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Modeling the trajectory of a micro particle in a dielectrophoresis device.
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FEMTO-ST institute UMR CNRS 6174-UFC/ENSMM/UTBM

Automatic control and Micromechatronic System Department.

(24 rue Alain Savary, 25000 Besançon France.)

Micro and nano-particles can be trapped by a non uniform electric field through the effect of di-

electrophoretic principle. Dielectrophoresis (DEP) is used to separate, manipulate and detect micro

particles in several domains, such as in biological or Carbon Nano-Tubes (CNTs) manipulations.

Current methods to simulate the trajectory of micro-particles under a DEP force field are based

on Finite element model (FEM) which requires new simulations when the electrode potential is

changed, or on analytic equations which is limited to very simple geometries. In this paper, we

propose a hybrid method between analytic and numeric calculation able to simulate complex ge-

ometries and to easily change the electrode potential along the trajectory. A few FEM simulations

are used to create a database which enables online calculation of the object trajectory in function

of the electrode potentials.

I. INTRODUCTION

Dielectrophoresis force (DEP force) is the force induced on a polarizable particle suspended in

a non uniform electric field. Based on the analysis of the dielectrophoretic behavior of particles,

it has been demonstrated that DEP is an effective means for micro-manipulation, deposition and

micro assembly [1, 2]. In modern microfluidic systems, the manipulation of biological cells and

particles is a crucial technique in a variety of biomedical applications such as on-chip cell counting,

separation, and isolation [3–5]. To move a micro-particle using DEP force or to control its trajectory

by changing the electric potential, it is necessary to know its behavior under DEP and its trajectory

[6, 7]. The first current approach is based on analytic expression applied on simple planar geometries.

For example, in [8–10] researchers have developed several 2D electrodes design. They studied the

shape of electrodes and its influence on the experimental DEP force in a plane. Other works have

performed simulations of the DEP force using finite element simulation software [11, 12] where the

trajectory of the micro particles is calculated [13-18]. The non linear micro particle’s behavior and
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its high dependence on the electrodes geometries induce a real complexity and some difficulties to

simulate the trajectory. In this paper a hybrid method is proposed to simulate the 3D behavior

of micro particles under DEP force, in function of the electric potential applied on the electrodes.

Indeed, because of the large variety of electrodes and their geometric complexity, it could be highly

difficult to directly integrate analytic equations. This method is based on merging preprocessed FEM

simulations and analytic equations. Physicals equations are computed in order to define the link

between the electric potential and the DEP force. Consequently, based on the database built by few

FEM simulations, our simulator is able to provide the trajectory whatever are the electric potentials

applied on the electrodes. This approach enables to improve the simulation’s time. Each iteration

consists of the use of the equations linking the electric potential to the electric field and then to the

DEP force. FEM software can simulate complex geometries but the simulation time remains high

and specially when the potential change frequently. By using FEM simulator as a preprocessing

simulation and integrating physical law in a specific simulator, the time of simulation can be highly

reduced. In the second section, methods able to calculate the electric field in function of the electric

potential applied on the electrodes are discussed and one of them is chosen. In the third section the

principle of the dynamic model is presented and in the fourth section, an experimental simulations

are shown and discussed.

II. CONCEPT OF HYBRID SIMULATION

A. General principle

The general expression of the dielectrophoretic force applied to a micro object considered as a

punctual point [19, 20] is:

−−−→
FDEP = 2πε0εpr

3Re[K(ω)]
−−→∇E

2, (1)

where K(ω) is the Clausius - Mossotti factor:

K(ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

, (2)

and

ε∗ = ε+
σ

jω
, (3)
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where ε are the permittivities, σ are the conductivities, index 0 refers to the vacuum, index m refers

to the medium and index p refers to the micro object, r is the radius of the bead, ω is the angular

frequency of the applied electric field,
−→∇ is the gradient operator and E is the root mean square

magnitude of the sinusoidal electric field. This paper focuses on the simulation of the trajectory of

a spherical object in a non phased sinusoidal electric field where the DEP torque can be neglected.

The DEP force is thus function of the magnitude of the electric field
−→
E , and of the frequency ω of

the electric field which modifies the value of the Clausisus - Mossotti factor (2). The first challenge

is to determine the spatial electric field
−→
E according to the potentials applied on the electrodes. Let

us consider the magnitude of the sinusoidal electric potentials applied on n+1 electrodes:

[ϑ0, ϑ1, · · · , ϑn] . (4)

The 3D calculation of the electric field
−→
E with respect to the potentials (4) is quite complex. Analytic

calculations is in the general case not possible because of its too high complexity. To get over this

difficulty we use numeric simulations. The proposed idea consists in simulating the 3D behavior

of micro beads under DEP force with the minimum of numeric simulations. Firstly, we consider n

potential differences:

U = [U1 = ϑ1 − ϑ0, · · · , Un = ϑn − ϑ0] . (5)

The first goal is to find the relation between the electric field
−→
E in a point M(x, y, z) and the

potential difference U applied on these electrodes. This relation can be written as follows:

−→
E (x, y, z) =

−→
fE(U). (6)

B. Numerical implementation

Different methods to numerically calculate the electric field are proposed in the following.

1. tridimensional space meshing

The first way to obtain a numerical expression of (6) consists in meshing the tridimensional space

where the object is moving (see figure 1). Thus the objective of the algorithm is to calculate the



4

matrix E of the electric field:

Ei,j,k,l , (7)

where i ∈ {x, y, z}, j ∈ {1, 2, ..., nx}, k ∈ {1, 2, ..., ny}, and l ∈ {1, 2, ..., nz}. nx, ny and nz are

the number of the elementary points along x, y and z in the meshed space. Ei,j,k,l represents the

ith component of the electric field in the point M(j, k, l). Two methods able to calculate (7) are

discussed. Firstly the superposition theorem can be applied on the electric field. The electric field

in the point M(j, k, l), is thus a linear function of the contribution of the n potential differences Um:

Ei,j,k,l =

n∑
m=1

KE
i,j,k,l,m.Um (8)

Secondly, the superposition principle can be applied on the electric potential ϑj,k,l in the point

M(j, k, l) out of electrodes:

Ei,j,k,l =
δ

δi
ϑj,k,l

=
δ

δi

n∑
m=1

KU
j,k,l,m.Um (9)

Where KE
i,j,k,l,m and KU

j,k,l,m are matrix identified during preprocessing.

2. bidimensionnal electrode meshing

The second way to calculate a numerical expression of (6) consists in meshing the electrodes. In

this case, the electrodes are meshed along two directions x and y using respectively ex and ey as the

number of elementary steps through each direction (see figure 2). The electric field
−→
E is the sum of

contributions of the elementary charges Qr,s on the electrode surface at point P (r, s) (see figure 3).

The electric field at point M(x, y, z) is thus:

−→
E (x, y, z) =

1

2πεm

ex∑
r=1

ey∑
s=1

Qr,s.

−−−−−−−−−−−−→
P (r, s)M(x, y, z)∥∥∥−−−−−−−−−−−−→P (r, s)M(x, y, z)

∥∥∥3
ds, (10)

where ds is the elementary surface on the meshed electrode.

To calculate Qr,s, the superposition principle on the potential is applied:

Qr,s =
n∑

m=1

Cr,s,m.Um. (11)
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Where Cr,s,m represents the elementary capacitances which can be identified during preprocessing.

Thus the relation between the electric field
−→
E and the potential differences U applied on the

electrodes is:

−→
E (x, y, z) =

1

2πεm

ex∑
r=1

ey∑
s=1

−−−−−−−−−−−−→
P (r, s)M(x, y, z)∥∥∥−−−−−−−−−−−−→P (r, s)M(x, y, z)

∥∥∥3
.

n∑
m=1

Cr,s,m.Umds. (12)

3. Discussion on the three approaches

Three numerical methods (8),(9) and (12) to calculate the electric field vector have been presented.

Each method is discussed below:

1. The KE
i,j,k,l,m matrix contains the necessary value to calculate the component of the electric

field vector in each point of the workspace created by each electrode. The number of elements

in this matrix is:

3× nx × ny × nz × n.

These parameters are calculated using 3D simulation in a limited area in the workspace.

2. The KU
j,k,l,m matrix contains the necessary value to calculate the spatial electric potential in

each point in the workspace created by each electrode. The number of elements in this matrix

is:

nx × ny × nz × n.

These parameters are calculated using 3D simulation in a limited area in the workspace (see

in figure 1). This method requires to applied a differential operator on the numeric data (9),

which could induce errors.

3. The Cr,s,m matrix contains the elementary capacitances created by each potential difference.

The electrodes are meshed into 2D (ex, ey) elementary points on the surface of each electrodes.

The number of elements in this matrix is:

ex × ey × n.
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FIG. 1: Calculating E from the 3D electric potential
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FIG. 2: Calculating E for the 2D charge density

These parameters are calculated using 2D simulation and the equation (12) allows calculating

the electric field vector
−→
E in any point M(x, y, z) in the workspace (see figure 2 and 3). Using

this method requires the use of a double numerical integral.

Based on this comparison, it appears that the third method is more interesting. Indeed it requires a

less preprocessing on2D data and it permits calculating the electric field in any points in the space.

This method is then detailed below.

P(r,s) 

y 

x 

ds  

FIG. 3: Elementary charges in each electrode
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FIG. 4: Block diagram representing the link between the electric potential U and the DEP force

C. Preprocessing

The capacitance matrix C defined in (11) is constant and is independent from the electric potential

U and the charge density Q. To identify this matrix, n FEM simulations of the charge density on

the electrodes in function of n algebraically independent vectors U are needed. Once the matrix C is

calculated the relation between the electric field
−→
E and the electric potential U is obtained through

equation (12).

D. Static force model

The diagram presented in the figure 4 shows the procedure to calculate the DEP force in func-

tion of the potential difference U . During preprocessing, geometries, boundaries conditions and

surroundings properties are specified in a FEM software and n simulations are launched. All data

are arranged to create the capacitance matrix C. The link between the electric potential U and the

electric field
−→
E is then calculated: the calculation of the electric field

−→
E , at the point M(x, y, z)

of the micro object is possible using (12). Thus the DEP force
−−−→
FDEP applied to the micro object

can be obtained by using (1). The frequency ω of the electric field can also be modified during the

trajectory simulation.

III. DYNAMIC TRAJECTORY MODELING

Let us consider a micro particle immersed in a liquid medium with viscosity µ, with a non uniform

electric field created by applying electric potential on the electrodes. The forces applied on this
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particle are
−−−→
FDEP , its own weight

−→
P and the Stockes drag force

−−−→
Fdrag which verifies:

−−−→
Fdrag = −6πµr

−→
V = −kµ

−→
V (13)

where
−→
V is the velocity of the particle. Using Newton’s second law the particle’s motion is defined

by:

−−−→
FDEP +

−→
P − kµ

−→
V = m−→a (14)

where m is the mass of the particles and −→a is the acceleration vector. In order to simulate this

trajectory model, an hypothesis is proposed to simplify the calculation of the position of the micro

particles: The dynamic expression m−→a can be neglected compared the forces. To verify this hy-

pothesis, a study is proposed on the inertia impact on the trajectory in first subsection. Despite

the fact that the weight is a volumic effect it can not be neglected. Indeed the equilibrium state is

characterized by
−−−→
FDEP =

−→
P , and without considering the weight, the equilibrium position is always

z ∼ ∞. But, in fact, the micro particle stands on a finite and stable position.

A. The inertia impact

To illustrate the impact of the inertia on the trajectory, a simple example of 2 punctual electrodes

is presented in the figure 5 where the calculation of the electric field can be done analytically

in function of the electric potential. An electric sinusoidal signal which its magnitude is U0 and

frequency is ω is applied between the punctual electrodes. The electric field on each point of the z

axis is equal to:

−→
E0 =

U0d
2

8z3
−→z . (15)

Using (1), DEP force can be obtained:

−−−→
FDEP =

kDEPU
2
0 d

4

z7
−→z (16)

with

kDEP = −3πε0εpr
3K(ω)

16
. (17)

The motion of the micro particle along z is then described by:

mz̈ = −kµż −mg +
kDEPU

2
0 d

4

z7
. (18)
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FIG. 5: Elementary electrodes used to calculate analytically the electric field with respect to the electric

potential

When the micro particle reaches the equilibrium point z0 it means that the
−−−→
FDEP is equal to the

weight:

z0 =

(
kDEPU

2
0 d

4

mg

)1/7

. (19)

By linearizing the relation (18) around z0 and using Laplace transformation we obtain:

z(p)

z0(p)
=

k

mp2 + kµp+ k
, (20)

where

k = 7
mg

z0
. (21)

As the damping factor ξ is high, both poles p1 and p2 of the system are real and:

p2
p1

=
−ξ − (ξ2 − 1)1/2

−ξ + (ξ2 − 1)1/2
, (22)

where

ξ =
kµ
2k

√
k

m
. (23)

To estimate the impact of both poles p1 and p2 on the trajectory, we consider a typical example: an

object in polystyrene, εp = 2.4 with a radius r = 10µm, immersed in the water with εm = 80 and

distance d of 100µm under U0 = 100V . The damping factor ξ reaches 14. Thus:

ξ2 >> 1 ⇔ p1 << p2. (24)
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FIG. 6: Block diagram representing the dynamic modeling of a bead under DEF force

So the dynamic behavior is directly function of the predominant pole p1 and the second pole p2 can

be neglected:

z(p)

z0(p)
∼= k

kµp+ k
. (25)

This dynamical equation is similar to (20) where the dynamic term mp2 has been neglected. In

the proposed example, the impact of the inertia on the behavior of the micro particles can be

neglected. Moreover, ξ defined in (23) is inversely proportional to the distance unit. Thus, when

the dimension of the micro particle and electrodes is reduced by 10, the parameter ξ is multiplied

by 10. Consequently, in micro scales ξ is typically high and the criterion (24) is typically verified.

Thus we consider that the inertia impact is negligible on the trajectory of a micro particle moved

by dielectrophoresis force.

B. Dynamic model

As the inertia can be neglected, the equation (13) gives the velocity of the micro particle along

the trajectory:

−→
V =

(
−−−→
FDEP +

−→
P )

kµ
. (26)

In the figure 6, a block diagram is presented to illustrate each part of the system acting between the

electric potential U , the DEP force and the micro particle’s position. An applied potential difference

U on the electrodes creates the non uniform electric field
−→
E which creates the DEP force used to

manipulate the micro particle. The equation (26) manages the dynamical behavior of the micro
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FIG. 7: Geometry of 4 electrodes used to experiment the DEP force and the initial position of the micro

particle in simulation

particle under DEP force.

IV. EXPERIMENTAL SIMULATIONS

A. Trajectory of a point-shaped object

Considering the geometry of the electrodes described in the figure 7, 4 electrodes and 3 po-

tential differences are being used. After 3 simulations under the FEM software COMSOL, the

matrix C is identified as described below, and the simulator is launched. For a silicon bead of

radius equal to 50µm, submerged in the water, its motion under DEP is simulated from an ini-

tial position (10µm,−10µm, 55µm) as it is proposed in figure 7. Applying the potential difference

U(80V, 0V, 80V) (5) between the electrodes using a frequency of 40KHz the Clausius - Mossotti

factor k(ω) referred in (2) is equal to K(ω) = −0.4252, the DEP force is negative and the trajectory

of the bead can be predicted. In the simulated trajectory, there is no presence of the equilibrium

state along the axis z (see figure 9). In the first phase of the motion, the bead goes up when it moves

toward the axis z. After reaching the equilibrium point in the XY plane (see figure 8), the bead

start the sedimentation phase and goes down. This motion is caused by the DEP force calculated,

which is equal to zero on the micro particle’s center. However, experiments done on this geometry,
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FIG. 8: x, y trajectory of the punctual micro particle under DEP force

2 4 6 8 10 12

x 10-4

5

5.1

5.2

5.3

5.4

5.5

x 10-5

Time(s)

C
en

tre
 p

os
iti

on
(m

)

Z position

FIG. 9: z trajectory of the punctual micro particle under DEP force

using electrodes made from gold and deposit on a silicon wafer immersed in an ultra pure water and

a silicon bead of radius equal to 50µm, show that an equilibrium point exists in the center of the

electrodes (see in figure 10) along the axis z (see in figure 11). In this figure 11, the micro bead and

its reflexion on the wafer are shown on a lateral view. In the left view, the micro bead is on the wafer

when an electric potential of U(60V, 0V, 60V) is applied. In this case, the z component of the DEP

force is smaller than the weight of the micro bead. In the right view, the micro bead is in levitation

above the electrodes plane when an electric potential of U(80V, 0V, 80V) is applied. This difference

between the experimental results and the simulated result appear because the hypothesis used in
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FIG. 10: Vertical view: Electrodes used in the experiments. The micro particle is in the center of electrodes.

The applied tension is U(80V, 0V, 80V)
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FIG. 11: Lateral view: The micro bead is in direct contact with the electrodes plane (Left view) when

applying a tension of U(60V, 0V, 60V). The micro particle is in levitation up to the electrodes (Right view)

when applying a tension of U(80V, 0V, 80V).

(1) (micro particle is considered as a punctual point) is not available in the equilibrium point. This

hypothesis induces a zero DEP force while the real force is not zero.
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FIG. 13: x, y trajectory of the volumic particle under DEP force

B. Trajectory of a volume object

To solve this problem, the micro particle is divided into 4 identical parts around its vertical axes

and then all forces applied on each part are calculated to find the general force by summing all

forces together (see figure 12). Figures 13 and 14 show the trajectory of the micro particle using the

same initial conditions as above. Using this method, the simulated trajectory of the micro particle

convinces more with the real trajectory and the simulation results show that the micro particle

reaches an equilibrium point as observed in the experimental results.

Using our simulator, non linear trajectories can be simulated. Multi initials positions of a micro

bead of radius equal to 10µm, under the same potential (U = 80V ), could be simulated and the
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FIG. 15: Projection of non linear simulated trajectories in the (x,y) plane

projection on xy plane of the resulted trajectories are presented in figure 15.

V. DISCUSSION

Using a calculator with relatively high performance (Intel Xeon CPU 1.60 GHz (2 CPUs) with 3

GB of RAM) the measured time to simulate the electric field and calculate the DEP force applied
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on a particle using the electrodes described in figure 10 and its trajectory under the FEM software

COMSOL 3.5 is 2 minutes.

Using the same calculator to simulate the charge density on the electrodes is 30 seconds. To create

the base used in our simulator we need 3 FEM simulations witch means 1 minute 30 seconds.

Using this database, the time needed to calculate the trajectory is 10 seconds.

Thus comparing both methods, the time needed to simulate n trajectories of a micro object by

applying n different tensions on the electrodes is:

1. For the FEM software: 2× n minutes.

2. For our simulator: 1 minute 30 seconds + 11× n seconds.

Consequently, our approach, based on the use of FEM as a preprocessing, enables to clearly reduce

the time of computation especially when different values of tension U have to be simulated on the

same geometry. Moreover, in this simulator, the calculated electric field is not limited in the space,

it can be calculated in any point in the space contrarily to the FEM software, where the space

is meshed. Moreover this simulator does not take into account the DEP torque, but the general

principle proposed here can be extended to angular positioning. This aspect will be explored in

future works.

VI. CONCLUSION

We have proposed a new model and simulator using a hybrid method in which we combined both

analytic and numeric calculation to simulate the behavior of a micro bead (spherical object) under

DEP force. A pre-simulation under FEM software allows to obtain a database with respect to the

electrode geometries. Based on the preprocessing, the simulator integrates the dynamical behavior

equation to simulate the electric field under different tensions applied on the electrodes. An example

of 4 electrodes have been discussed and compared to experiments. Current works are focused on the

use of this model to study control laws able to move the micro particle along a specified trajectory.
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