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Modeling, Analysis, and Neural Network Control
of an EV Electrical Differential

Abdelhakim Haddoun, Mohamed El Hachemi Benbouzid, Senior Member, IEEE,
Demba Diallo, Senior Member, IEEE, Rachid Abdessemed, Jamel Ghouili, and Kamel Srairi

Abstract—This paper presents system modeling, analysis, and
simulation of an electric vehicle (EV) with two independent rear
wheel drives. The traction control system is designed to guarantee
the EV dynamics and stability when there are no differential gears.
Using two in-wheel electric motors makes it possible to have torque
and speed control in each wheel. This control level improves EV
stability and safety. The proposed traction control system uses
the vehicle speed, which is different from wheel speed character-
ized by a slip in the driving mode, as an input. In this case, a
generalized neural network algorithm is proposed to estimate the
vehicle speed. The analysis and simulations lead to the conclusion
that the proposed system is feasible. Simulation results on a test
vehicle propelled by two 37-kW induction motors showed that the
proposed control approach operates satisfactorily.

Index Terms—Electric vehicle (EV), induction motor, neural
networks, speed estimation, traction control.

I. INTRODUCTION

ECENTLY, electric vehicles (EVs), including fuel-cell

and hybrid vehicles, have been developed very rapidly
as a solution to energy and environmental problems. From the
point of view of control engineering, EVs have much attractive
potential. Since electric motors and inverters are utilized in
drive systems, they have great advantages over internal com-
bustion engine vehicles such as quick torque response and
individual control of each wheel [1], [2]. Although several
control methods have been proposed using these merits, their
controllers depend on some immeasurable parameters, includ-
ing vehicle velocity and slip angle [3].

Generally, in most EV propulsion applications, an ac motor
is connected to the wheels by reduction gears and mechanical
differential. In some vehicle drive arrangements, high-speed
low-torque wheel motors requiring gear reduction are used. In
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these cases, either a gear motor assembly is mounted inside the
wheel or a chassis-mounted motor is connected to the wheel
through gear reduction.

Further simplification of the vehicle drive arrangement re-
sults in elimination of the gear being interposed between the
motor and wheel. The condition above calls for the use of
an electric differential (no mechanical gear) [4]-[7]. Electric
differential-based EVs have advantages over their classical
counterparts with a central motor. Indeed, mounting the motors
directly on the wheels simplifies the mechanical layout. The
electric differential system will reduce the drive line compo-
nents, thus improving the overall reliability and efficiency. This
option will also reduce the drive line weight since mechanical
differential and gear reduction are not used [6]-[8]. However,
one of the main issues in the design of these EVs (without
mechanical differential) is how to ensure the vehicle stability.
During normal driving conditions, all drive wheel systems
require a symmetrical distribution of torque on both sides.
This symmetrical distribution is not sufficient when the adher-
ence coefficient of tires is changing; the wheels have different
speeds, hence the need for traction control systems [4]. This is
still an open problem as illustrated by the limited availability of
literature [10]-[12].

This paper proposes a neural network traction control ap-
proach of an electrical differential system for an EV propelled
by two induction motor drives (one for each rear wheel) [13].
Indeed, neural network concepts have become an active re-
search area in power electronics and motor drives. Because
of the necessity for adaptive abilities in a network learning
process, applying neural networks to system identification and
control dynamics has become a promising alternative to process
control. Neural networks can be applied to control and identify
nonlinear systems since they approximate any desired degree of
accuracy with a wide range of nonlinear models [14]-[20].

The rotor speed information of an induction motor in the
vector control method is obtained using speed sensors. Since
these sensors are usually expensive and bulky, the cost and
size of the drive systems are increased. Since the 1980s the
concept of rotor speed estimation has been studied extensively.
The instantaneous stator voltages and currents were used to
estimate the speed of an induction motor, such as in model ref-
erence adaptive systems and extended Kalman filter algorithms.
However, induction motors have highly nonlinear dynamic
behavior and their parameters vary with time and operating
conditions. Therefore, it is difficult to obtain accurate speed
estimates with these methods. In this paper, a practical speed
estimation method for an induction motor is proposed where a

0278-0046/$25.00 © 2008 IEEE
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recurrent neural network (RNN) with two hidden layers is used
[21]-[23]. In fact, the RNN used is called the Elman neural net-
work (ENN) [23]. The ENN multilayer and recurrent structure
makes it robust under parameter variations and system noises.
Moreover, the proposed RNN-based speed estimator, which
replaces the speed sensor in the control approach scheme, takes
into account vehicle aerodynamics and is not applied to sole
induction motors. It should be noted that the induction motor
was adopted because it seems to be the candidate that best fulfils
the major requirements for EV propulsion [24]-[26].

II. VEHICLE MODEL

A. Nomenclature

v Vehicle speed.

a Vehicle acceleration.

m Vehicle mass.

a Grade angle.

Fi.  Tractive force.

F.;  Rolling resistance force.
Fy.  Hill climbing force.

Fi.  Linear acceleration force.
Fya  Angular acceleration force.
Twm  Motor torque.

P,  Vehicle driving power.

J Total inertia (rotor and load).

G Gear ratio.
Mg Gear system efficiency.
r Tire radius.

B. Dynamics Analysis

Compared to previous work, the proposed control strategy
takes into account vehicle aerodynamics and is not applied to
sole induction motors. This model is based on the principles
of vehicle mechanics and aerodynamics [7]. The total tractive
effort is then given by

Fte:Frr+Fad+ic+Ea+Fwa- (1)

This is the force propelling the vehicle forward and transmitted
to the ground through the wheels (Fig. 1).

Fa and Fy, have been added in this paper for a more
accurate representation of the needed force to accelerate the
vehicle. Indeed, we should consider linear acceleration as well
as rotational acceleration. The main issue here is the electric
motor, not necessarily because of its particularly high moment
of inertia, but because of its higher angular speeds [27]. It
should be noted that Fj, and Fy,, will be negative if the vehicle
is slowing down and that F},. will be negative if it is going
downhill. Therefore, the motor torque required for an angular
acceleration will be given by

JG
—a

Tw = .
NgT

2

Finally, the power required to drive a vehicle at a speed v has
to compensate for counteracting forces

Pte:UFte:v(Frr+Fad+ic+Fla+Fwa)~ (3)
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III. INDUCTION MOTOR MODELING

A. Nomenclature

Vas(Vgs)  d-axis (g-axis) stator voltages.
1as(tgs) d-axis (g-axis) stator currents.
Adr(Aqr)  d-axis (g-axis) rotor flux linkages.
1, Load torque.

Ry(Ry) Stator (rotor) resistance.

Ly(L,) Stator (rotor) inductance.

Ly, Magnetizing inductance.

L, Leakage inductance (L, = Ls — L2, /L,).
We (wr) Stator (rotor) electrical speed.

Q Rotor speed (wy/p).

Wsl Slip frequency, wg] = wWe — Wy

B Motor damping ratio.

D Pole-pair number.

B. Induction Motor Dynamic Model

Generally, dynamic modeling of an induction motor drive is
based on rotating reference-frame theory and a linear technique.
A system configuration of an induction motor drive is shown in
Fig. 2 (taking into account the vehicle dynamics). This motor
drive consists of an induction motor, a bang—bang current-
controlled pulsewidth modulated inverter, a field-orientation
mechanism, a coordinate translator and a speed controller. The
electrical dynamics of an induction motor in the synchronously
rotating reference frame (d—gq axis) can be expressed by [28]

1ds —kq We ko wrks Ids
i iqs _ —We *kl *wrkS k2 iqs
dt [Aar| | Fa 0 —ks  wa Adr
)\qr 0 k‘4 —Wsg] —k5 )\qr
Vds
Vs
the | )
0
dw, B 1
— - = (Tw—T
Tm = kt(Adriqs - )\qrids)' (6)

IV. NEURAL NETWORK TRACTION CONTROL
A. Why Neural Network Traction Control?

Recent developments in artificial neural network (ANN)
control technology have made it possible to train an ANN to
represent a variety of complicated nonlinear systems [14]. ANN
is a simulation of the human brain and nervous system built
of artificial neurons and their interconnections. The ANN can
be trained to solve the most complex nonlinear problems with
variable parameters similar to the human brain. There have been
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Fig. 2. Direct field-oriented induction motor drive.

several applications of ANN to induction motor drive systems
such as adaptive flux control, current control, speed control, and
field-oriented control [15]-[17].

B. Neural Network Controller

The dynamic behavior of an induction motor can be de-
scribed by voltage and current models (with decoupling control
Aqr = 0 and Aq; = A = constant) are derived from (4)—(6)

Bide — —figs 4 weiqs + ko Aar + ke Vas

digs . .

ZlctL = 7kllqs — Welds — k2 Aar + kﬁvqs (7
% = —ksAdr + kaigs

Te = kt )\driqs’

The RNN model-based speed estimator replaces the adaptive
current model. In this case, each output neuron uses the linear

activation function. The solution of the voltage model generates
the desired flux components. These signals are compared with
the RNN output signals and the weights are trained online so
that the error £(k + 1) tends to zero. It is assumed that the
training speed is fast enough so that the estimated speed and
actual speed can track well [23].

The current model equations can be discretized and
written as

b= D]

B0 i)
o H(@] ®

where T is the sampling time, L, the magnetizing inductance,
and T, the rotor time constant. The above equation can also be
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written in the form
A+ 1) | _ (Wi War | [ AG,(K)
A;r(k + 1) W12 W22 Acglr(k)
W 0 ][ (k:)}
el 9
0w ] @

where W11 =1- TS/Tr, WQl = —erS, ng = Wr Ts, W22 =
1-— TS/Tr, and W31 = W32 = Lm TS/Tr.

The internal structure of the designed RNN speed estimator
is shown in Fig. 3, where black circles represent context nodes
and white circles represent the input, hidden and output nodes
[12], [23]. The RNN with a linear transfer function of unity gain
satisfies (9). Note that out of the six weights in the network,
only Ws; and Wis (circled in the figure) contain the speed
term. Therefore, it is sufficient if these weights are considered
trainable, keeping the other weights constant (assuming that 7}
and L, are constants) for speed estimation. However, if all the
weights are considered trainable, the speed as well as the rotor
time constant can be tuned.

V. ELECTRIC DIFFERENTIAL AND ITS IMPLEMENTATION

Fig. 4 illustrates the implemented system (electric and me-
chanical components) in the Matlab-Simulink environment. It
should be noted that the two inverters share the same dc bus
whose voltage is supposed to be stable. Regenerative braking is
not taken into account in this paper.

The proposed control system principle could be summarized
as follows: 1) A speed network control is used to control each
motor torque; 2) The speed of each rear wheel is controlled
using speed difference feedback. Since the two rear wheels are
directly driven by two separate motors, the speed of the outer
wheel will need to be higher than the speed of the inner wheel
during steering maneuvers (and vice-versa). This condition
can be easily met if the speed estimator is used to sense the
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angular speed of the steering wheel. The common reference
speed wiet 1s then set by the accelerator pedal command. The
actual reference speed for the left drive wyet-1ert and the right
drive wrer-rignt are then obtained by adjusting the common
reference speed wyor using the output signal from the RNN
speed estimator. If the vehicle is turning right, the left wheel
speed is increased and the right wheel speed remains equal
to the common reference speed wiqf. If the vehicle is turning
left, the right wheel speed is increased and the left wheel speed
remains equal to the common reference speed wyer [7]-

Usually, a driving trajectory is adequate for an analysis
of the vehicle system model. We therefore adopted the
Ackermann—Jeantaud steering model, as it is widely used as
a driving trajectory. In fact, the Ackermann steering geometry
is a geometric arrangement of linkages in the steering system
of a car or other vehicles designed to solve the problem of
wheels on the inside and outside of a turn needing to trace
out circles of different radii. Modern cars do not use pure
Ackermann—Jeantaud steering, partly because it ignores impor-
tant dynamic and compliant effects, but the principle is sound
for low speed maneuvers [29]. It is illustrated in Fig. 5.

From this model, the following characteristic can be
calculated:

L
~ tand (10)

where 0 is the steering angle. Therefore, the linear speed of each
wheel drive is given by

Vi =wy(R—d/2) (a1
Vo =wy(R+d/2)
and their angular speed by
Westl = 7L7(d/z)tan5w (12)
Weaps = L+(d/L2)tan6wV

where wy is the vehicle angular speed according to the center
of turn.
The difference between wheel drive angular speeds is then

dtand
Aw = West1 — West2 = — I wv (13)
and the steering angle indicates the trajectory direction
0 > 0 = Turn left
{ 0 = 0 = Straight ahead (14)
0 < 0 = Turn right.

In accordance with the above described equation, Fig. 6
shows the electric differential system block diagram as used for
simulations, where K7 = 1/2 and K = —1/2.

VI. SIMULATION RESULTS
A. RNN Control Strategy Tests

Numerical simulations were carried out on an EV pro-
pelled by two 37-kW induction motor drives whose ratings are
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Fig. 6. Block diagram of the electric differential system.

summarized in the Appendix (Fig. 7). Electrical vehicle me-
chanical and aerodynamic characteristics are also given in the
Appendix. Objectives of the simulations carried out were to

assess the efficiency and dynamic performance of the proposed
neural network control strategy.

The test cycle is the urban ECE-15 cycle (Fig. 8) [30].
A driving cycle is a series of data points representing the vehicle
speed versus time. It is characterized by low vehicle speed
(maximum 50 km/h) and is useful for testing electrical vehicle
performance in urban areas.

The electric differential performances are first illustrated by
Fig. 9, which shows each wheel’s drive speed during steering
for 0 < ¢ < 1180 s. It is obvious that the electric differential
operates satisfactorily according to the complicated series of
accelerations, decelerations, and frequent stops imposed by the
urban ECE-15 cycle.

Figs. 10 and 11 illustrate the EV dynamics, respectively, the
flux (A\g;) and the developed torque in each induction motor on
the left and right wheel drives, with changes in the acceleration
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Fig. 11.

pedal position (Fig. 12) and a varied road profile (rising and
downward portions). It should be noticed that flux and torque

where the estimation failed

variations are as large as variations of the accelerator pedal and  This was not the case in [31],
around zero-speed especially at no-load.

the road profile.

Fig. 14 illustrates the power required to move the EV. To find
the power taken from the battery to provide the tractive effort,

The RNN speed estimator performances are illustrated by
Fig. 13, which shows the measured speed and the estimated

value. This figure clearly shows that the estimated speed during we have to be able to find various efficiencies at all operating

this test correctly follows the measured one even at zero-speed.

points.
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B. Comparative Study

Comparative tests with a previously published control tech-
nique were conducted [7]. This was done to check the effec-
tiveness of an RNN model for speed estimation of the electric
differential.

The electric differential RNN-based control was compared to
a sliding mode-based control in the same conditions. Compar-
ing the EV wheel speed results of Fig. 9 (RNN control) to those
of Fig. 15 (sliding mode control), it is obvious that the neural
network approach is effective particularly during steering at
high speeds. Although performances in other cases are quite
the same, the proposed control strategy is a sensorless approach
and therefore a cost-effective one.

C. Experimental Validation Perspectives

The target vehicle for implementation of the proposed con-
trol system is a kart as shown by Fig. 16. Adaptations are made
to introduce a two independent rear wheels propulsion system
using two induction motors [11].

VII. CONCLUSION

In this paper, a neural network traction control algorithm
for an electrical vehicle with two separate wheel drives was
proposed. This algorithm is necessary to improve EV steering
and stability during trajectory changes. An electrical differen-
tial was implemented and accounts for the speed difference
between the two wheels when cornering. Moreover, as traction
control systems impose very precise knowledge of the vehicle
dynamics, a vehicle dynamic model was applied.

Numerical simulations were carried out on an EV propelled
by two 37-kW induction motor drives. The test cycle was, in
our case, the urban ECE-15 cycle. During traction and regen-
erative braking, a correlation of traction control with motor
performance was realized. The obtained results seem to be very
promising.
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Fig. 16. Experimental electrical vehicle. (a) Quart front view. (b) Quart rear view.

The RNN speed estimator eliminates the need for an expen-
sive speed transducer with reasonable accuracy. It is shown that
the proposed method estimates the speed accurately over the
entire range from zero to full speed. Moreover, it has robust
speed estimation performance even with step load change or
under variable speed operations.

APPENDIX I
RATED DATA OF THE SIMULATED INDUCTION MOTOR

37 kW, 50 Hz, 400,/230 V

64/111 A,24.17 N - m, 2960 t/min

R, = 85.1 mQ, R, = 65.8 mQ

Ly =31.4mH, L, =29.1 mH, L, = 29.1 mH
J =0.23kg - m?.

APPENDIX II
EV MECHANICAL AND AERODYNAMIC PARAMETERS

m=1540 kg(two 70 kg passengers), A=1.8 m* r=0.3 m
fer1 = 0.0055, pirr2 =0.056, Caqg =0.19, G = 104, 1, = 0.95
T = 57.2N - m (stall torque), vg = 4.155 m/s

g=9.81m/s? p=0.23kg/m>.

REFERENCES

[1] C.C. Chan et al., “Electric vehicles charge forward,” IEEE Power Energy
Mag., vol. 2, no. 6, pp. 24-33, Nov./Dec. 2004.

[2] C. C. Chan, “The state of the art of electric and hybrid vehicles,” Proc.
IEEE, vol. 90, no. 2, pp. 247-275, Feb. 2002.

[3] M. E. H. Benbouzid et al., “Advanced fault-tolerant control of induction-
motor drives for EV/HEV traction applications: From conventional to
modern and intelligent control techniques,” IEEE Trans. Veh. Technol.,
vol. 56, no. 2, pp. 519-528, Mar. 2007.

[4] N. Mutoh et al., “Electric braking control methods for electric vehi-
cles with independently driven front and rear wheels,” IEEE Trans. Ind.
Electron., vol. 54, no. 2, pp. 1168-1176, Apr. 2007.

[5] N.Mutoh et al., “Driving characteristics of an electric vehicle system with
independently driven front and rear wheels,” IEEE Trans. Ind. Electron.,
vol. 53, no. 3, pp. 803-813, Jun. 2006.

[6] K. M. Rahman et al., “Application of direct-drive wheel motor for fuel
cell electric and hybrid electric vehicle propulsion system,” IEEE Trans.
Ind. Appl., vol. 42, no. 5, pp. 1185-1192, Sep./Oct. 2006.

[7]1 A. Haddoun et al., “Sliding mode control of EV electric differential
system,” in Proc. ICEM, Chania, Greece, Sep. 2006.

[8] S. Gair et al., “Electronic differential with sliding mode controller for a
direct wheel drive electric vehicle,” in Proc. IEEE ICM, Istanbul, Turkey,
Jun. 2004, pp. 98-103.

[9] Y. Hori, “Future vehicle driven by electricity and control-research on
four-wheel-motored ‘UOT electric march II’,” IEEE Trans. Ind. Electron.,
vol. 51, no. 5, pp. 954-962, Oct. 2004.

[10] G. Tao et al., “A novel driving and control system for direct-wheel-
driven electric vehicle,” IEEE Trans. Magn., vol. 41, no. 1, pp. 497-500,
Jan. 2005.

[11] R. X. Chen et al., “System design consideration for digital wheelchair
controller,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 898-907,
Aug. 2000.

[12] L. Ju-Sang et al., “A neural network model of electric differential system
for electric vehicle,” in Proc. IEEE IECON, Oct. 2000, vol. 1, pp. 83-88.

[13] A. Haddoun et al., “Analysis, modeling and neural network traction
control of an electric vehicle without differential gears,” in Proc. IEEE
IEMDC, Antalya, Turkey, May 2007, pp. 854—859.

[14] B. K. Bose, “Neural network applications in power electronics and motor
drives—An introduction and perspective,” IEEE Trans. Ind. Electron.,
vol. 54, no. 1, pp. 14-33, Feb. 2007.

[15] M. Cirrincione et al., “Control of induction machines by a new neural
algorithm: The TLS EXIN neuron,” IEEE Trans. Ind. Electron., vol. 54,
no. 1, pp. 127-149, Feb. 2007.

[16] M. Cirrincione et al., “Sensorless control of induction motors by reduced
order observer with MCA EXIN + based adaptive speed estimation,”
IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 150-166, Feb. 2007.

[17] B. Karanayil et al., “Online stator and rotor resistance estimation scheme
using artificial neural networks for vector controlled speed sensorless
induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 167—
176, Feb. 2007.

[18] T. Pajchrowski et al., “Application of artificial neural network to robust
speed control of servodrive,” IEEE Trans. Ind. Electron., vol. 54, no. 1,
pp- 200-207, Feb. 2007.

[19] A.Rubaai et al., “Implementation of artificial neural network-based track-
ing controller for high-performance stepper motor drives,” IEEE Trans.
Ind. Electron., vol. 54, no. 1, pp. 218-227, Feb. 2007.

[20] S. Jung et al., “Hardware implementation of a real-time neural network
controller with a DSP and an FPGA for nonlinear systems,” IEEE Trans.
Ind. Electron., vol. 54, no. 1, pp. 265-271, Feb. 2007.

[21] E J. Lin et al., “Recurrent-fuzzy-neural-network-controlled linear in-
duction motor servo drive using genetic algorithms,” IEEE Trans. Ind.
Electron., vol. 54, no. 3, pp. 1449-1461, Jun. 2007.



2294

[22] C. M. Lin et al., “Recurrent-neural-network-based adaptive backstepping
control for induction servomotors,” IEEE Trans. Ind. Electron., vol. 52,
no. 6, pp. 1677-1684, Dec. 2005.

M. Wias et al., “Artificial-neural-network-based sensorless nonlinear con-
trol of induction motors,” IEEE Trans. Energy Convers., vol. 20, no. 3,
pp- 520-528, Sep. 2005.

Z.Zhu et al., “Electrical machines and drives for electric, hybrid, and fuel
cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 764-765, Apr. 2007.

M. Zeraoulia et al., “Electric motor drive selection issues for HEV propul-
sion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55,
no. 6, pp. 17561764, Nov. 2006.

F. Khoucha et al., “A minimization of speed ripple of sensorless DTC
for controlled induction motors used in electric vehicles,” in Proc. IEEE
IECON, Paris, France, Nov. 2006, pp. 1339-1344.

A. Haddoun et al., “A loss-minimization DTC scheme for EV induction
motors,” IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 81-88, Jan. 2007.
A. B. Proca et al., “Sliding-mode flux observer with online rotor parame-
ter estimation for induction motors,” IEEE Trans. Ind. Electron., vol. 54,
no. 2, pp. 716-723, Apr. 2007.

R. E. Colyer et al., “Comparison of steering geometries for multi-wheeled
vehicles by modelling and simulation,” in Proc. IEEE CDC, Dec. 1998,
vol. 3, pp. 3131-3133.

M. André et al., in Proc. Driving Cycles Emissions Meas. Under Eur.
Conditions, 1995, pp. 193-205. SAE Paper No. 950926.

A. Cordeiro et al., “Sensorless speed control system for an electric vehicle
without mechanical differential gear,” in Proc. IEEE MELECON, Malaga,
Spain, May 2006, pp. 1174-1177.

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

Abdelhakim Haddoun was born in Constantine,
Algeria, in 1967. He received the B.Sc. and M.Sc.
degrees in electrical engineering from the University
of Batna, Batna, Algeria, in 1993 and 1999, respec-
tively. He is currently working toward the Ph.D. de-
gree, focusing on electric vehicle control and power
management, in University of Batna.

Since 2000, he has been with the Department
of Electrical Engineering, University of Oum El
Bouaghi, Oum El Bouaghi, Algeria, as a Teaching
Assistant. He is also currently with the Laboratoire
Brestois de Mécanique et des Systemes, University of Western Brittany, Brest,
France.

Mohamed El Hachemi Benbouzid (S’92-M’95-
SM’98) was born in Batna, Algeria, in 1968. He
received the B.Sc. degree in electrical engineering
from the University of Batna, Batna, Algeria, in
1990, the M.Sc. and Ph.D. degrees in electrical and
computer engineering from the National Polytechnic
Institute of Grenoble, Grenoble, France, in 1991 and
1994, respectively, and the Habilitation a Diriger des
Recherches degree from the University of Picardie
“Jules Verne,” Amiens, France, in 2000.

After receiving the Ph.D. degree, he joined the
Professional Institute of Amiens, University of Picardie “Jules Verne,” where
he was an Associate Professor of electrical and computer engineering. Since
September 2004, he has been with the Laboratoire Brestois de Mecanique et
des Systemes, University of Western Brittany, Brest, France, as a Professor of
electrical engineering. His research interests and experience include analysis,
design, and control of electric machines, variable-speed drives for traction and
propulsion applications, and fault diagnosis of electric machines.

Prof. Benbouzid is a Senior Member of the IEEE Power Engineering,
Industrial Electronics, Industry Applications, Power Electronics, and Vehicular
Technology Societies. He is an Associate Editor for the IEEE TRANSACTIONS
ON ENERGY CONVERSION, IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and
IEEE/ASME TRANSACTIONS ON MECHATRONICS.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 6, JUNE 2008

Demba Diallo (M’99-SM’05) was born in Dakar,
Senegal, in 1966. He received the M.Sc. and Ph.D.
degrees in electrical and computer engineering from
the National Polytechnic Institute of Grenoble,
Grenoble, France, in 1990 and 1993, respectively,
and the “Habilitation 4 Diriger des Recherches”
degree from the University of Paris Sud P11,
Gif-Sur-Yvette, France, in 2005.

From 1994 to 1999, he was a Research En-
gineer with the Laboratoire d’Electrotechnique de
Grenoble, Grenoble, where he worked on electrical
drives and active filters (hardware and software). In 1999, he was with the
University of Picardie “Jules Verne,” Amiens, France, as an Associate Professor
of electrical engineering. In September 2004, he was with the University
Institute of Technology of Cachan, University of Paris Sud P11, as an Associate
Professor of electrical engineering. He is currently with the Laboratoire de
Génie Electrique de Paris, Ecole Superieure d’Electricite, University Pierre and
Marie Curie P6 and University of Paris Sud P11, Gif-Sur-Yvette, France. His
current research interests include advanced control techniques and diagnosis in
the field of ac drives.

Dr. Diallo is a Senior Member of the IEEE Industry Applications, Vehicular
Technology and Control Systems Societies. He is an Associate Editor for the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Rachid Abdessemed was born in Batna, Algeria, in
1951. He received the M.Sc. and Ph.D. degrees in
electrical engineering, from Kiev Polytechnic Insti-
tute, Kiev, Ukraine, in 1978 and 1982, respectively.
He has been working for more than eighteen years
at the University of Batna, Batna, Algeria, where he
is a Professor in the Electrical Engineering Depart-
ment. Currently, he is the Director of the Electrical
Engineering Laboratory. His current area of research
includes design and control of induction machines,
reliability, magnetic bearings, and renewable energy.

Jamel Ghouili was born in Ghardimaou, Tunisia,
in 1962. He received the B.Sc., M.Sc., and
Ph.D. degrees from the University of Québec at
Trois-Rivieres, Canada, in 1986, 1998, and 2004,
respectively.

He is currently Professor at the University of
Moncton, Moncton, Canada. His main research in-
terests include power converters, ac drives, DSP and
field-programmable gate array control, sensorless
control, electric and hybrid electric vehicle drives,
fuzzy logic and neural network applications in power

electronics and drives.

Kamel Srairi was born in Batna, Algeria, in 1967.
He received the B.Sc. degree in electrical engineer-
ing from the University of Batna, Batna, Algeria, in
1991, the M.Sc. degree in electrical and computer
engineering from the National Polytechnic Institute
of Grenoble, Grenoble, France, in 1992, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Nantes, Nantes, France,
in 1996.

After graduation, he was with the University of
Biskra, Biskra, Algeria, where he is a Professor in
the Electrical Engineering Department. His main research interests include
analysis, design, and control of electric machines.




