
HAL Id: hal-00524715
https://hal.science/hal-00524715v1

Submitted on 8 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certifying cost annotations in compilers
Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas, Ronan Saillard

To cite this version:
Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas, Ronan Saillard. Certifying cost annotations
in compilers. 2010. �hal-00524715�

https://hal.science/hal-00524715v1
https://hal.archives-ouvertes.fr

Certifying cost annotations in compilers∗

Roberto M. Amadio(1) Nicolas Ayache(2)

Yann Régis-Gianas(2) Ronan Saillard(2)

(1) Université Paris Diderot (UMR-CNRS 7126)
(2) Université Paris Diderot (UMR-CNRS 7126) and INRIA (Team πr2)

October 8, 2010

Abstract

We discuss the problem of building a compiler which can lift in a provably correct
way pieces of information on the execution cost of the object code to cost annotations
on the source code. To this end, we need a clear and flexible picture of: (i) the meaning
of cost annotations, (ii) the method to prove them sound and precise, and (iii) the way
such proofs can be composed. We propose a so-called labelling approach to these three
questions. As a first step, we examine its application to a toy compiler. This formal study
suggests that the labelling approach has good compositionality and scalability properties.
In order to provide further evidence for this claim, we report our successful experience in
implementing and testing the labelling approach on top of a prototype compiler written
in ocaml for (a large fragment of) the C language.

1 Introduction

The formal description and certification of software components is reaching a certain level of
maturity with impressing case studies ranging from compilers to kernels of operating systems.
A well-documented example is the proof of functional correctness of a moderately optimizing
compiler from a large subset of the C language to a typical assembly language of the kind
used in embedded systems [9].

In the framework of the Certified Complexity (CerCo) project [3], we aim to refine this line
of work by focusing on the issue of the execution cost of the compiled code. Specifically, we aim
to build a formally verified C compiler that given a source program produces automatically
a functionally equivalent object code plus an annotation of the source code which is a sound
and precise description of the execution cost of the object code.

We target in particular the kind of C programs produced for embedded applications; these
programs are eventually compiled to binaries executable on specific processors. The current
state of the art in commercial products such as Scade [4, 7] is that the reaction time of the
program is estimated by means of abstract interpretation methods (such as those developed
by AbsInt [1, 6]) that operate on the binaries. These methods rely on a specific knowledge
of the architecture of the processor and may require explicit annotations of the binaries to

∗This work was supported by the Information and Communication Technologies (ICT) Programme as
Project FP7-ICT-2009-C-243881 CerCo.

1

determine the number of times a loop is iterated (see, e.g., [15] for a survey of the state of
the art).

In this context, our aim is to produce a functionally correct compiler which can lift in a
provably correct way the pieces of information on the execution cost of the binary code to cost
annotations on the source C code. Eventually, we plan to manipulate the cost annotations
with automatic tools such as Frama − C [5]. In order to carry on our project, we need a
clear and flexible picture of: (i) the meaning of cost annotations, (ii) the method to prove
them sound and precise, and (iii) the way such proofs can be composed. Our purpose here
is to propose a methodology addressing these three questions and to consider its concrete
application to a simple toy compiler and to a moderately optimizing untrusted C compiler.

Meaning of cost annotations The execution cost of the source programs we are inter-
ested in depends on their control structure. Typically, the source programs are composed of
mutually recursive procedures and loops and their execution cost depends, up to some multi-
plicative constant, on the number of times procedure calls and loop iterations are performed.
Producing a cost annotation of a source program amounts to:

• enrich the program with a collection of global cost variables to measure resource con-
sumption (time, stack size, heap size,. . .)

• inject suitable code at some critical points (procedures, loops,. . .) to keep track of the
execution cost.

Thus producing a cost-annotation of a source program P amounts to build an annotated
program An(P) which behaves as P while self-monitoring its execution cost. In particular,
if we do not observe the cost variables then we expect the annotated program An(P) to be
functionally equivalent to P . Notice that in the proposed approach an annotated program is
a program in the source language. Therefore the meaning of the cost annotations is automat-
ically defined by the semantics of the source language and tools developed to reason on the
source programs can be directly applied to the annotated programs too.

Soundness and precision of cost annotations Suppose we have a functionally correct
compiler C that associates with a program P in the source language a program C(P) in the
object language. Further suppose we have some obvious way of defining the execution cost
of an object code. For instance, we have a good estimate of the number of cycles needed
for the execution of each instruction of the object code. Now the annotation of the source
program An(P) is sound if its prediction of the execution cost is an upper bound for the
‘real’ execution cost. Moreover, we say that the annotation is precise with respect to the
cost model if the difference between the predicted and real execution costs is bounded by a
constant which depends on the program.

Compositionality In order to master the complexity of the compilation process (and its
verification), the compilation function C must be regarded as the result of the composition
of a certain number of program transformations C = Ck ◦ · · · ◦ C1. When building a system
of cost annotations on top of an existing compiler a certain number of problems arise. First,
the estimated cost of executing a piece of source code is determined only at the end of
the compilation process. Thus while we are used to define the compilation functions Ci in

2

increasing order (from left to right), the annotation function An is the result of a progressive
abstraction from the object to the source code (from right to left). Second, we must be able to
foresee in the source language the looping and branching points of the object code. Missing a
loop may lead to unsound cost annotations while missing a branching point may lead to rough
cost predictions. This means that we must have a rather good idea of the way the source
code will eventually be compiled to object code. Third, the definition of the annotation of the
source code depends heavily on contextual information. For instance, the cost of the compiled
code associated with a simple expression such as x+1 will depend on the place in the memory
hierarchy where the variable x is allocated. A previous experience described in [2] suggests
that the process of pushing ‘hidden parameters’ in the definitions of cost annotations and of
manipulating directly numerical cost is error prone and produces complex proofs. For this
reason, we advocate next a ‘labelling approach’ where costs are handled at an abstract level
and numerical values are produced at the very end of the construction.

Labelling approach to cost annotations The ‘labelling’ approach to the problem of
building cost annotations is summarized in the following diagram.

L1

L1,ℓ

I

OO

er1

		

C1 // L2,ℓ

er2

��

. . .
Ck // Lk+1,ℓ

erk+1

��
L1

L

II

C1 // L2
. . .

Ck // Lk+1

er i+1 ◦ Ci = Ci ◦ er i
er1 ◦ L = idL1

An = I ◦ L

For each language Li considered in the compilation process, we define an extended labelled
language Li,ℓ and an extended operational semantics. The labels are used to mark certain
points of the control. The semantics makes sure that whenever we cross a labelled control
point a labelled and observable transition is produced.

For each labelled language there is an obvious function er i erasing all labels and produc-
ing a program in the corresponding unlabelled language. The compilation functions Ci are
extended from the unlabelled to the labelled language so that they enjoy commutation with
the erasure functions. Moreover, we lift the soundness properties of the compilation functions
from the unlabelled to the labelled languages and transition systems.

A labelling L of the source language L1 is just a function such that erL1
◦L is the identity

function. An instrumentation I of the source labelled language L1,ℓ is a function replacing
the labels with suitable increments of, say, a fresh global cost variable. Then an annotation
An of the source program can be derived simply as the composition of the labelling and the
instrumentation functions: An = I ◦ L.

Suppose s is some adequate representation of the state of a program. Let P be a source
program and suppose that its annotation satisfies the following property:

(An(P), s[c/cost]) ⇓ s′[c+ δ/cost] (1)

where c and δ are some non-negative numbers. Then the definition of the instrumentation
and the fact that the soundness proofs of the compilation functions have been lifted to the
labelled languages allows to conclude that

(C(L(P)), s[c/cost]) ⇓ (s′[c/cost], λ) (2)

3

where C = Ck ◦ · · · ◦ C1 and λ is a sequence (or a multi-set) of labels whose ‘cost’ corresponds
to the number δ produced by the annotated program. Then the commutation properties of
erasure and compilation functions allows to conclude that the erasure of the compiled labelled
code erk+1(C(L(P))) is actually equal to the compiled code C(P) we are interested in. Given
this, the following question arises: under which conditions the sequence λ, i.e., the increment
δ, is a sound and possibly precise description of the execution cost of the object code?

To answer this question, we observe that the object code we are interested in is some kind
of assembly code and its control flow can be easily represented as a control flow graph. The
fact that we have to prove the soundness of the compilation functions means that we have
plenty of information on the way the control flows in the compiled code, in particular as far
as procedure calls and returns are concerned. These pieces of information allow to build a
rather accurate representation of the control flow of the compiled code at run time.

The idea is then to perform two simple checks on the control flow graph. The first check is
to verify that all loops go through a labelled node. If this is the case then we can associate a
finite cost with every label and prove that the cost annotations are sound. The second check
amounts to verify that all paths starting from a label have the same cost. If this check is
successful then we can conclude that the cost annotations are precise.

A toy compiler As a first case study for the labelling approach to cost annotations we
have sketched, we introduce a toy compiler which is summarised by the following diagram.

Imp
C // Vm

C′

// Mips

The three languages considered can be shortly described as follows: Imp is a very sim-
ple imperative language with pure expressions, branching and looping commands, Vm is an
assembly-like language enriched with a stack, and Mips is a Mips-like assembly language with
registers and main memory. The first compilation function C relies on the stack of the Vm

language to implement expression evaluation while the second compilation function C′ allo-
cates (statically) the base of the stack in the registers and the rest in main memory. This is
of course a naive strategy but it suffices to expose some of the problems that arise in defining
a compositional approach.

A C compiler As a second, more complex, case study we consider a C compiler we have
built in ocaml whose structure is summarised by the following diagram:

C → Clight → Cminor → RTLAbs (front end)
↓

Mips ← LIN ← LTL ← ERTL ← RTL (back-end)

The structure follows rather closely the one of the CompCert compiler [9]. Notable dif-
ferences are that some compilation steps are fusioned, that the front-end goes till RTLAbs
(rather than Cminor) and that we target the Mips assembly language (rather than PowerPc).
These differences are contingent to the way we built the compiler. The compilation from C

to Clight relies on the CIL front-end [13]. The one from Clight to RTL has been programmed
from scratch and it is partly based on the Coq definitions available in the CompCert com-
piler. Finally, the back-end from RTL to Mips is based on a compiler developed in ocaml for
pedagogical purposes [14]. The main optimisations it performs are common subexpression
elimination, liveness analysis and register allocation, and graph compression. We ran some

4

benchmarks to ensure that our prototype implementation is realistic. The results are given
in appendix B.9 and the compiler is available from the authors.

Organisation The rest of the paper is organised as follows. Section 2 describes the 3
languages and the 2 compilation steps of the toy compiler. Section 3 describes the application
of the labelling approach to the toy compiler. Section 4 reports our experience in implementing
and testing the labelling approach on the C compiler. Section 5 summarizes our contribution
and outlines some perspectives for future work. Appendix A sketches the proofs that have
not been mechanically checked in Coq and appendix B provides some details on the structure
of the C compiler we have implemented.

2 A toy compiler

We formalise the toy compiler introduced in section 1.

2.1 Imp: language and semantics

The syntax of the Imp language is described below. This is a rather standard imperative
language with while loops and if-then-else.

id ::= x || y || . . . (identifiers)
n ::= 0 || −1 || +1 || . . . (integers)
v ::= n || true || false (values)
e ::= id || n || e+ e (numerical expressions)
b ::= e < e (boolean conditions)
S ::= skip || id := e || S;S || if b then S else S || while b do S (commands)
P ::= prog S (programs)

Let s be a total function from identifiers to integers representing the state. If s is a state,
x an identifier, and n an integer then s[n/x] is the ‘updated’ state such that s[n/x](x) = n
and s[n/x](y) = s(y) if x 6= y. The big-step operational semantics of Imp expressions and
boolean conditions is defined as follows:

(v, s) ⇓ v (x, s) ⇓ s(x)

(e, s) ⇓ v (e′, s) ⇓ v′

(e+ e′, s) ⇓ (v +Z v′)

(e, s) ⇓ v (e′, s) ⇓ v′

(e < e′, s) ⇓ (v <Z v′)

A continuation K is a list of commands which terminates with a special symbol halt:
K ::= halt || S · K. Table 1 defines a small-step semantics of Imp commands whose basic
judgement has the shape: (S,K, s) → (S′,K ′, s′). We define the semantics of a program
prog S as the semantics of the command S with continuation halt. We derive a big step
semantics from the small step one as follows: (S, s) ⇓ s′ if (S, halt, s) → · · · → (skip, halt, s′).

2.2 Vm: language and semantics

Following [10], we define a virtual machine Vm and its programming language. The machine
includes the following elements: (1) a fixed code C (a possibly empty sequence of instructions),
(2) a program counter pc, (3) a store s (as for the source program), (4) a stack of integers σ.

Given a sequence C, we denote with |C| its length and with C[i] its ith element (the
leftmost element being the 0th element). The operational semantics of the instructions is
formalised by rules of the shape C ⊢ (i, σ, s) → (j, σ′, s′) and it is fully described in table

5

(x := e,K, s) → (skip,K, s[v/x]) if (e, s) ⇓ v

(S;S′,K, s) → (S, S′ ·K, s)

(if b then S else S′,K, s) →

{

(S,K, s) if (b, s) ⇓ true

(S′,K, s) if (b, s) ⇓ false

(while b do S,K, s) →

{

(S, (while b do S) ·K, s) if (b, s) ⇓ true

(skip,K, s) if (b, s) ⇓ false

(skip, S ·K, s) → (S,K, s)

Table 1: Small-step operational semantics of Imp commands

Rule C[i] =

C ⊢ (i, σ, s)→ (i+ 1, n · σ, s) cnst(n)
C ⊢ (i, σ, s)→ (i+ 1, s(x) · σ, s) var(x)
C ⊢ (i, n · σ, s)→ (i+ 1, σ, s[n/x]) setvar(x)
C ⊢ (i, n · n′ · σ, s)→ (i+ 1, (n+Z n′) · σ, s) add

C ⊢ (i, σ, s)→ (i+ k + 1, σ, s) branch(k)
C ⊢ (i, n · n′ · σ, s)→ (i+ 1, σ, s) bge(k) and n <Z n′

C ⊢ (i, n · n′ · σ, s)→ (i+ k + 1, σ, s) bge(k) and n ≥Z n′

Table 2: Operational semantics Vm programs

2. Notice that Imp and Vm semantics share the same notion of store. We write, e.g., n · σ
to stress that the top element of the stack exists and is n. We will also write (C, s) ⇓ s′ if

C ⊢ (0, ǫ, s)
∗
→ (i, ǫ, s′) and C[i] = halt.

Code coming from the compilation of Imp programs has specific properties that are used
in the following compilation step when values on the stack are allocated either in registers or
in main memory. In particular, it turns out that for every instruction of the compiled code it
is possible to predict statically the height of the stack whenever the instruction is executed.
We now proceed to define a simple notion of well-formed code and show that it enjoys this
property. In the following section, we will define the compilation function from Imp to Vm

and show that it produces well-formed code.

Definition 1 We say that a sequence of instructions C is well formed if there is a function
h : {0, . . . , |C|} → N which satisfies the conditions listed in table 3 for 0 ≤ i ≤ |C| − 1. In
this case we write C : h.

The conditions defining the predicate C : h are strong enough to entail that h correctly

C[i] = Conditions for C : h

cnst(n) or var(x) h(i+ 1) = h(i) + 1
add h(i) ≥ 2, h(i+ 1) = h(i) − 1
setvar(x) h(i) = 1, h(i+ 1) = 0
branch(k) 0 ≤ i+ k + 1 ≤ |C|, h(i) = h(i+ 1) = h(i+ k + 1) = 0
bge(k) 0 ≤ i+ k + 1 ≤ |C|, h(i) = 2, h(i+ 1) = h(i+ k + 1) = 0
halt i = |C| − 1, h(i) = h(i+ 1) = 0

Table 3: Conditions for well-formed code

6

C(x) = var(x) C(n) = cnst(n) C(e+ e′) = C(e) · C(e′) · add

C(e < e′, k) = C(e′) · C(e) · bge(k)

C(x := e) = C(e) · setvar(x) C(S;S′) = C(S) · C(S′)

C(if b then S else S′) = C(b, k) · C(S) · (branch(k′)) · C(S′)
where: k = sz (S) + 1, k′ = sz (S′)

C(while b do S) = C(b, k) · C(S) · branch(k′)
where: k = sz (S) + 1, k′ = −(sz(b) + sz (S) + 1)

C(prog S) = C(S) · halt

Table 4: Compilation from Imp to Vm

predicts the stack height and to guarantee the uniqueness of h up to the initial condition.

Proposition 2 (1) If C : h, C ⊢ (i, σ, s)
∗
→ (j, σ′, s′), and h(i) = |σ| then h(j) = |σ′|. (2) If

C : h, C : h′ and h(0) = h′(0) then h = h′.

2.3 Compilation from Imp to Vm

In table 4, we define compilation functions C from Imp to Vm which operate on expressions,
boolean conditions, statements, and programs. We write sz (e), sz (b), sz (S) for the number of
instructions the compilation function associates with the expression e, the boolean condition
b, and the statement S, respectively.

We follow [10] for the proof of soundness of the compilation function for expressions and
boolean conditions (see also [11] for a much older reference).

Proposition 3 The following properties hold:

(1) If (e, s) ⇓ v then C · C(e) · C ′ ⊢ (i, σ, s)
∗
→ (j, v · σ, s) where i = |C| and j = |C · C(e)|.

(2) If (b, s) ⇓ true then C ·C(b, k)·C ′ ⊢ (i, σ, s)
∗
→ (j+k, σ, s) where i = |C| and j = |C ·C(b, k)|.

(3) If (b, s) ⇓ false then C · C(b, k) ·C ′ ⊢ (i, σ, s)
∗
→ (j, σ, s) where i = |C| and j = |C · C(b, k)|.

Next we focus on the compilation of statements. We introduce a ternary relation R(C, i,K)
which relates a Vm code C, a number i ∈ {0, . . . , |C|−1} and a continuation K. The intuition
is that relative to the code C, the instruction i can be regarded as having continuation K.
(A formal definition is available in appendix 4.) We can then state the correctness of the
compilation function as follows.

Proposition 4 If (S,K, s) → (S′,K ′, s′) and R(C, i, S ·K) then C ⊢ (i, σ, s)
∗
→ (j, σ, s′) and

R(C, j, S′ ·K ′).

As announced, we can prove that the result of the compilation is a well-formed code.

Proposition 5 For any program P there is a unique h such that C(P) : h.

7

Rule M [i] =

M ⊢ (i,m)→ (i+ 1,m[n/R]) loadi R,n
M ⊢ (i,m)→ (i+ 1,m[m(l)/R]) load R, l
M ⊢ (i,m)→ (i+ 1,m[m(R)/l])) store R, l
M ⊢ (i,m)→ (i+ 1,m[m(R′) +m(R′′)/R]) add R,R′, R′′

M ⊢ (i,m)→ (i+ k + 1,m) branch k
M ⊢ (i,m)→ (i+ 1,m) bge R,R′, k and m(R) <Z m(R′)
M ⊢ (i,m)→ (i+ k + 1,m) bge R,R′, k and m(R) ≥Z m(R′)

Table 5: Operational semantics Mips programs

2.4 Mips: language and semantics

We consider a Mips-like machine [8] which includes the following elements: (1) a fixed code
M (a sequence of instructions), (2) a program counter pc, (3) a finite set of registers including
the registers A, B, and R0, . . . , Rb−1, and (4) an (infinite) main memory which maps locations
to integers.

We denote with R,R′, . . . registers, with l, l′, . . . locations and with m,m′, . . . memories
which are total functions from registers and locations to (unbounded) integers. We denote
with M a list of instructions. The operational semantics is formalised in table 5 by rules of the
shape M ⊢ (i,m) → (j,m′), where M is a list of Mips instructions, i, j are natural numbers

and m,m′ are memories. We write (M,m) ⇓ m′ if M ⊢ (0,m)
∗
→ (j,m′) and M [j] = halt.

2.5 Compilation from Vm to Mips

In order to compile Vm programs to Mips programs we make the following hypotheses: (1) for
every Vm program variable x we reserve an address lx, (2) for every natural number h ≥ b,
we reserve an address lh (the addresses lx, lh, . . . are all distinct), and (3) we store the first
b elements of the stack σ in the registers R0, . . . , Rb−1 and the remaining (if any) at the
addresses lb, lb+1,

We say that the memorym represents the stack σ and the store s, and writem ‖−σ, s, if the
following conditions are satisfied: (1) s(x) = m(lx), and (2) if 0 ≤ i < |σ| then σ[i] = m(Ri)
if i < b, and σ[i] = m(li) if i ≥ b.

The compilation function C′ from Vm to Mips is described in table 6. It operates on a
well-formed Vm code C whose last instruction is halt. Hence, by proposition 5(3), there is a
unique h such that C : h. We denote with C′(C) the concatenation C′(0, C) · · · C′(|C| − 1, C).
Given a well formed Vm code C with i < |C| we denote with p(i, C) the position of the first
instruction in C′(C) which corresponds to the compilation of the instruction with position i
in C. This is defined as1 p(i, C) = Σ0≤j<id(i, C), where the function d(i, C) is defined as
d(i, C) = |C′(i, C)|. Hence d(i, C) is the number of Mips instructions associated with the
ith instruction of the (well-formed) C code. The functional correctness of the compilation
function can then be stated as follows.

Proposition 6 Let C : h be a well formed code. If C ⊢ (i, σ, s) → (j, σ′, s′) with h(i) = |σ|

and m ‖−σ, s then C′(C) ⊢ (p(i, C),m)
∗
→ (p(j, C),m′) and m′ ‖−σ′, s′.

1There is an obvious circularity in this definition that can be easily eliminated by defining first the function
d following the case analysis in table 6, then the function p, and finally the function C′ as in table 6.

8

C[i] = C′(i, C) =

cnst(n)

{

(loadi Rh, n) if h = h(i) < b
(loadi A,n) · (store A, lh) otherwise

var(x)

{

(load Rh, lx) if h = h(i) < b
(load A, lx) · (store A, lh) otherwise

add

(add Rh−2, Rh−2, Rh−1) if h = h(i) < (b− 1)
(load A, lh−1) · (add Rh−2, Rh−2, A) if h = h(i) = (b− 1)
(load A, lh−1) · (load B, lh−2) if h = h(i) > (b− 1)
(add A,B,A) · (store A, lh−2)

setvar(x)

{

(store Rh−1 lx) if h = h(i) < b
(load A, lh−1) · (store A, lx) if h = h(i) ≥ b

branch(k) (branch k′) if k′ = p(i+ k + 1, C)− p(i+ 1, C)

bge(k)

(bge Rh−2, Rh−1, k
′) if h = h(i) < (b− 1)

(load A, lh−1) · (bge Rh−2, A, k′) if h = h(i) = (b− 1)
(load A, lh−2) · (load B, lh−1) · (bge A,B, k′) if h = h(i) > (b− 1), k′ =

p(i+ k + 1, C)− p(i+ 1, C)
halt halt

Table 6: Compilation from Vm to Mips

3 Labelling approach for the toy compiler

We apply the labelling approach introduced in section 1 to the toy compiler which results in
the following diagram.

Imp

Impℓ

I

OO

er Imp

		

C // Vmℓ

erVm

��

C
′

// Mipsℓ

erMips

��
Imp

L

II

C // Vm
C
′

// Mips

erVm ◦ C = C ◦ er Imp

erMips ◦ C
′ = C′ ◦ erVm

er Imp ◦ L = idImp

An Imp = I ◦ L

3.1 Labelled Imp

We extend the syntax so that statements can be labelled: S ::= . . . || ℓ : S. For instance,
ℓ : (while (n < x) do ℓ : S) is a labelled command. The small step semantics of statements
defined in table 1 is extended as follows.

(ℓ : S,K, s)
ℓ
−→ (S,K, s)

We denote with λ, λ′, . . . finite sequences of labels. In particular, we denote with ǫ the
empty sequence and identify an unlabelled transition with a transition labelled with ǫ. Then
the small step reduction relation we have defined on statements becomes a labelled transition
system. There is an obvious erasure function er Imp from the labelled language to the unlabelled
one which is the identity on expressions and boolean conditions, and traverses commands
removing all labels. We derive a labelled big-step semantics as follows: (S, s) ⇓ (s′, λ) if

(S, halt, s)
λ1−→ · · ·

λn−→ (skip, halt, s′) and λ = λ1 · · ·λn.

9

3.2 Labelled Vm

We introduce a new instruction nop(ℓ) whose semantics is defined as follows:

C ⊢ (i, σ, s)
ℓ
−→ (i+ 1, σ, s) if C[i] = nop(ℓ) .

The erasure function erVm amounts to remove from a Vm code C all the nop(ℓ) instructions
and recompute jumps accordingly. Specifically, let n(C, i, j) be the number of nop instructions
in the interval [i, j]. Then, assuming C[i] = branch(k) we replace the offset k with an offset
k′ determined as follows:

k′ =

{

k − n(C, i, i+ k) if k ≥ 0
k + n(C, i+ 1 + k, i) if k < 0

The compilation function C is extended to Impℓ by defining:

C(ℓ : b, k) = (nop(ℓ)) · C(b, k) C(ℓ : S) = (nop(ℓ)) · C(S) .

Proposition 7 For all commands S in Impℓ we have that:

(1) erVm(C(S)) = C(er Imp(S)).

(2) If (S, s) ⇓ (s′, λ) then (C(S), s) ⇓ (s′, λ).

Remark 8 In the current formulation, a sequence of transitions λ in the source code must
be simulated by the same sequence of transitions in the object code. However, in the actual
computation of the costs, the order of the labels occurring in the sequence is immaterial.
Therefore one may consider a more relaxed notion of simulation where λ is a multi-set of
labels.

3.3 Labelled Mips

The labelled extension of Mips is similar to the one of Vm. We add an instruction nop ℓ whose
semantics is defined as follows:

M ⊢ (i,m)
ℓ
−→ (i+ 1,m) if M [i] = (nop ℓ) .

The erasure function erMips is also similar to the one of Vm as it amounts to remove from
a Mips code all the (nop ℓ) instructions and recompute jumps accordingly. The compilation
function C′ is extended to Vmℓ by simply translating nop(ℓ) as (nop ℓ):

C′(i, C) = (nop ℓ) if C[i] = nop(ℓ)

The evaluation predicate for labelled Mips is defined as (M,m) ⇓ (m′, λ) if M ⊢ (0,m)
λ1−→

· · ·
λn−→ (j,m′), λ = λ1 · · · λn and M [j] = halt. The following proposition relates Vmℓ code

and its compilation and it is similar to proposition 7.

Proposition 9 Let C be a Vmℓ code. Then:

(1) erMips(C
′(C)) = C′(erVm(C)).

(2) If (C, s) ⇓ (s′, λ) and m ‖−ǫ, s then (C′(C),m) ⇓ (m′, λ) and m′ ‖−ǫ, s′.

10

3.4 Labellings and instrumentations

Assuming a function κ which associates an integer number with labels and a distinct variable
cost which does not occur in the program P under consideration, we abbreviate with inc(ℓ)
the assignment cost := cost + κ(ℓ). Then we define the instrumentation I (relative to κ and
cost) as follows:

I(ℓ : S) = inc(ℓ);I(S) .

The function I just distributes over the other operators of the language. We extend the
function κ on labels to sequences of labels by defining κ(ℓ1, . . . , ℓn) = κ(ℓ1)+ · · ·+κ(ℓn). The
instrumented Imp program relates to the labelled one has follows.

Proposition 10 Let S be an Impℓ command. If (I(S), s[c/cost]) ⇓ s′[c + δ/cost] then
∃λ κ(λ) = δ and (S, s[c/cost]) ⇓ (s′[c/cost], λ).

Definition 11 A labelling is a function L from an unlabelled language to the corresponding
labelled one such that er Imp ◦ L is the identity function on the Imp language.

Proposition 12 For any labelling function L, and Imp program P , the following holds:

erMips(C
′(C(L(P))) = C′(C(P)) . (3)

Proposition 13 Given a function κ for the labels and a labelling function L, for all programs
P of the source language if (I(L(P)), s[c/cost]) ⇓ s′[c + δ/cost] and m ‖−ǫ, s[c/cost] then
(C′(C(L(P))),m) ⇓ (m′, λ), m′ ‖−ǫ, s′[c/cost] and κ(λ) = δ.

3.5 Sound and precise labellings

With any Mipsℓ code M we can associate a directed and rooted (control flow) graph whose
nodes are the instruction positions {0, . . . , |M | − 1}, whose root is the node 0, and whose
directed edges correspond to the possible transitions between instructions. We say that a
node is labelled if it corresponds to an instruction nop ℓ.

Definition 14 A simple path in a Mipsℓ code M is a directed finite path in the graph as-
sociated with M where the first node is labelled, the last node is the predecessor of either a
labelled node or a leaf, and all the other nodes are unlabelled.

Definition 15 A Mipsℓ code M is soundly labelled if in the associated graph the root node 0
is labelled and there are no loops that do not go through a labelled node.

In a soundly labelled graph there are finitely many simple paths. Thus, given a soundly
labelledMips codeM , we can associate with every label ℓ a number κ(ℓ) which is the maximum
(estimated) cost of executing a simple path whose first node is labelled with ℓ. We stress that
in the following we assume that the cost of a simple path is proportional to the number of
Mips instructions that are crossed in the path.

Proposition 16 If M is soundly labelled and (M,m) ⇓ (m′, λ) then the cost of the compu-
tation is bounded by κ(λ).

Thus for a soundly labelled Mips code the sequence of labels associated with a computation
is a significant information on the execution cost.

11

Ls(prog S) = prog ℓ : Ls(S)
Ls(skip) = skip

Ls(x := e) = x := e
Ls(S;S

′) = Ls(S);Ls(S
′)

Ls(if b then S1 else S2) = if b then Ls(S1) else Ls(S2)
Ls(while b do S) = while b do ℓ : Ls(S)

Lp(prog S) = prog Lp(S)
Lp(S) = let ℓ = new , (S′, d) = L′

p(S) in ℓ : S′

L′
p(S) = (S, 0) if S = skip or S = (x := e)
L′

p(if b then S1 else S2) = (if b then Lp(S1) else Lp(S2), 1)
L′

p(while b do S) = (while b do Lp(S), 1)
L′

p(S1;S2) = let (S′
1, d1) = L

′
p(S1), (S′

2, d2) = L
′
p(S2) in

case d1
0 : (S′

1;S
′
2, d2)

1 : let ℓ = new in (S′
1; ℓ : S

′
2, d2)

Table 7: Two labellings for the Imp language

Definition 17 We say that a soundly labelled code is precise if for every label ℓ in the code,
the simple paths starting from a node labelled with ℓ have the same cost.

In particular, a code is precise if we can associate at most one simple path with every
label.

Proposition 18 If M is precisely labelled and (M,m) ⇓ (m′, λ) then the cost of the compu-
tation is κ(λ).

The next point we have to check is that there are labelling functions (of the source code)
such that the compilation function does produce sound and possibly precise labelled Mips

code. To discuss this point, we introduce in table 7 two labelling functions Ls and Lp for
the Imp language. The first labelling relies on just one label while the second one relies on a
function “new” which is meant to return fresh labels and on an auxiliary function L′

p which
returns a labelled command and a binary directive d ∈ {0, 1}. If d = 1 then the command
that follows (if any) must be labelled.

Proposition 19 For all Imp programs P :

(1) C′(C(Ls(P)) is a soundly labelled Mips code.

(2) C′(C(Lp(P)) is a soundly and precisely labelled Mips code.

For an example of command which is not soundly labelled, consider ℓ : while 0 < x do x :=
x + 1, which when compiled, produces a loop that does not go through any label. On the
other hand, for an example of a program which is not precisely labelled consider ℓ : (if 0 <
x then x := x+ 1 else skip). In the compiled code, we find two simple paths associated with
the label ℓ whose cost will be quite different in general.

Once a sound and possibly precise labelling L has been designed, we can determine the
cost of each label and define an instrumentation I whose composition with L will produce
the desired cost annotation.

12

1. Label the input Clight program.

2. Compile the labelled Clight program in the labelled world. This produces a labelled Mips code.

3. For each label of the labelled Mips code, compute the cost of the instructions under its scope and generate
a label-cost mapping. An unlabelled Mips code — the result of the compilation — is obtained by removing the
labels from the labelled Mips code.

4. Add a fresh cost variable to the labelled Clight program and replace the labels by an increment of this cost

variable according to the label-cost mapping. The result is an annotated Clight program with no label.

Table 8: Building the annotation of a Clight program in the labelling approach

Definition 20 Given a labelling function L for the source language Imp and a program P in
the Imp language, we define an annotation for the source program as follows:

An Imp(P) = I(L(P)) .

Proposition 21 If P is a program and C′(C(L(P))) is a sound (sound and precise) labelling
then (An Imp(P), s[c/cost]) ⇓ s′[c+δ/cost] and m ‖−ǫ, s[c/cost] entails that (C′(C(P)),m) ⇓ m′,
m′ ‖−ǫ, s′[c/cost] and the cost of the execution is bound (is exactly) δ.

To summarise, producing sound and precise labellings is mainly a matter of designing
the labelled source language so that the labelling is sufficiently fine grained. For instance,
in the toy compiler, it enough to label commands while it is not necessary to label boolean
conditions and expressions.

Besides soundness and precision, a third criteria to evaluate labellings is that they do
not introduce too many unnecessary labels. We call this property economy. There are two
reasons for this requirement. On one hand we would like to minimise the number of labels
so that the source program is not cluttered by too many cost annotations and on the other
hand we would like to maximise the length of the simple paths because in a modern processor
the longer the sequence of instructions we consider the more accurate is the estimation of
their execution cost (on a long sequence certain costs are amortized). In practice, it seems
that one can produce first a sound and possibly precise labelling and then apply heuristics to
eliminate unnecessary labels.

4 Labelling approach for the C compiler

This section informally describes the labelled extensions of the languages in the compilation
chain (see appendix B for details), the way the labels are propagated by the compilation
functions, the labelling of the source code, the hypotheses on the control flow of the labelled
Mips code and the verification that we perform on it, the way we build the instrumentation,
and finally the way the labelling approach has been tested. The process of annotating a Clight

program using the labelling approach is summarized in table 8 and is detailed in the following
sections.

13

4.1 Labelled languages

Both the Clight and Cminor languages are extended in the same way by labelling both state-
ments and expressions (by comparison, in the toy language Imp we just labelled statements).
The labelling of expressions aims to capture precisely their execution cost. Indeed, Clight and
Cminor include expressions such as a1?a2; a3 whose evaluation cost depends on the boolean
value a1. As both languages are extended in the same way, the extended compilation does
nothing more than sending Clight labelled statements and expressions to those of Cminor.

The labelled versions of RTLAbs and the languages in the back-end simply consist in
adding a new instruction whose semantics is to emit a label without modifying the state. For
the CFG based languages (RTLAbs to LTL), this new instruction is emit label → node . For
LIN and Mips, it is emit label . The translation of these label instructions is immediate. In
Mips, we also rely on a reserved label begin function to pinpoint the beginning of a function
code (cf. section 4.2).

4.2 Labelling of the source language

As for the toy compiler (cf. end of section 3), the goals of a labelling are soundness, precision,
and possibly economy. We explain our labelling by considering the constructions of Clight
and their compilation to Mips.

Sequential instructions A sequence of Clight instructions that compile to sequential Mips

code, such as a sequence of assignments, can be handled by a single label which covers the
unique execution path.

Ternary expressions and conditionals Most Clight expressions compile to sequential
Mips code. Ternary expressions, that introduce a branching in the control flow, are one
exception. In this case, we achieve precision by associating a label with each branch. This
is similar to the treatment of the conditional we have already discussed in section 3. As for
the Clight operations && and || which have a lazy semantics, they are transformed to ternary
expressions before computing the labelling.

Loops Loops in Clight are guarded by a condition. Following the arguments for the previous
cases, we add two labels when encountering a loop construct: one label to start the loop’s
body, and one label when exiting the loop. This is similar to the treatment of while loops
discussed in section 3 and it is enough to guarantee that the loop in the compiled code goes
through a label.

Program Labels and Gotos In Clight, program labels and gotos are intraprocedural.
Their only effect on the control flow of the resulting assembly code is to potentially introduce
an unguarded loop. This loop must contain at least one cost label in order to satisfy the
soundness condition, which we ensure by adding a cost label right after a program label.

14

Clight
Labelling
−−−−−−→ Labelled Clight

Compilation
−−−−−−−−→ Labelled Mips

lbl: lbl: lbl:

i++; cost: emit cost

... i++; li $v0, 1

goto lbl; ... add $a0, $a0, $v0

goto lbl; ...

j lbl

Function calls Function calls in Mips are performed by indirect jumps, the address of the
callee being in a register. In the general case, this address cannot be inferred statically. Even
though the destination point of a function call is unknown, when the considered Mips code
has been produced by our compiler, we know for a fact that this function ends with a return
statement that transfers the control back to the instruction following the function call in
the caller. As a result, we treat function calls according to the following global invariants
of the compilation: (1) the instructions of a function are covered by the labels inside this
function, (2) we assume a function call always returns and runs the instruction following the
call. Invariant (1) entails in particular that each function must contain at least one label. To
ensure this, we simply add a starting label in every function definition. The example below
illustrates this point:

Clight
Labelling
−−−−−−→ Labelled Clight

Compilation
−−−−−−−−→ Labelled Mips

void f () { void f () { f start:

f’s body cost: Frame Creation
} f’s body Initializations

} emit cost

f’s body
Frame Deletion
return

We notice that some instructions in Mips will be inserted before the first label is emit-
ted. These instructions relate to the frame creation and/or variable initializations, and are
composed of sequential instructions (no branching). To deal with this issue, we take the
convention that the instructions that precede the first label in a function code are actually
under the scope of the first label. Invariant (2) is of course an over-approximation of the
program behaviour as a function might fail to return because of an infinite loop. In this case,
the proposed labelling remains correct: it just assumes that the instructions following the
function call will be executed, and takes their cost into consideration. The final computed
cost is still an over-approximation of the actual cost.

4.3 Verifications on the object code

The labelling previously described has been designed so that the compiled Mips code satisfies
the soundness and precision conditions. However, we do not need to prove this, instead we
have to devise an algorithm that checks the conditions on the compiled code. The algorithm
assumes a correct management of function calls in the compiled code. In particular, when
we call a function we always jump to the first instruction of the corresponding code segment
and when we return we always jump to an an instruction that follows a call. We stress that
this is a reasonable hypothesis that is essentially subsumed by the proof that the object code
simulates the source code.

15

In our current implementation, we check the soundness and the precision conditions while
building at the same time the label-cost mapping. To this end, the algorithm takes the
following main steps.

• First, for each function a control flow graph is built.

• For each graph, we check whether there is a unique label that is reachable from the root by a unique
path. This unique path corresponds to the instructions generated by the calling conventions as discussed
in section 4.2. We shift the occurrence of the label to the root of the graph.

• By a strongly connected components algorithm, we check whether every loop in the graphs goes through
at least one label.

• We perform a (depth-first) search of the graph. Whenever we reach a labelled node, we perform a
second (depth-first) search that stops at labelled nodes and computes an upper bound on the cost of the
occurrence of the label. Of course, when crossing a branching instruction, we take the maximum cost
of the branches. When the second search stops we update the current cost of the label-cost mapping
(by taking a maximum) and we continue the first search.

• Warning messages are emitted whenever the maximum is taken between two different values as in this
case the precision condition may be violated.

4.4 Building the cost annotation

Once the label-cost mapping is computed, instrumenting the labelled source code is an easy
task. A fresh global variable which we call cost variable is added to the source program with
the purpose of holding the cost value and it is initialised at the very beginning of the main

program. Then, every label is replaced by an increment of the cost variable according to the
label-cost mapping. Following this replacement, the cost labels disappear and the result is a
Clight program with annotations in the form of assignments.

There is one final problem: labels inside expressions. As we already mentioned, Clight does
not allow writing side-effect instructions — such as cost increments — inside expressions. To
cope with this restriction, we produce first an instrumented C program — with side-effects in
expressions — that we translate back to Clight using CIL. This process is summarized below.

Labelled Clight

label-cost mapping

}

Instrumentation
−−−−−−−−−−→ Instrumented C

CIL
−−→ Instrumented Clight

4.5 Testing

It is desirable to test the coherence of the labelling from Clight to Mips. To this end, each
labelled language comes with an interpreter that produces the trace of the labels encountered
during the computation. Then, one naive approach is to test the equality of the traces pro-
duced by the program at the different stages of the compilation. Our current implementation
passes this kind of tests. For some optimisations that may re-order computations, the weaker
condition mentioned in remark 8 could be considered.

5 Conclusion and future work

We have discussed the problem of building a compiler which can lift in a provably correct
way pieces of information on the execution cost of the object code to cost annotations on the
source code. To this end, we have introduced the so called labelling approach and discussed
its formal application to a toy compiler. Based on this experience, we have argued that the
approach has good scalability properties, and to substantiate this claim, we have reported

16

on our successful experience in implementing and testing the labelling approach on top of
a prototype compiler written in ocaml for a large fragment of the C language which can be
shortly described as Clight without floating point.

We discuss next a few directions for future work. First, we are currently testing the cur-
rent compiler on the kind of C code produced for embedded applications by a Lustre compiler.
Starting from the annotated C code, we are relying on the Frama − C tool to produce auto-
matically meaningful information on, say, the reaction time of a given synchronous program.
Second, we are porting the current compiler to other assembly languages. In particular, we
are interested in targeting one of the assembly languages covered by the AbsInt tool so as to
obtain more realistic estimations of the execution cost of sequences of instructions. Third, we
plan to formalise and validate in the Calculus of Inductive Constructions the prototype imple-
mentation of the labelling approach for the C compiler described in section B. This requires
a major implementation effort which will be carried on in collaboration with our partners of
the CerCo project [3].

References

[1] AbsInt Angewandte Informatik. http://www.absint.com/.

[2] R.M. Amadio, N. Ayache, K. Memarian, R. Saillard, Y. Régis-Gianas. Compiler Design and Intermediate
Languages. Deliverable 2.1 of [3].

[3] Certified Complexity (Project description). ICT-2007.8.0 FET Open, Grant 243881.
http://cerco.cs.unibo.it.

[4] Esterel Technologies. http://www.esterel-technologies.com.

[5] Frama− C software analysers. http://frama-c.com/.

[6] C. Ferdinand, R. Heckmann, T. Le Sergent, D. Lopes, B. Martin, X. Fornari, and F. Martin. Combining
a high-level design tool for safety-critical systems with a tool for WCET analysis of executables. In
Embedded Real Time Software (ERTS), 2008.

[7] X. Fornari. Understanding how SCADE suite KCG generates safe C code. White paper, Esterel Tech-
nologies, 2010.

[8] J. Larus. Assemblers, linkers, and the SPIM simulator. Appendix of Computer Organization and Design:
the hw/sw interface, by Hennessy and Patterson, 2005.

[9] X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115, 2009.

[10] X. Leroy. Mechanized semantics, with applications to program proof and compiler verification. Markto-
berdorf summer school, 2009.

[11] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. In Math. aspects of
Comp. Sci. 1, vol. 19 of Symp. in Appl. Math., AMS, 1967.

[12] K. Memarian. Complexité Certifiée. Travail d’étude et de recherche, Master Informatique, Université
Paris Diderot, 2010.
http://www.pps.jussieu.fr/~yrg/miniCerCo/

[13] G. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL: Intermediate Language and Tools for Analysis
and Transformation of C Programs. In Proceedings of Conference on Compiler Construction, Springer
LNCS 2304:213–228, 2002.

[14] F. Pottier. Compilation (INF 564), École Polytechnique, 2009-2010.
http://www.enseignement.polytechnique.fr/informatique/INF564/.

[15] R. Wilhelm et al. The worst-case execution-time problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3), 2008.

17

http://www.pps.jussieu.fr/~yrg/miniCerCo/

A Proofs

We omit the proofs that have been checked by K. Memarian with the Coq proof assistant [12].

A.1 Notation

Let
t
−→ be a family of reduction relations where t ranges over the set of labels and ǫ. Then we

define:

t
⇒=

{

(
ǫ
−→)∗ if t = ǫ

(
ǫ
−→)∗◦

t
−→ ◦(

ǫ
−→)∗ otherwise

where as usual R∗ denote the reflexive and transitive closure of the relation R and ◦ denotes
the composition of relations.

A.2 Proof of proposition 4

Given a Vm code C, we define an ‘accessibility relation’
C
; as the least binary relation on

{0, . . . , |C| − 1} such that:

i
C
; i

C[i] = branch(k) (i+ k + 1)
C
; j

i
C
; j

We also introduce a ternary relation R(C, i,K) which relates a Vm code C, a number
i ∈ {0, . . . , |C| − 1} and a continuation K. The relation is defined as the least one that
satisfies the following conditions.

i
C
; j C[j] = halt

R(C, i, halt)

i
C
; i′ C = C1 · C(S) · C2

i′ = |C1| j = |C1 · C(S)| R(C, j,K)

R(C, i, S ·K)

.

The following properties are useful.

Lemma 22 (1) The relation
C
; is transitive.

(2) If i
C
; j and R(C, j,K) then R(C, i,K).

The first property can be proven by induction on the definition of
C
; and the second by

induction on the structure of K.
Next we can focus on the proposition. The notation C

i
· C ′ means that i = |C|. Suppose

that:

(S,K, s)→ (S′,K′, s′) (1) and R(C, i, S ·K) (2) .

From (2), we know that there exist i′ and i′′ such that:

i
C
; i′ (3), C = C1

i′

· C(S)
i′′

· C2 (4), and R(C, i′′,K) (5)

and from (3) it follows that:

C ⊢ (i, σ, s)
∗
→ (i′, σ, s) (3′) .

We are looking for j such that:

C ⊢ (i, σ, s)
∗
→ (j, σ, s′) (6), and R(C, j, S′ ·K′) (7) .

18

We proceed by case analysis on S. We just detail the case of the conditional command as the
the remaining cases have similar proofs. If S = if e1 < e2 then S1 else S2 then (4) is rewritten
as follows:

C = C1

i′

· C(e1) · C(e2).bge(k1)
a
· C(S1)

b
· branch(k2)

c
· C(S2)

i′′

· C2

where c = a + k1 and i′′ = c + k2. We distinguish two cases according to the evaluation of
the boolean condition. We describe the case (e1 < e2) ⇓ true. We set j = a.

• The instance of (1) is (S,K, s) → (S1,K, s).

• The reduction required in (6) takes the form C ⊢ (i, σ, s)
∗
→ (i′, σ, s)

∗
→ (a, σ, s′), and it

follows from (3′), the fact that (e1 < e2) ⇓ true, and proposition 3(2).

• Property (7), follows from lemma 22(2), fact (5), and the following proof tree:

j
C
; j b

C
; i′′ R(C, i′′,K)

R(C, b,K)

R(C, j, S1 ·K)

.

2

A.3 Proof of proposition 5

We actually prove that for any expression e, statement S, and program P the following holds:

(1) For any n ∈ N there is a unique h such that C(e) : h, h(0) = n, and h(|C(e)|) = h(0) + 1.

(2) For any S, there is a unique h such that C(S) : h, h(0) = 0, and h(|C(e)|) = 0.

(3) There is a unique h such that C(P) : h.

A.4 Proof of proposition 7

(1) By induction on the structure of the command S.

(2) By iterating the following proposition.

Proposition 23 If (S,K, s)
t
→ (S′,K ′, s′) and R(C, i, S · K) with t = ℓ or t = ǫ then

C ⊢ (i, σ, s)
t
⇒ (j, σ, s′) and R(C, j, S′ ·K ′).

This is an extension of proposition 4 and it is proven in the same way with an additional
case for labelled commands. 2

A.5 Proof of proposition 9

(1) The compilation of the Vm instruction nop(ℓ) is the Mips instruction (nop ℓ).

(2) By iterating the following proposition.

Proposition 24 Let C : h be a well formed code. If C ⊢ (i, σ, s)
t
→ (j, σ′, s′) with t = ℓ or

t = ǫ, h(i) = |σ| and m ‖−σ, s then C′(C) ⊢ (p(i, C),m)
t
⇒ (p(j, C),m′) and m′ ‖−σ′, s′.

This is an extension of proposition 6 and it is proven in the same way with an additional
case for the nop instruction. 2

19

A.6 Proof of proposition 10

We extend the instrumentation to the continuations by defining:

I(S ·K) = I(S) · I(K) I(halt) = halt .

Then we examine the possible reductions of a configuration (I(S),I(K), s[c/cost]).

• If S is an unlabelled statement such as while b do S′ then I(S) = while b do I(S′) and
assuming (b, s) ⇓ true the reduction step is:

(I(S),I(K), s[c/cost]) → (I(S′),I(S) · I(K), s[c/cost]) .

Noticing that I(S) · I(K) = I(S ·K), this step is matched in the labelled language as
follows:

(S,K, s[c/cost]) → (S′, S ·K, s[c/cost]) .

• On the other hand, if S = ℓ : S′ is a labelled statement then I(S) = inc(ℓ);I(S′) and,
by a sequence of reductions steps, we have:

(I(S),I(K), s[c/cost])
∗
→ (I(S′),I(K), s[c+ κ(ℓ)/cost]) .

This step is matched by the labelled reduction:

(S,K, s[c/cost])
ℓ
−→ (S′,K, s[c/cost]) .

2

A.7 Proof of proposition 12

By diagram chasing using propositions 7(1), 9(1), and the definition 11 of labelling. 2

A.8 Proof of proposition 13

Suppose that:
(I(L(P)), s[c/cost]) ⇓ s′[c+ δ/cost] and m ‖−s[c/cost] .

Then, by proposition 10, for some λ:

(L(P), s[c/cost]) ⇓ (s′[c/cost], λ) and κ(λ) = δ .

Finally, by propositions 7(2) and 9(2) :

(C′(C(L(P))),m) ⇓ (m′, λ) and m′ ‖−s′[c/cost] .

2

A.9 Proof of proposition 16

If λ = ℓ1 · · · ℓn then the computation is the concatenation of simple paths labelled with
ℓ1, . . . , ℓn. Since κ(ℓi) bounds the cost of a simple path labelled with ℓi, the cost of the overall
computation is bounded by κ(λ) = κ(ℓ1) + · · · κ(ℓn). 2

20

A.10 Proof of proposition 18

Same proof as proposition 16, by replacing the word bounds by is exactly and the words
bounded by by exactly. 2

A.11 Proof of proposition 19

In both labellings under consideration the root node is labelled. An obvious observation is
that only commands of the shape while b do S introduce loops in the compiled code. We
notice that both labelling introduce a label in the loop (though at different places). Thus all
loops go through a label and the compiled code is always sound.

To show the precision of the second labelling Lp, we note the following property.

Lemma 25 A soundly labelled graph is precise if each label occurs at most once in the graph
and if the immediate successors of the bge nodes are either halt (no successor) or labelled
nodes.

Indeed, in a such a graph starting from a labelled node we can follow a unique path up
to a leaf, another labelled node, or a bge node. In the last case, the hypotheses in the lemma
25 guarantee that the two simple paths one can follow from the bge node have the same
length/cost. 2

A.12 Proof of proposition 21

By applying consecutively proposition 13 and propositions 16 or 18. 2

21

B A C compiler

This section gives an informal overview of the compiler, in particular it highlights the main
features of the intermediate languages, the purpose of the compilation steps, and the optimi-
sations.

B.1 Clight

Clight is a large subset of the C language that we adopt as the source language of our compiler.
It features most of the types and operators of C. It includes pointer arithmetic, pointers to
functions, and struct and union types, as well as all C control structures. The main difference
with the C language is that Clight expressions are side-effect free, which means that side-effect
operators (=,+=,++,. . .) and function calls within expressions are not supported. Given a C

program, we rely on the CIL tool [13] to deal with the idiosyncrasy of C concrete syntax
and to produce an equivalent program in Clight abstract syntax. We refer to the CompCert

project [9] for a formal definition of the Clight language. Here we just recall in figure B.1
its syntax which is classically structured in expressions, statements, functions, and whole
programs. In order to limit the implementation effort, our current compiler for Clight does
not cover the operators relating to the floating point type float. So, in a nutshell, the
fragment of C we have implemented is Clight without floating point.

B.2 Cminor

Cminor is a simple, low-level imperative language, comparable to a stripped-down, typeless
variant of C. Again we refer to the CompCert project for its formal definition and we just
recall in figure B.2 its syntax which as for Clight is structured in expressions, statements,
functions, and whole programs.

Translation of Clight to Cminor As in Cminor stack operations are made explicit, one has
to know which variables are stored in the stack. This information is produced by a static
analysis that determines the variables whose address may be ‘taken’. Also space is reserved
for local arrays and structures. In a second step, the proper compilation is performed: it
consists mainly in translating Clight control structures to the basic ones available in Cminor.

B.3 RTLAbs

RTLAbs is the last architecture independent language in the compilation process. It is a
rather straightforward abstraction of the architecture-dependent RTL intermediate language
available in the CompCert project and it is intended to factorize some work common to the
various target assembly languages (e.g. optimizations) and thus to make retargeting of the
compiler a simpler matter.

We stress that in RTLAbs the structure of Cminor expressions is lost and that this may have
a negative impact on the following instruction selection step. Still, the subtleties of instruction
selection seem rather orthogonal to our goals and we deem the possibility of retargeting easily
the compiler more important than the efficiency of the generated code.

22

Expressions: a ::= id variable identifier
| n integer constant
| sizeof(τ) size of a type
| op1 a unary arithmetic operation
| a op2 a binary arithmetic operation
| ∗a pointer dereferencing
| a.id field access
| &a taking the address of
| (τ)a type cast
| a?a : a conditional expression

Statements: s ::= skip empty statement
| a = a assignment
| a = a(a∗) function call
| a(a∗) procedure call
| s; s sequence
| if a then s else s conditional
| switch a sw multi-way branch
| while a do s “while” loop
| do s while a “do” loop
| for(s,a,s) s “for” loop
| break exit from current loop
| continue next iteration of the current loop

| return a? return from current function
| goto lbl branching
| lbl : s labelled statement

Switch cases: sw ::= default : s default case
| case n : s; sw labelled case

Variable declarations: dcl ::= (τ id)∗ type and name

Functions: Fd ::= τ id(dcl){dcl; s} internal function
| extern τ id(dcl) external function

Programs: P ::= dcl;Fd∗; main = id global variables, functions, entry point

Figure 1: Syntax of the Clight language

23

Signatures: sig ::= sig ~int (int|void) arguments and result

Expressions: a ::= id local variable
| n integer constant
| addrsymbol(id) address of global symbol
| addrstack(δ) address within stack data
| op1 a unary arithmetic operation
| op2 a a binary arithmetic operation
| κ[a] memory read
| a?a : a conditional expression

Statements: s ::= skip empty statement
| id = a assignment
| κ[a] = a memory write
| id? = a(~a) : sig function call
| tailcall a(~a) : sig function tail call

| return(a?) function return
| s; s sequence
| if a then s else s conditional
| loop s infinite loop
| block s block delimiting exit constructs

| exit n terminate the (n+ 1)th enclosing block
| switch a tbl multi-way test and exit
| lbl : s labelled statement
| goto lbl jump to a label

Switch tables: tbl ::= default:exit(n)
| case i: exit(n);tbl

Functions: Fd ::= internal sig ~id ~id n s internal function: signature, parameters,
local variables, stack size and body

| external id sig external function

Programs: P ::= prog (id = data)∗ (id = Fd)∗ id global variables, functions and entry point

Figure 2: Syntax of the Cminor language

24

return type ::= int || void signature ::= (int→)∗ return type

memq ::= int8s || int8u || int16s || int16u || int32 fun ref ::= fun name || psd reg

instruction ::= || skip→ node (no instruction)
|| psd reg := op(psd reg∗)→ node (operation)
|| psd reg := &var name → node (address of a global)
|| psd reg := &locals[n]→ node (address of a local)
|| psd reg := fun name → node (address of a function)
|| psd reg := memq(psd reg [psd reg])→ node (memory load)
|| memq(psd reg [psd reg]) := psd reg → node (memory store)
|| psd reg := fun ref (psd reg∗) : signature → node (function call)
|| fun ref (psd reg∗) : signature (function tail call)
|| test op(psd reg∗)→ node ,node (branch)
|| return psd reg? (return)

fun def ::= fun name(psd reg∗) : signature
result :psd reg?
locals :psd reg∗

stack :n
entry :node
exit :node
(node :instruction)∗

init datum ::= reserve(n) || int8(n) || int16(n) || int32(n) init data ::= init datum+

global decl ::= var var name{init data} fun decl ::= extern fun name(signature) || fun def

program ::= global decl∗

fun decl∗

Table 9: Syntax of the RTLAbs language

Syntax. In RTLAbs, programs are represented as control flow graphs (CFGs for short).
We associate with the nodes of the graphs instructions reflecting the Cminor commands.
As usual, commands that change the control flow of the program (e.g. loops, conditionals)
are translated by inserting suitable branching instructions in the CFG. The syntax of the
language is depicted in table 9. Local variables are now represented by pseudo registers that
are available in unbounded number. The grammar rule op that is not detailed in table 9
defines usual arithmetic and boolean operations (+, xor, ≤, etc.) as well as constants and
conversions between sized integers.

Translation of Cminor to RTLAbs. Translating Cminor programs to RTLAbs programs
mainly consists in transforming Cminor commands in CFGs. Most commands are sequential
and have a rather straightforward linear translation. A conditional is translated in a branch
instruction; a loop is translated using a back edge in the CFG.

25

size ::= Byte || HalfWord ||Word fun ref ::= fun name || psd reg

instruction ::= || skip→ node (no instruction)
|| psd reg := n→ node (constant)
|| psd reg := unop(psd reg)→ node (unary operation)
|| psd reg := binop(psd reg , psd reg)→ node (binary operation)
|| psd reg := &globals[n]→ node (address of a global)
|| psd reg := &locals[n]→ node (address of a local)
|| psd reg := fun name → node (address of a function)
|| psd reg := size(psd reg [n])→ node (memory load)
|| size(psd reg [n]) := psd reg → node (memory store)
|| psd reg := fun ref (psd reg∗)→ node (function call)
|| fun ref (psd reg∗) (function tail call)
|| test uncon(psd reg)→ node, node (branch unary condition)
|| test bincon(psd reg , psd reg)→ node,node (branch binary condition)
|| return psd reg? (return)

fun def ::= fun name(psd reg∗) program ::= globals : n
result :psd reg? fun def ∗

locals :psd reg∗

stack :n
entry :node
exit :node
(node :instruction)∗

Table 10: Syntax of the RTL language

B.4 RTL

As in RTLAbs, the structure of RTL programs is based on CFGs. RTL is the first architecture-
dependant intermediate language of our compiler which, in its current version, targets the
Mips assembly language.

Syntax. RTL is very close to RTLAbs. It is based on CFGs and explicits the Mips instruc-
tions corresponding to the RTLAbs instructions. Type information disappears: everything is
represented using 32 bits integers. Moreover, each global of the program is associated to an
offset. The syntax of the language can be found in table 10. The grammar rules unop, binop,
uncon , and bincon , respectively, represent the sets of unary operations, binary operations,
unary conditions and binary conditions of the Mips language.

Translation of RTLAbs to RTL. This translation is mostly straightforward. A RTLAbs

instruction is often directly translated to a corresponding Mips instruction. There are a few
exceptions: some RTLAbs instructions are expanded in two or more Mips instructions. When
the translation of a RTLAbs instruction requires more than a few simple Mips instruction, it
is translated into a call to a function defined in the preamble of the compilation result.

B.5 ERTL

As in RTL, the structure of ERTL programs is based on CFGs. ERTL explicits the calling
conventions of the Mips assembly language.

26

size ::= Byte || HalfWord ||Word fun ref ::= fun name || psd reg

instruction ::= || skip→ node (no instruction)
|| NewFrame→ node (frame creation)
|| DelFrame→ node (frame deletion)
|| psd reg := stack[slot , n]→ node (stack load)
|| stack[slot , n] := psd reg → node (stack store)
|| hdw reg := psd reg → node (pseudo to hardware)
|| psd reg := hdw reg → node (hardware to pseudo)
|| psd reg := n→ node (constant)
|| psd reg := unop(psd reg)→ node (unary operation)
|| psd reg := binop(psd reg , psd reg)→ node (binary operation)
|| psd reg := fun name → node (address of a function)
|| psd reg := size(psd reg [n])→ node (memory load)
|| size(psd reg [n]) := psd reg → node (memory store)
|| fun ref (n)→ node (function call)
|| fun ref (n) (function tail call)
|| test uncon(psd reg)→ node, node (branch unary condition)
|| test bincon(psd reg , psd reg)→ node,node (branch binary condition)
|| return b (return)

fun def ::= fun name(n) program ::= globals : n
locals :psd reg∗ fun def ∗

stack :n
entry :node
(node :instruction)∗

Table 11: Syntax of the ERTL language

Syntax. The syntax of the language is given in table 11. The main difference between
RTL and ERTL is the use of hardware registers. Parameters are passed in specific hardware
registers; if there are too many parameters, the remaining are stored in the stack. Other con-
ventionally specific hardware registers are used: a register that holds the result of a function,
a register that holds the base address of the globals, a register that holds the address of the
top of the stack, and some registers that need to be saved when entering a function and whose
values are restored when leaving a function. Following these conventions, function calls do not
list their parameters anymore; they only mention their number. Two new instructions appear
to allocate and deallocate on the stack some space needed by a function to execute. Along
with these two instructions come two instructions to fetch or assign a value in the parameter
sections of the stack; these instructions cannot yet be translated using regular load and store
instructions because we do not know the final size of the stack area of each function. At last,
the return instruction has a boolean argument that tells whether the result of the function
may later be used or not (this is exploited for optimizations).

Translation of RTL to ERTL. The work consists in expliciting the conventions previously
mentioned. These conventions appear when entering, calling and leaving a function, and
when referencing a global variable or the address of a local variable.

Optimizations. A liveness analysis is performed on ERTL to replace unused instructions
by a skip. An instruction is tagged as unused when it performs an assignment on a register
that will not be read afterwards. Also, the result of the liveness analysis is exploited by

27

size ::= Byte || HalfWord ||Word fun ref ::= fun name || hdw reg

instruction ::= || skip→ node (no instruction)
|| NewFrame→ node (frame creation)
|| DelFrame→ node (frame deletion)
|| hdw reg := n→ node (constant)
|| hdw reg := unop(hdw reg)→ node (unary operation)
|| hdw reg := binop(hdw reg , hdw reg)→ node (binary operation)
|| hdw reg := fun name → node (address of a function)
|| hdw reg := size(hdw reg [n]) → node (memory load)
|| size(hdw reg [n]) := hdw reg → node (memory store)
|| fun ref ()→ node (function call)
|| fun ref () (function tail call)
|| test uncon(hdw reg)→ node,node (branch unary condition)
|| test bincon(hdw reg , hdw reg)→ node ,node (branch binary condition)
|| return (return)

fun def ::= fun name(n) program ::= globals : n
locals :n fun def ∗

stack :n
entry :node
(node :instruction)∗

Table 12: Syntax of the LTL language

a register allocation algorithm whose result is to efficiently associate a physical location (a
hardware register or an address in the stack) to each pseudo register of the program.

B.6 LTL

As in ERTL, the structure of LTL programs is based on CFGs. Pseudo registers are not used
anymore; instead, they are replaced by physical locations (a hardware register or an address
in the stack).

Syntax. Except for a few exceptions, the instructions of the language are those of ERTL
with hardware registers replacing pseudo registers. Calling and returning conventions were
explicited in ERTL; thus, function calls and returns do not need parameters in LTL. The
syntax is defined in table 12.

Translation of ERTL to LTL. The translation relies on the results of the liveness analysis
and of the register allocation. Unused instructions are eliminated and each pseudo register is
replaced by a physical location. In LTL, the size of the stack frame of a function is known;
instructions intended to load or store values in the stack are translated using regular load and
store instructions.

Optimizations. A graph compression algorithm removes empty instructions generated by
previous compilation passes and by the liveness analysis.

28

size ::= Byte || HalfWord ||Word fun ref ::= fun name || hdw reg

instruction ::= || NewFrame (frame creation)
|| DelFrame (frame deletion)
|| hdw reg := n (constant)
|| hdw reg := unop(hdw reg) (unary operation)
|| hdw reg := binop(hdw reg , hdw reg) (binary operation)
|| hdw reg := fun name (address of a function)
|| hdw reg := size(hdw reg [n]) (memory load)
|| size(hdw reg [n]) := hdw reg (memory store)
|| call fun ref (function call)
|| tailcall fun ref (function tail call)
|| uncon(hdw reg)→ node (branch unary condition)
|| bincon(hdw reg , hdw reg)→ node (branch binary condition)
|| mips label : (Mips label)
|| goto mips label (goto)
|| return (return)

fun def ::= fun name(n) program ::= globals : n
locals :n fun def ∗

instruction∗

Table 13: Syntax of the LIN language

B.7 LIN

In LIN, the structure of a program is no longer based on CFGs. Every function is represented
as a sequence of instructions.

Syntax. The instructions of LIN are very close to those of LTL. Program labels, gotos and
branch instructions handle the changes in the control flow. The syntax of LIN programs is
shown in table 13.

Translation of LTL to LIN. This translation amounts to transform in an efficient way the
graph structure of functions into a linear structure of sequential instructions.

B.8 Mips

Mips is a rather simple assembly language. As for other assembly languages, a program inMips

is a sequence of instructions. The Mips code produced by the compilation of a Clight program
starts with a preamble in which some useful and non-primitive functions are predefined (e.g.
conversion from 8 bits unsigned integers to 32 bits integers). The subset of the Mips assembly
language that the compilation produces is defined in table 14.

Translation of LIN to Mips. This final translation is simple enough. Stack allocation and
deallocation are explicited and the function definitions are sequentialized.

B.9 Benchmarks

To ensure that our prototype compiler is realistic, we performed some preliminary benchmarks
on a 183MHz MIPS 4KEc processor, running a linux based distribution. We compared the

29

load ::= lb || lhw || lw store ::= sb || shw || sw fun ref ::= fun name || hdw reg

instruction ::= || nop (empty instruction)
|| li hdw reg , n (constant)
|| unop hdw reg , hdw reg (unary operation)
|| binop hdw reg , hdw reg , hdw reg (binary operation)
|| la hdw reg , fun name (address of a function)
|| load hdw reg , n(hdw reg) (memory load)
|| store hdw reg , n(hdw reg) (memory store)
|| call fun ref (function call)
|| uncon hdw reg ,node (branch unary condition)
|| bincon hdw reg , hdw reg ,node (branch binary condition)
|| mips label : (Mips label)
|| j mips label (goto)
|| return (return)

program ::= globals : n
entry : mips label∗

instruction∗

Table 14: Syntax of the Mips language

gcc -O0 acc gcc -O1

badsort 55.93 34.51 12.96
fib 76.24 34.28 45.68

mat det 163.42 156.20 54.76
min 12.21 16.25 3.95

quicksort 27.46 17.95 9.41
search 463.19 623.79 155.38

Figure 3: Benchmarks results (execution time is given in seconds).

30

wall clock execution time of several simple C programs compiled with our compiler against
the ones produced by Gcc set up with optimization levels 0 and 1. As shown by Figure 3,
our prototype compiler produces executable programs that are on average faster than Gcc’s
without optimizations.

31

