomous systems: asymptotic behavior and weak invariance principles[END_REF] Corollary 4.1] Let h : R + × R M → R M be of Carathéodory class. Assume that there exists a locally Lipschitz continuous function h * : R M → R M such that for all compact C ⊂ R M and all ε > 0, there exists T ≥ 0 such that

  )

2 .

 2 Let u be a radial solution of (1.11). Then u and v = ∆u satisfy ∆u = v ∆v = |x| b |u| µ and then u(r) > 0 in (r 0 , R) and u(R) = ∞. Integrating twice the second equation in this system, we have that lim r→R v(r) = ∞ and Theorem 1.1 applies.

  ) and we notice the relations γ a,b + 2 + a = δξ a,b and ξ a,b + 2 + b = µγ a,b .

Y

  = Y * and lim t→-∞ W = W * , thus (3.4), (u, v) satisfy (3.6). If γ a,b < N -2, then λ 3 < 0 and V u = V u ∩ {Z = 0} and there is no admissible trajectory converging when t → -∞.

  -1 + O(t -2 ). In turn we estimate Y ; setting Y = Ỹ + W , then Y t = (N -2)Y + Y (Y -W ) + W (-µ X -W ),and thusY t = ((N -2) + ε(t))Y + O(t -2 ), implying Y = O(t -2 ) and thus Y = N -2t -1 + O(t -2 ). Next we find that Z t /Z = λ 3 + t -1 + O(t -2 ), which yields lim t→-∞ e -λ 3 t |t| -δ |Z| = C > 0.Finally, by replacing in (3.4), and deduce the behavior of u and v as claimed: lim r→0 r N -2 u = C 1 > 0 and lim r→0 r N -2 | log(r)| -1 v = C 2 > 0.

  Lemma 2.5 Let N ≥ 1. Under the assumptions of Theorem 1.1, there exist k > 0 and t < t 0

	such that		
	1/k ≤ X, Y, |Z|, |W | ≤ k	for t ≤ t.	(2.16)
	Moreover, setting		

s) ; then

(2.14) 

follows, and we deduce (2.15) by straight computation.

Next we prove that system (2.13) is a perturbation of the corresponding autonomous system (2.8):

  .9)The 4 roots are real if (1 + γ + ξ) 2 -8(1 + γ)(1 + ξ) ≥ 0, that means are linked by the relationsℓ 1 = λ 1 / |Z 0 | , ℓ 2 = λ 2 / |Z 0 | . Indeed M 0 = M 0,1 defined at(2.9) satisfies relation(2.17) with ̟ = 0, thus (X 0 , Y 0 , Z 0 ) is a fixed point of system(2.11) and the linearization of(2.11) at this point gives the eigenvalues -1, λ 1 , λ 2 . The point m 0 is the image of (X 0 , Y 0 , Z 0 ) by the transformation(2.25), which divides the eigenvalues by |Z 0 |, due to the change in time t → τ .

	(δµ + 3 + 2µ + 2δ) 2 -8(µδ + 2δ + 1)(µδ + 2µ + 1) ≥ 0,
	which is not true for δ = µ, but is true for example when δ/µ is large enough. The roots of
	equation (3.9) and the roots of equation (2.30) relative to the linearization of system (2.29) at
	m 0

The first author was supported by Fondecyt 70100002 and Ecos-Conicyt C08E04, and the second and third author were supported by Fondecyt 1070125, Fondecyt 1070951 as well as by Ecos-Conicyt C08E04.

Proof. We claim that the mapping (u 0 , v 0 ) ∈ [0, ∞)×[0, ∞) \ {0, 0} -→ ρ(u 0 , v 0 ) is continuous. As in [START_REF] Díaz | Large radial solutions of a plolyharmonic equation with superlinear growth[END_REF] this will follow from our global estimates.

(i) The function ρ is lower semi-continuous. Indeed the local existence is obtained by the fixed point theorem of a strict contraction, since min{δ, µ} ≥ 1, then we have local continuous dependence of the initial conditions, even if u 0 = 0 or v 0 = 0, and the result follows classically.

(ii) The function ρ is upper semi-continuous. We can start from a point r 0 > 0 instead of 0. We prove that for any positive (ũ 0 , ṽ0 ), considering any solution (ũ, ṽ) equal to (ũ 0 , ṽ0 ) at r 0 , with blow-up point ρ, for any r > ρ, any solution (u, v) starting from r 0 with data sufficiently close to (ũ 0 , ṽ0 ), blows up before r : suppose that it is false, then there exists a sequence of positive solutions (u n , v n ), with data (ũ n , ṽn ) at r 0 , tending to (ũ 0 , ṽ0 ), increasing, and blowing up at ρ n ≥ r. We can assume r = 1. Making the change of variables (2.4) we get solutions of system (2.5) in (0, s 0 ], satisfying C 0 = C 0 (r 0 , N, a, b)

with u and v decreasing. In fact estimates (1.16) hold with a universal constant, in any B(0, k)\ {0} ⊂ Ω such that the mean values of u and v on ∂B(0, r) are strictly monotone. Then there exists a constant

Passing to the limit we find that u, v are bounded at the point ρ < 1, which is contradictory. Then the claim is proved. Thus S is a curve with

as a parametric representation.

3 Behavior of system (1.1) near the origin

Formulation as a dynamical system

In [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF] the authors study general quasilinear elliptic systems, and in particular the system

where ε 1 = ±1, ε 2 = ±1. Near any point r where u(r) = 0, u ′ (r) = 0 and v(r) = 0, v ′ (r) = 0, they define

Regular solutions

First we give an alternative proof of Proposition 2.1.

Proposition 3.1 Assume (1.5) and D = 0. Then a solution (u, v) is regular with initial data (u 0 , v 0 ), u 0 , v 0 > 0 (resp. (u 0 , 0),u 0 > 0, resp. (0, v 0 ), v 0 > 0), if and only the corresponding solution (X, Y, Z, W ) converges to N 0 (resp. R 0 , resp. S 0 ) as t → -∞. For any u 0 , v 0 ≥ 0, not both 0, there exists a unique local regular solution (u, v) with initial data (u 0 , v 0 ).

Proof. The proof in the case u 0 , v 0 > 0 is done in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF]Proposition 4.4]. Suppose u 0 > 0 = v 0 , and consider any regular solution (u, v) with initial data (u 0 , 0). We find

then from (3.2) the corresponding trajectory (X, Y, Z, W ) converges to R 0 as t → -∞. Next we show that there exists a unique trajectory converging to R 0 . We write

Under our assumptions it lies in R.

the eigenvalues are

The unstable manifold V u has dimension 1 and V u ∩ {X = 0} = ∅, hence there exist precisely one admissible trajectory such that X < 0 and Z > 0. Moreover it satisfies lim

Then from (3.4) u has a positive limit u 0 , and v=O(e 2t ), thus v tends to 0; then (u, v) is regular with initial data (u 0 , 0). By (2.1) we obtain existence for any (u 0 , 0) and the uniqueness still holds. Similarly the solutions with initial data (0, v 0 ) correspond to S 0 .

Local existence of large solutions near 0

Next we prove the existence of different types of local solutions large at 0, by linearization around the fixed points A 0 , G 0 , H 0 , P 0 , Q 0 . For simplicity we do not consider the limit cases, where one of the eigenvalues of the linearization is 0, corresponding to behaviors of u, v of logarithmic type. All the following results extend by symmetry, after exchanging u, δ, a, γ a,b and v, µ, b, ξ a,b .