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estimation of covariance matrices via Cholesky decomposition (

Table 1: Comparison between the procedures for the third covariance model Ω c

3 with p = 200.

We observe different results for the Kullback risk depending on the sparsity. When Esp=1, ChoSelect f still performs better than the other methods. However, the GLasso provides better results than the two other results for Esp=3 and Esp=5. This is not really surprising since the Glasso has been introduced to handle the "unordered" situation. It seems from the case Esp=5, that the Lasso procedure is more robust to a "bad" ordering than ChoSelect f . ChoSelect f still performs better than the other procedures in terms of the operator distance between precision matrices. Nevertheless, the differences of performance are less obvious than in the previous schemes. Finally, the Glasso and Ledoit and Wolf's method exhibit a smaller operator distance between covariance matrices than the Lasso and ChoSelect f .

Proof of the risk upper bounds

Lemma 2.1. Let V be a χ 2 random variable with N > 2 degrees of freedom and let k be some positive integer such that N > 2k, then

E 1 V k = 1 (N -2) . . . (N -2k)
and E V k = N (N + 2) . . . (N + 2(k -1)) .

We refer to Lemma 5 in [START_REF] Baraud | Gaussian model selection with an unknown variance[END_REF] for the proof of slightly more general version of this lemma.
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In the proof of Lemma 7.5 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF], we state that

l( t m ′ , t m ′ ) ≤ ϕ max nZ * m ′ Z m ′ ) -1 Π m ′ (ǫ + ǫ m ′ ) 2 n .
This yields

(1 -κ 0 ) l( t, t) + s s ≤ (1 -κ 0 ) s + l(t m , t) + κ 2 ϕ max n(Z * m Z m ) -1 Π m (ǫ + ǫ m ) 2 n s + (1 -κ 0 )(1 -κ 2 ) l( t, t m ) s .
Let us gather all these bounds 2(1κ 0 )K t, s; t, s ≤ 2K t, s; t m , s m + (1κ 0 ) [pen(m)pen( m)]

+ (1 -κ 0 ) l(t m , t) + (1 -κ 2 )l( t, t m ) + κ 2 ϕ max n(Z * m Z m ) -1 Π m (ǫ + ǫ m ) 2
We then use Condition (39) on pen( m) and we apply the inequality

2 Π ⊥ m ǫ, Π ⊥ m ǫ m n s ≤ κ 1 l(t m , t) s + κ -1 1 s s Π ⊥ m ǫ, Π ⊥ m ǫ m 2 n
sl(t m , t) .

Hence, we conclude that 2(1κ 0 )K t, s; t, s ≤ 2K t, s; t m , s m + (1κ 0 )pen(m)

+ l( t, t) s [R 1 ( m) ∨ (1 -κ 2 )(1 -κ 0 )] + R 2 (m) + s s R 3 ( m) + R 4 (m, m) .

Proof of Lemma 10.5

This proof follows the same sketch as the proof of Lemma 7.10 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF]. The main difference lies in the fact that κ 0 is zero in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF]. Let x be a positive number that we shall fix later. For any k > 0, let us define

δ k := π 2k + exp(-k/16) .
We shall first control the deviations of the random variables involved in R 1 ( m). Applying deviation inequality for χ 2 random variables and largest values of Standard Wishart matrices (see e.g. Lemmas 7.2, 7.3, and 7.4 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF]) to all models m ∈ M ensures that there exists an event B 2 such that P(B c 2 ) ≤ 4n exp(-nx) and under B 2 it holds that

Π ⊥ m ǫ m 2 n l(t m , t) ≥ n -| m| n 1 -δ n-| m| - 2| m|H(| m|) n -| m| - 2xn n -| m| ∨ 0 2 , Π m (ǫ + ǫ m ) 2 n s + l(t m , t) ≤ 2| m| n 1 + H(| m|) + H(| m|) + 3x , (1) 
Π ⊥ m (ǫ + ǫ m ) 2 n s + l(t m , t) ≥ n -| m| n 1 -δ n-| m| - 2| m|H(| m|) n -| m| - 2xn n -| m| ∨ 0 2 , nϕ max (Z * m Z m ) -1 ≤ 1 -1 + 2H(| m|) | m| n - √ 2x ∨ 0 -2
.

By Assumption (H i K,η ), the expression (1 + 2H( m)) | m|/n is bounded by √ η. Moreover, (H i K,η ) also ensures that | m| ≤ n/2. Hence δ n-| m| ≤ δ n/2 ≤ ν(K) for n larger than some quantity n 0 (K). Since ν(K) ≤ 1 -√ η, we derive that

Π ⊥ m ǫ m 2 n l(t m , t) ≥ 1 - | m| n [1 -ν(K) - √ η] 2 -2 √ 2x , (2) 
Π ⊥ m (ǫ + ǫ m ) 2 n s + l(t m , t) ≥ 1 - | m| n [1 -ν(K) - √ η] 2 -2 √ 2x , (3) 
ϕ max n (Z * m Z m ) -1 ≤ 1 - √ η - √ 2x ∨ 0 -2
.

Constraining x to be smaller than 1 -√ η 2 /8 ensures that

κ 2 ϕ max n (Z * m Z m ) -1 1 B1 ≤ (K -1)(1 - √ η -ν(K)) 2 4 . (4) 
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R 1 ( m) ≤ κ 1 + 1 -[1 - √ η -ν(K)] 2 + | m| n (1 - √ η -ν(K)) 2 U 1 + √ xU 2 + xU 3 ,
where U 1 , U 2 , and U 3 are respectively defined by

       U 1 := -(1 -κ 0 )K 1 + 2H(| m|) 2 + 1 + (1 -κ 0 )(K -1)/2 1 + H(| m|) 2 ≤ 0 U 2 := 2 √ 2 [1 + Kη] U 3 := 3 4 (K -1) 1 - √ η -ν(K) 2 .
Since U 1 is non-positive, we obtain an upper bound of R 1 ( m) that does not depend anymore on the model m. By assumption (H i K,η ), we know that η < (1ν(K) -(3/(K + 2)) 1/6 ) 2 . Hence, coming back to the definition of κ 1 allows to prove that κ 1 is strictly smaller than [1-√ η-ν(K)] 2 .

Setting

x := 1 - √ η -ν(K) 2 -κ 1 4U 2 2 ∧ 1 - √ η -ν(K) 2 -κ 1 4U 3 ∧ 1 - √ η 2 8 ,
we get

R 1 ( m) ≤ 1 - 1 2 (1 - √ η -ν(K)) 2 -κ 1 < 1 ,
under the event B 2 . This is enough to prove Lemma 10.5 if we take B 1 = B 2 . In fact, we shall define an event B 1 slightly more restrictive in order to simplify the proof of Lemma 10. [START_REF] Massart | Concentration Inequalities and Model Selection, École d'été de probabilités de Saint Flour[END_REF]. Let B 3 be the event defined by

ǫ 2 n /s ≤ κ -1 1 . (5) 
Since κ -1

1
is strictly larger than one and since κ 1 only depends on K and η, it follows that P(B c

3 ) ≤ exp(-nL K,η ) with L K,η > 0. Finally we take, B 1 := B 2 ∩ B 3 .

Proof of Lemma 10.6

The sketch of this proof is similar to the proof of Lemma 7.11 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF]. First, under the event B 1 , it holds that

Π ⊥ m (ǫ + ǫ m ) 2 n s + l(t m , t) ≥ [1 -ν(K) - √ η] 2 /4 > 0 , κ 2 ϕ max n (Z * m Z m ) -1 ≤ (K -1)(1 - √ η -ν(K)) 2 4 .
This is a consequence of (3), of the choice of x in the previous proof, and of the assumption

(H i K,η ). Since s = |Π ⊥ m (ǫ + ǫ m ) 2
n , it follows that s/ s is upper bounded under the event B 1 . Hence, we only have to upper bound the expectation of R 3 ( m) on B 1 .

E s s R 3 ( m1 B1 ) ≤ L K,η E [R 3 ( m1 B1 )] . (6) 
Let us consider the random variables E m defined by

E m := κ -1 1 Π ⊥ m ǫ, Π ⊥ m ǫ m 2 n sl(t m , t) + Π m ǫ 2 n s .
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By ( 5), the random variable E m is upper bounded under B 1 by

E m ≤ κ -2 1 Π ⊥ m ǫ/ Π ⊥ m ǫ n , Π ⊥ m ǫ m 2 n sl(t m , t) + Π m ǫ 2 n s
This upper bound follows the distribution of a linear combinations of χ 2 random variables. More details about this observation are given in the proof of Lemma 7.7 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF]. We shall simultaneously control the deviations of the random variables

E m , Π m (ǫ + ǫ m ) 2 n /[l(t m , t) + s], and Π ⊥ m (ǫ + ǫ m ) 2 n /[s + l(t m , t)
] by applying Lemma 1 in [START_REF] Laurent | Adaptive estimation of a quadratic function by model selection[END_REF] and Lemmas 7.2 and 7.3 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF]. For any x > 0, we define an event F(x) such that conditionally on

F(x) ∩ B 1 ,              E m ≤ | m|+κ -2 1 n + 2 n | m| + κ -4 1 [| m|(ξ + H(| m|)) + x] + 2κ -2 1 [ξ(| m| + H(| m|)) + x]/n , Π m (ǫ+ǫ m ) 2 n s+l(t m ,t) ≤ 1 n | m| + 2 | m| [| m|(1/16 + H(| m|)) + x] + 2 [| m|(1/16 + H(| m|)) + x] , Π ⊥ m ǫ m +ǫ 2 n s+l(t m ,t) ≥ n-| m| n 1 -δ n-| m| -| m|(1+2H(| m|)) n-| m| - 2x n-| m| ∨ 0 2 ,
where δ k is defined in the previous proof. Then, the probability of F(x) satisfies

P [F(x) c ] ≤ e -x m∈M exp [-| m|H(| m|)] e -ξ| m| + e -| m| 16 + e -| m| 2 ≤ e -x 1 1 -e -ξ + 1 1 -e -1/16 + 1 1 -e -1/2 .
Let us expand the three deviation bounds thanks to the inequality 2ab ≤ τ a 2 + τ -1 b 2 :

E m ≤ | m| n 1 + 2 ξ + 2κ -2 1 ξ + τ 1 ξ + τ 2 + x n 2κ -2 1 + τ -1 2 + τ 1 + κ -2 1 n 1 + τ -1 1 κ -2 1 + | m|H(| m|) n 2κ -2 1 + τ 1 + 2 | m| H(| m|) n ≤ | m| n 1 + 2H(| m|) 2 κ -2 1 + 2 ξ + 2κ -2 1 ξ + τ 1 ξ + τ 2 + x n 2κ -2 1 + τ -1 2 + τ 1 + κ -2 1 n 1 + τ -1 1 κ -2 1 .
Similarly, we get

Π m (ǫ + ǫ m ) 2 n l(t m , t) + s ≤ 2 | m| n 1 + 2H(| m|) 2 + 5 x n .
We recall that |m| ≤ n/2 by Assumption (H i K,η ). If n is larger than some quantity n 0 (K), then

δ n-|m| ≤ δ n/2 ≤ ν(K). Applying again Assumption (H i K,η ), we get -K | m| n -| m| 1 + 2H(| m|) 2 Π ⊥ m (ǫ + ǫ m ) 2 n l(t m , t) + s ≤ -K | m| n 1 + 2H(| m|) 2 1 - √ η -ν(K) - 2x n -| m| ∨ 0 2 ≤ -K | m| n 1 + 2H(| m|) 2 (1 - √ η -ν(K)) 2 -τ 3 + 2Kητ -1 3 x n .
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Let us combine these three bounds with the definitions of R 3 ( m), κ 1 , and κ 2 , and the bound (4). Hence, under the event B 1 ∩ F(x), it holds that

R 3 ( m) ≤ | m| n 1 + 2H(| m|) 2 U 1 + x n U 2 + L K,η n U 3 , where    U 1 := -K-1 10 1 - √ η -ν(K) 2 + Kτ 3 + 2 √ ξ + 2κ -2 1 ξ + τ 1 ξ + τ 2 , U 2 := τ -1 2 + τ 1 + L K,η (1 + τ -1 3 ) , U 3 := 1 + τ -1 1 .
Since K > 1, there exists a suitable choice of the constants ξ, τ 1 , and τ 2 , only depending on K and η that constrains U 1 to be non positive. Hence, under the event

B 1 ∩ F(x), B m ≤ L K,η n + L ′ (K, η) x n .
Since P [F(x) c ] ≤ e -x L K,η , we conclude by integrating the last expression with respect to x.

Proof of Lemma 10.7

Let us assume that n ≥ 17.

R 2 (m) = 1 - l(t m , t) + Π ⊥ m ǫ 2 n Π ⊥ m ǫ + ǫ m 2 n .
We shall first upper bound the expectation of R 2 (m).

E l(t m , t) Π ⊥ m ǫ + ǫ m 2 n = n n -|m| -2 l(t m , t) [s + l(t m , t)] ≥ n -|m| n -|m| -2 l(t m , t) [s + l(t m , t)] (7) 
Let us to the second term.

E Π ⊥ m ǫ + ǫ m 2 n Π ⊥ m ǫ 2 n = 1 + l(t m , t) s n -|m| n -|m| -2 ≤ s + l(t m , t) s n -|m| n -|m| -2
Applying a convexity argument, we derive that

E Π ⊥ m ǫ 2 n Π ⊥ m ǫ + ǫ m 2 n ≥ s s + l(t m , t) n -|m| -2 n -|m| . (8) 
Gathering the inequalities ( 7) and ( 8) allows to conclude that

E [R 2 (m)] ≤ 2 n -|m| .
We get the upper bound

E [R 2 (m)1 B1 ] = E [R 2 (m)] -E R 2 (m)1 B c 1 ≤ 2 n -|m| + P(B c 1 ) E [R 2 2 (m)] . (9) 
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Thus, we need to upper bound the second moment of R 2 (m). 

E R 2 2 (m) ≤ 3 1 + E l 2 (t m , t) Π ⊥ m ǫ + ǫ m 4 n + E [ Π ⊥ m ǫ 8 n ] E 1 Π ⊥ m ǫ + ǫ m 8 n ≤ 3 1 + l(t m , t)n (s + l(t, m, t))(n -|m| -4) 2 + s(n -|m| + 6) (s + l(t, m, t))(n -|m| -8)
E [R 2 (m)1 B1 ] ≤ L K,η /n.

Proof of Lemma 10.8

We bound the quantity R 4 (m, m) using the same arguments as in the proof of Theorem 3 in [START_REF] Baraud | Gaussian model selection with an unknown variance[END_REF]. We first split this quantity into a sum of two terms:

R 4 (m, m) = ǫ 2 n -s(1 -κ 0 ) + 1 s m - 1 s + s(1 -κ 0 ) -ǫ 2 n + - 1 s m + 1 s ≤ R 4,1 (m, m) + R 4,2 ( m) ,
where R 4,1 (m, m) and R 4,2 ( m) are respectively defined by

R 4,1 (m, m) := ǫ 2 n -s(1 -κ 0 ) + 1 s m - 1 s R 4,2 ( m) := s(1 -κ 0 ) -ǫ 2 n + 1 s .
By definition, we know that log ( s/ s m ) is smaller than pen(m)pen( m).

R 4,1 (m, m) ≤ ǫ 2 n -s(1 -κ 0 ) + 1 s m log s s m ≤ ǫ 2 n -s(1 -κ 0 ) + 1 s m pen(m) .
Applying Cauchy-Schwarz inequality yields 

E [R 4,1 (m, m)1 B1 ] ≤ E ǫ 2 n -s(1 -κ 0 ) + s m pen(m) ≤ E ( ǫ 2 n -s(1 -κ 0 )) 2 E 1 s 2 m pen(m) ≤ s s m κ 2 0 + 2 n n 2 (n -|m| -2)(n -|m| -4) pen(m) ≤ Lpen(m
E [R 4,2 ( m)1 B1 ] ≤ E s(1 -κ 0 ) -ǫ 2 n + 1 s ≤ E 1 s(1-κ0)≥ ǫ 2 n s s ≤ P ǫ 2 n ≤ s(1 -κ 0 ) 1/u E s s v 1/v ≤ P ǫ 2 n ≤ s(1 -κ 0 ) 1/u m∈M E s s m v 1/v
E [R 4,2 ( m)1 B1 ] ≤ exp -n κ 2 0 4u m∈M n v (n -|m| -2) . . . (n -|m| -2v) 1/v ≤ n n/2 -2v exp -n κ 2 0 4u |M| 1/v ≤ n exp -n κ 2 0 4u |M| 1/v .
Let us bound the cardinality of the collection M. We recall that the dimension of any model m ∈ M is assumed to be smaller than n/2 by (H K,η By assumption (H K,η ), dH(d) is smaller than n/2. Thus, log(|M|) ≤ log(n) + n/2 and it follows that |M| 1/v is smaller than an universal constant providing that n is larger than 8. All in all, we get

E [R 4,2 ( m)1 B1 ] ≤ Ln exp -n κ 2 0 4u . 
2.6. Proof of Lemma 10.9

For any x > 0, the following inequality holds

x -1 -log(x) ≤ 9 64 x - 1 x 2 .
This statement is easy to establish by studying the derivative of the associated function. Thanks to Cauchy-Schwarz inequality, we obtain

E K t, s; t, s 1 B c 1 ≤ E 9 64 s 2 s 2 + s 2 s 2 + l(t m , t) s + l( t, t m ) s 1 B c 1 ≤ L P [B c 1 ] m∈M E 1 m= m s 4 s 4 m + s 4 m s 4 + l 2 (t m , t) s 2 m + l 2 ( t m , t m ) s 2 m .
As in the proof of Lemma 10.8, we apply Hölder's inequality with v = ⌊n/16⌋ and u = v/(v -1). Again, we check that for any model m ∈ M, n -|m| -8v ≥ 1.

E 1 m= m s 4 s 4 m + s 4 m s 4 + l 2 (t m , t) s 2 m + l 2 ( t m , t m s 2 m ≤ P [m = m] 1 u   E s 4v s 4v m 1 v + E s 4v m s 4v 1 v + E l 2v (t m , t) s 2v m 1 v + E l 2v ( t m , t m ) s 2v m 1 v   .
We bound the first two terms applying Lemma 2.1 or computing the v-th moment of χ 2 random variable.

E s 4v s 4v m 1 v ≤ n 4 (n -|m| -8v) 4 , E s 4v m s 4v 1 v = (n -|m|)(n -|m| + 2) . . . (n -|m| + 2(4v -1))(s m ) 4v (ns) 4v 1 v ≤ (n -|m| + 8v) 4 (s + l(0, t)) 4 n 4 s 4 .
As Π ⊥ m (ǫ + ǫ m ) 2 n is independent of the couple ( Π m (ǫ + ǫ m ) 2 n , X m ), the random variables s m and l( t m , t m ) are independent. We bound the the l 2v -risk of l( t m , t) thanks to Proposition 7.8 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF].

E l 2v ( t m , t m ) s 2v m 1 v = E l 2v ( t m , t m ) E 1 s 2v m 1 v ≤ Lv 2 |m| 2 n 4 (n -|m| -4v) 2 ≤ Lv 2 |m| 2 n 2 n 2 (n -|m| -4v) 2 .
Combining these upper bounds and noting that n -|m| -8v ≥ 1 and |m| ≤ n/2 yields

E K t, s; t, s 1 B c 1 ≤ 2n 2 (n -|m| -8v) 2 + Lv|m|n 2 n -|m| -4v + (n -|m| + 8v) 2 n 2 1 + l(0, t) s 2 × L P [B c 1 ]|M| 1 2v ≤ L K,η n 5/2 1 + l(0, t) s exp [-nL K,η ] ,
since |M| 1/2v is smaller than than an universal constant as explained in the proof of Lemma 10.8. Finally, l(0, t)/s is smaller than K(t, s; 0, 1). First, we claim that the penalties (21) are lower bounded by penalties defined in [START_REF] Verzelen | Adaptive estimation of covariance matrices via cholesky decomposition[END_REF]. Suppose that K > e -1. Since log(1 + Kx) ≥ log(1 + K)x for any x between 0 and 1, it follows that

pen i (m i ) ≥ log(1 + K) |m i | n -|m i | 1 + 2 [1 + log ((i -1)/|m i |)] 2 , ( 10 
) if |m i |/(n -|m i |){1 + 2[1 + log((i -1)/|m i |))] 2 } ≤ 1. If K ≤ e -1, there exists a positive constant ζ(K) such that log(1 + Kx) ≥ √ Kx , for all x ≤ ζ(K)
. Hence, we get

pen i (m i ) ≥ √ K |m i | n -|m i | 1 + 2 [1 + log ((i -1)/|m i |)] 2 , ( 11 
) if K ≤ e -1 and if |m i |/(n -|m i |)[1 + 2[1 + log((i -1)/|m i |)] 2 ] ≤ ζ(K).
Gathering ( 10) and ( 11), we get that for any K > 1, there exists some K ′ > 1 and some ζ(K) > 0 such that:

pen i (m i ) ≥ K ′ |m i | n -|m i | 1 + 2 [1 + log ((i -1)/|m i |)] 2 , if |m i |/(n -|m i |){1 + 2[1 + log((i -1)/|m i |)] 2 } ≤ ζ(K).
For any 2 ≤ i ≤ p and any 1

≤ k ≤ (i -1) ∧ d, H i (k) is smaller than 1 + log((i -1)/k).
Hence, pen i (m i ) is lower bounded by a penalty of the form [START_REF] Verzelen | Adaptive estimation of covariance matrices via cholesky decomposition[END_REF] with some K ′ > 1. Assuming that

|m i | n -|m i | 1 + 2 [1 + log ((i -1)/|m i |)] 2 ≤ ζ(K) ∧ η(K ′ ) , (12) 
we derive that (H K ′ ,η ) is fulfilled and that the risk bound (23) holds.

We conclude by observing that Condition (12) is satisfied if

d[1 + log(p/d) ∨ 0] ≤ nη ′ (K) ,
for some suitable function η ′ (K).

Proof of Proposition 4.5

We apply the same arguments as in the proof of Theorem 4.4, except that we replace H(|m|) by l m . Then, Lemmas 10.4 and 10.7 are still true.

In the proof of Lemmas 10.8 and 10.9, the only difference with the previous case concerns the upper bound of log (|M|). By definition of l m ,

|M| -1 ≤ sup m∈M\{∅} exp(|m|l m ) .
Hence, log(|M|) ≤ 1 + sup m∈M\{∅} |m|l m , which is smaller than 1 + n/2 by Assumption (H bay K,η ). Lemmas 10.5 and 10.6 also hold when H(|m|) is replaced by l m as explained in the proof of Proposition 3.5 in [START_REF] Verzelen | High-dimensional gaussian model selection on a gaussian design[END_REF].
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Proofs of the minimax bounds

We note d H (., .) the Hamming distance between two vectors. The Hamming distance between two matrices of size p is defined as the Hamming distance between their vectorialized version of size p 2 . It is also noted d H (., .).

Main lemma

We first state two useful lemmas for proving the minimax lower bounds. The first one is known as Varshamov-Gilbert's lemma, whereas the second one is a modified version of Birgé's lemma for covariance estimation. Lemma 3.1 (Varshamov-Gilbert's lemma). Let {0, 1} D be equipped with Hamming distance d H . There exists some subset Θ of {0, 1} D with the following properties

d H (θ, θ ′ ) > D/4 for every (θ, θ ′ ) ∈ Θ 2 with θ = θ ′ and log |Θ| ≥ D/8 .
We note t l2 the Euclidean norm of a vector t. Lemma 3.2. Let A be a subset of {1, . . . , p}. For any positive matrices Ω and Ω ′ , we define the function d(Ω, Ω ′ ) by

d(Ω, Ω ′ ) := i∈A log 1 + t i -t ′ i 2 l2 4 + i∈A c s i s ′ i + log s i s ′ i -1 . ( 13 
)
Let Υ be a subset of square matrices of size p which satisfies the following assumptions:

1. For all Ω ∈ Υ, ϕ max (Ω) ≤ 2 and ϕ min (Ω) ≥ 1/2. 2. There exists (s 1 , s 2 ) ∈ [1; 2] 2 such that ∀Ω ∈ Υ, ∀1 ≤ i ≤ p, s i ∈ {s 1 , s 2 }. Setting δ = min Ω,Ω ′ ∈Υ,Ω =Ω ′ d(Ω, Ω ′ ), provided that max Ω,Ω ′ ∈Υ K(P ⊗n Ω ; P ⊗n Ω ′ ) ≤ κ 1 log |Υ|, the following lower bound holds inf Ω sup Ω∈Υ E Ω K Ω; Ω ≥ κ 2 δ .
The numerical constants κ 1 and κ 2 are made explicit in the proof.

Proof of Lemma 3.2. This lemma is mainly based on an application of Birgé's version of Fano's lemma [START_REF] Birgé | A new lower bound for multiple hypothese testing[END_REF]. We provide a statement of the result that is taken from [START_REF] Massart | Concentration Inequalities and Model Selection, École d'été de probabilités de Saint Flour[END_REF] Sect.2.4. Lemma 3.3. Let (P i ) 0≤i≤N be some family of probability distributions and (A i ) 0≤i≤N be some family of disjoint events. Let a = min 0≤i≤N P

i (A i ), then a ≤ κ ∨ max 1≤i≤N K (P i ; P 0 ) log(1 + N ) ,
where κ = 2e/(2e + 1).

Let Ω be an estimator of Ω. Let Ω be an estimator that takes its values in Υ and satisfies

d( Ω, Ω) = min Ω ′ ∈Υ d(Ω ′ , Ω) .
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We note ( T , S) and ( T , S) the Cholesky decompositions of Ω and Ω. Let i ∈ {1, . . . , p}. By the triangle inequality,

t i -t i 2 l2 4 ≤ 2 t i -t i 2 l2 4 + t i -t i 2 l2
4 .

For any positive numbers a and b, log(1 + a + b) ≤ log(1 + a) + log(1 + b). Moreover, for any positive number a, we have log(1 + 2a) ≤ 2 log(1 + a) because the log function is concave. Hence, we get

log 1 + t i -t i 2 l2 4 ≤ 2 log 1 + t i -t i 2 l2 4 + 2 log 1 + t i -t i 2 l2 4 . ( 14 
)
Let us define the function f by f (x) := xlog(x) -1 for any x > 0. We state that there exists some numerical constant L such that

f s i s i ≤ L f s i s i + f s i s i . ( 15 
)
If s i = s i , this inequality holds for any L > 0 since f (1) = 0 and f is non negative. If s i = s i , there are two possibilities: either s i = s 1 and s i = s 2 or s i = s 2 and

s i = s 1 . By deriving f (s 1 /x) + f (s 2 /x), one observes that this sum is minimized for x = (s 1 + s 2 )/2 and that this minimum equals f [2/ (1 + s 1 /s 2 )] + f [2/ (1 + s 2 /s 1 )
]. Hence, we obtain that

f s i s i ≤ f s1 s2 ∨ f s2 s1 f 2/ 1 + s1 s2 + f 2/ 1 + s2 s1 f s i s i + f s i s i .
Since s 1 and s 2 lie between one and two, it follows that

f s i s i ≤ sup 1/2≤x≤2 f (x) f [2/(1 + x)] + f 2/(1 + 1 x ) f s i s i + f s i s i . ( 16 
)
The ratio

f (x)/ (f [2/(1 + x)] + f [2/(1 + 1/x)]
) is positive and continuous on [1/2; 1[ and ]1; 2]. By studying the Taylor series of f (x) at x equals one, we observe that

f (x) = (x-1) 2 /2 + o[(x-1) 2 ], f (2/(1 + x)) = (x -1) 2 /8 + o[(x -1) 2 ], and f (2/(1 + 1/x)) = (x -1) 2 /8 + o[(x -1) 2 ]. Hence, there exists a continuation of the ratio f (x)/(f [2/(1 + x)] + f [2/(1 + 1/x)]
) around one. The supremum in ( 16) is therefore finite and the upper bound (15) holds.

Combining the upper bounds ( 14) and (15) with the definition of Ω yields

d(Ω, Ω) ≤ 2 i∈A log 1 + t i -t i 2 l2 4 + log 1 + t i -t i 2 l2 4 + L i∈A c f s i s i + f s i s i ≤ L d(Ω, Ω) + d( Ω, Ω) ≤ Ld(Ω, Ω) .
Hence, one can lower bound the risk of Ω as follows

sup Ω∈Υ E Ω d Ω, Ω ≥ L -1 δ sup Ω∈Υ P Ω Ω = Ω = L -1 δ 1 -min Ω∈Υ P Ω Ω = Ω .
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Applying Lemma 3.3, we conclude that inf

Ω sup Ω∈Υ E Ω d Ω, Ω ≥ L -1 (1 -κ)δ , (17) if max Ω,Ω ′ ∈Υ K(P ⊗n Ω , P ⊗n Ω ′ ) ≤ κ log |Υ|.
Let us now express this minimax lower bound in term of Kullback divergence. Thanks to the chain rule and Lemma 10.1, the Kullback divergence between two positive matrices Ω and Ω ′ decomposes as

K (Ω; Ω ′ ) = p i=1 1 2 log s ′ i s i + s i s ′ i -1 + l i (t i , t ′ i ) s ′ i .

Straightforward computations allow to prove that the function log(s

′ i /s i ) + s i /s ′ i -1 + l i (t i , t ′ i )/s ′ i is minimized with respect to s ′ i when s ′ i = s i + l i (t i , t ′ i )
. This leads to the lower bound

log s ′ i s i + s i s ′ i -1 + l i (t i , t ′ i ) s ′ i ≥ log 1 + l i (t i , t ′ i ) s i .
By Definition (29) of l i (., .) the quantity

l i (t i , t ′ i ) is lower bounded by [ϕ max (Ω)] -1 t i -t ′ i 2 l2
. By assumption, [ϕ max (Ω)] -1 is larger than 1/2 for any Ω ∈ Υ. Moreover, s i is smaller than 2. We conclude that for any Ω ∈ Υ and any positive matrix Ω ′ , the following lower bound holds

2K (Ω; Ω ′ ) ≥ i∈A log 1 + t i -t ′ i 2 l2 4 + i∈A c s i s ′ i -log s i s ′ i -1 = d(Ω, Ω ′ ) .
We conclude by gathering this last bound with (17) and setting κ 1 := κ and κ 2 := L -1 (1κ)/2.

Adaptive banding

In order to compute the minimax rates of estimation over ellipsoids, we first need to consider a lower bound over the sets T ord [k 

T ord [k 1 , . . . , k p , r] := T ∈ T rig(p) s.t. ∀ 2 ≤ i ≤ p, T [i, j] = 0 if 1 ≤ j ≤ i -k i -1 0 or r if i -k i ≤ j ≤ i -1 , (18) 
U ord [k 1 , . . . , k p , r] := T * S -1 T , T ∈ T ord [k 1 , . . . , k p , r] and S ∈ Diag(p) . (19) 
The set T ord [k 1 , . . . , k p , r] contains lower triangular matrices with unit diagonal such that for each line i between 2 and p, the support of the vector (T

[i, j]) 1≤j≤i-1 is included in {i-k i , i-k i + 1, . . . , i-1}.
We are able to lower bound the minimax rates of estimation over

U ord [(k 1 , . . . , k p ), r]. Proposition 3.5. Assume that k := 1 ∨ max 1≤i≤p k i is smaller than √ n. Then, inf Ω sup Ω∈U ord [(k1,...,kp),r] E K Ω; Ω ≥ L p i=2 k i + p r 2 ∧ 1 n
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These minimax rates of estimation are not really surprising, since they correspond to the minimax rates of estimation of p different parametric regression problems whose minimax rates is known to be of the order k i (r 2 ∧ 1/n). We refer for instance to [START_REF] Massart | Concentration Inequalities and Model Selection, École d'été de probabilités de Saint Flour[END_REF] Prop. 4.8. Moreover, the term p/n is due to the diagonal matrices S in Ω = T * S -1 T . We believe that the assumption "k is smaller than √ n" is not necessary but we do not know how to remove it.

Proof of Proposition 5.3

The lower bound (17) is a consequence of Proposition 3.5. Let k be a positive integer smaller than 

⌊ √ n⌋ ∧ (p -1). Given some 0 < r < a 2 k R 2 /k,
T [i, i -j] 2 a 2 j = k j=1 T [i, i -j] 2 a 2 j ≤ kr 2 /a 2 k ≤ R 2 .
Hence, the set U ord [0, 1, . . . , k -1, k, . . . , k, r] is included in E(a, R, p). By Proposition 3.5, we obtain the minimax lower bound.

inf

Ω sup Ω∈E(a,R,p) E K Ω; Ω ≥ Lp(k + 1) a 2 k R 2 k ∧ 1 n ≥ Lp a 2 k R 2 ∧ k + 1 n .
Similarly if k = 0, the set U ord [0, . . . , 0, +∞] is included in E(a, R, p) and the minimax rates of estimation over E(a, R, p) is lower bounded by Lp(a 0 R 2 ∧ 1/n) with the convention a 0 = +∞. Taking the infimum for all non-positive integers k smaller than ⌊ √ n⌋∧(p-1) yields the first result.

Let us now turn to the second part of the proposition. We fix some γ > 2. The matrices Ω considered in the proof of Proposition 3.5 for bounding the minimax rates of estimation over sets of the type U ord [0, 1, . . . , k -1, k, . . . , k, r] have their eigenvalues between 1/2 and 2. Hence, the previous lower bound still holds and we get inf

Ω sup Ω∈E(a,R,p)∩Bop(γ) E K Ω; Ω ≥ Lp sup k=0,...,⌊ √ n⌋∧(p-1)
a 2 k R 2 ∧ k + 1 n . ( 20 
)
Let k be a non-negative integer smaller or equal to d∧(p-1), where d is the maximal dimension of the models defining the estimator Ω d ord . We consider the model m ∈ M d ord defined by m := (∅, {1}, . . . , {i -1, . . . , i -k}, . . . , {p -1, . . . , p -k}) .

This model corresponds to estimating a k-th banded Cholesky factor. By Corollary 5.1, the risk of Ω d ord is upper bounded by

E K Ω; Ω d ord ≤ L K,η p(k + 1) n + K (Ω; Ω m ) + τ n (Ω, K, η) . (21) 
Let us upper bound the bias term K (Ω; Ω m ). By Equation (31), it decomposes as

2K (Ω; Ω m ) = p i=1 s i s i,mi -log s i s i,mi -1 + l i (t i , t i,mi ) s i,mi = p i=1 log 1 + l i (t i , t i,mi ) s i ≤ p i=1 l i (t i , t i,mi ) s i ,
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since we have mentioned in the proof of Lemma 3.2 that s i,mi = s i + l i (t i , t i,mi ). Let i be an integer between k + 2 and p (if there exists one). We define t P i,mi as the orthogonal projection of t i with respect to the Euclidean norm in R i-1 . Since Ω belongs to B op (γ), it follows that s i is larger than 1/γ and that the largest eigenvalue of ϕ max (Ω -1 ) ≤ γ. Hence, we obtain that

l i (t i , t i,mi ) s i ≤ γl i (t i , t i,mi ) ≤ γ 2   i-1 j=1 t i [i -j] -t P i,mi [i -j] ) 2   = γ 2   i-1 j=k+1 t 2 i [i -j]   ≤ γ 2 a 2 k+1 R 2 . If i ≤ k + 2, then l i (t i , t i,mi ) = 0.
Combining this upper bound with (21), we get

E K Ω; Ω d ord ≤ L K,η,γ p (k + 1) n + a k+1 R 2 + τ n (Ω, K, η) .
Let us note (ϕ 1 (Ω), . . . , ϕ p (Ω)) the eigenvalues of Ω. Since Ω belong to B op (γ),

2K(Ω; I p )/p = 1/p p i=1 [ϕ i (Ω) -log (ϕ i (Ω)) -1] ≤ [ϕ min (Ω) -log (ϕ min (Ω)) -1] ∨ [ϕ max (Ω) -log (ϕ max (Ω)) -1] ≤ L γ .
Hence, the term τ n (Ω, K, η) is smaller than some L K,η,γ p/n. For n larger than some universal constant, the largest dimension d in the model collection that defines Ω d ord is larger than ⌊ √ n⌋. Taking the infimum over k in 0, . . . , ⌊ √ n⌋ ∧ (p -1), we conclude that

E K Ω; Ω d ord ≤ L K,η,γ,β p inf k=1,...,⌊ √ n⌋∧(p-1)
a 2 k+1 R 2 + k + 1 n .

Let us define d

* := sup d ′ ≥ 0 s.t. (d ′ + 1)/n ≤ a d ′ R 2 .
By assumption, d * is smaller or equal to ⌊ √ n⌋. Hence,

E K Ω; Ω d ord ≤ L K,η,γ,β p a 2 d * +1 R 2 + d * + 1 n ≤ L K,η,γ,β inf Ω sup Ω∈E(a,R,p)∩Bop(γ) E K Ω; Ω ,
thanks to Equation (20).

Proof of Proposition 3.5

Given r > 0, let the diagonal elements of T * T lie between 1 and 1 + kr 2 . Besides, the sum of the absolute values of the off-diagonal elements on each line is upper bounded as follows.

T ′ ord [k 1 , . . . , k p ,
j =i |T * T [i, j]| = p l=1 j =i |T [l, i]T [l, j]| ≤ j =i T [i, j] + j =i T [j, i] + j =i j =l =i T [l, i]T [l, j] ≤ 2kr + k 2 r 2 .
If r is smaller than 1/(8k), the matrices T * T are diagonally dominant and their eigenvalues lie between 5/8 and 1.3. Let us choose the subset A of {1, . . . , p} defined by A := {i, k i > 0}. Then, we introduce the subset S[A, p, r] as

S[A, p, r] := {S ∈ Diag(p), S[i, i] = 1 if i ∈ A and S[i, i] = 1 or 1 + r if i ∈ A c } .
Applying again Lemma 3. 

Ω = T * S -1 T and Ω ′ = T ′ * S ′-1 T ′ of U ′ ord [k 1 , . . . , k p , r]. 2K (Ω; Ω ′ ) = i∈A l i (t i , t ′ i ) s ′ i + i∈A c s i s ′ i + log s i s ′ i -1 . If i ∈ A, then s ′ i = 1. Besides, l i (t i , t ′ i ) ≤ [ϕ min (Ω)] -1 t i -t ′ i 2 l2 ≤ 2k i r 2 .
Recalling that the function f is defined by f (x) = xlog x -1 and that r ≤ 1/8, straightforward computations lead to f (s ′ i /s i ) ≤ Lr 2 . Hence, for any (Ω 1 , Ω 2 ) ∈ U ′ ord [k 1 , . . . , k p , r], it holds that

K P ⊗n Ω1 ; P ⊗n Ω2 ≤ L p + p i=2 k i r 2 .
Moreover, we have f 

(1 + r) ≥ Lr 2 and f [(1 + r) -1 ] ≥ Lr 2 since f (1 + x) = x 2 /2 + o(x 2 ) and r ≤ 1/8. If Ω 1 = Ω 2 , then d(Ω 1 , Ω 2 ) is lower bounded as follows d(Ω 1 , Ω 2 ) ≥ i∈A log 1 + k i r 2 16 + |A c | 4 [f (1 + r) ∧ f (1/(1 + r))] ≥ L i∈A k i + |A c | r 2 ≥ L p i=1 k i + p r
E K Ω; Ω ≥ L p i=2 k i + p r 2 ∧ 1 n ∧ 1 k 2 .
By assumption, 1/k 2 is larger than 1/n and the result follows. 

K T * T ; Ω ≥ Lkp r 2 ∧ 1 + log p k n . ( 22 
)
We believe that the condition n ≥ Lk 2 [1+log(p/k)] is essentially technical but we do not know how to remove it. Thanks to Corollary 6.1, we can easily derive the minimax rates of estimation over the sets U 1 [k, p]. Let us first provide the proof of Proposition 3.6 and then derive the proof of Proposition 6.2.

Proof of Proposition 3.6. Assume first that k is a power of 2, that 2k divides p and that log(p/k) ≥ 19. Let us consider the set T

1 [k, p, r] of lower triangular square matrices T of size p such that: 1. the diagonal of T is made of 1, 2. the lower left submatrix of T of size p/2 contains exactly k entries that equal r on each line and on each column, 3. every other entry of T is zero.

Clearly, T

1 [k, p, r] is in one to one correspondence with the set Θ[k, p/2] of binary square matrices of size p/2 that contain exactly k non-zero coefficients on each line and each column.

Consider T ∈ T (1)
1 [k, p, r]. We claim that as long as r is smaller than 1/8k, the eigenvalues of T * T are between 1/2 and 2. Indeed, the diagonal elements of T * T are all between 1 and 1 + kr 2 . Besides, the sum of the off-diagonal elements is upper bounded by

j =i |T * T [i, j]| = p l=1 j =i |T [l, i]T [l, j]| ≤ j =i T [i, j] + j =i T [j, i] + j =i j =l =i T [l, i]T [l, j] ≤ 2kr + k 2 r 2 .
Hence, if r ≤ 1/8k, the matrix T is diagonally dominant and the sum of the off diagonal terms is smaller than 3/8 whereas the diagonal term is between 1 and 1 + 1/8. Let T and T ′ be two elements of T 

2K (T

* T ; T ′ * T ′ ) = p i=1 l i (t i , t ′ i ) ≤ p i=p/2+1 ϕ max (T * T ) t i -t ′ i 2 l2 ≤ 4kpr 2 . ( 23 
The proof of this lemma is postponed to the end of this subsection. By Lemma 3.7, there exists some subset

T (2) 1 [k, p, r] of T (1) 1 [k, p, r] such that d H (T, T ′ ) ≥ pk/4 for every (T, T ′ ) ∈ T (2) 1 [k, p, r] with T = T ′ and log |T (2) 1 [k, p, r]| ≥ kp/20 log p k . ( 25 
)
Let us take A = {1, . . . p} and let us consider the function d(., .) defined in Lemma 3.2. Observe that 2kr 2 ≤ 1/32 since r ≤ 1/(8k). By the mean value theorem, we obtain that log(1+x/4) ≥ x/8 for any positive number x smaller than 2kr 2 . Hence, we get

d(T * T, T ′ * T ′ ) = p i=1 log 1 + d H (t i , t ′ i )r 2 4 ≥ p i=1 d H (t i , t ′ i )r 2 8 ≥ d H (T, T ′ ) r 2 8 ≥ pkr 2 32 , (26) 
for any T = T ′ in T inf

Ω sup T ∈T (1) 1 [k,p,r] E K T * T ; Ω ≥ κ 2 64 pkr 2 ,
as long as 2kpnr 2 ≤ κ 1 kp/20 log (p/k) and r ≤ 1/8k. This yields inf

Ω sup T ∈T1[k,p,r] E K T * T ; Ω ≥ Lpk r 2 ∧ log p k n ≥ Lpk r 2 ∧ 1 + log p k n , since n ≥ k 2 [1 + log(p/k)] and log(p/k) ≥ 19.
We now turn to the case where k is not a power of 2 or 2k does not divide p. We only assume that log(p/k) is larger than 19 + log [START_REF] Baraud | Adaptative tests of linear hypotheses by model selection[END_REF]. Let us define k ′ := 2 ⌊log 2 k⌋ and p ′ as the largest integer that is divided by 2k ′ and is smaller than p. Here log 2 refers to the function log(.)/ log [START_REF] Baraud | Adaptative tests of linear hypotheses by model selection[END_REF]

. It follows that k/2 ≤ k ′ ≤ k and p/2 ≤ p ′ ≤ p. Consequently, log(p ′ /k ′ ) is larger than log(p/2k) ≥ 19. Let T (1)
1 [k ′ , p ′ , p, r] denote the set of lower triangular matrices T such that the diagonal elements of T equal 1, the lower left submatrix of T of size p ′ /2 contains exactly k ′ entries that equal r on each line and on each column and such that every other entry of T is zero. Arguing as in the first case, we obtain that inf

Ω sup T ∈T1[k,p,r] E K T * T ; Ω ≥ Lp ′ k ′   r 2 ∧ 1 + log p ′ k ′ n   ≥ Lpk r 2 ∧ 1 + log p k n .
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Finally, we consider the situation where the ratio log(p/k) is smaller than 19 + log [START_REF] Baraud | Adaptative tests of linear hypotheses by model selection[END_REF]. The set T ord [(0, 1, . . . , k -1, k, . . . , k), r] is included in T 1 [k, p, r]. If we choose the set A to be {1, . . . , p}, then a slight modification in the proof of Proposition 3.5 allows to show the minimax lower bound:

inf 

Ω sup T ∈T ord [(0,...,k,...,k),r] K T * T ; Ω ≥ Lkp r 2 ∧ 1 n , as long as k ≤ √ n. Hence, it follows that inf Ω sup T ∈T1[k,p,r] K T * T ; Ω ≥ Lkp r 2 ∧ 1 n ≥ Lkp r 2 ∧ 1 + log p k n ,
E K T * T ; Ω ≥ Lkp r 2 ∧ 1 + log(p/k) n ≥ Lkp 1 + log(p/k) n ,
since n ≥ k 2 (1 + log(p/k). Moreover, we have mentioned that for any matrix T in T

1 [k, p, r], ϕ min (T * T ) ≥ 1/2. Let us now upper bound the Kullback divergence with the identity matrix.

K (T * T ; I p ) ≤ 1 2 p i=2 l i (t i , 0 i-1 ) ≤ ϕ -1 min (T * T ) 2 T -I p 2 F ≤ kpr 2 ≤ p ≤ pn β .
Hence, the set {T * T, T ∈ T

(1)

1 [k, p, r]} is included in U 1 [k, p] ∩ B K (n β
) and the lower bound follows.

The case where k is not a power of 2 or 2k does not divide p is handled similarly if one uses the set T Let us turn to the upper bound on the risk. By Corollary 6.1, the estimator Ω d co satisfies

E K Ω; Ω d co ≤ L K,η pk 1 + log p k n + L K,η pn 5/2 [1 + K(Ω; I p )] exp [-nL K,η ] ≤ L K,η,β pk 1 + log p k n , for any Ω ∈ U 1 [k, p] ∩ B K (n β
). We conclude by gathering the lower and the upper bounds. 

|T (2) 2 [k, p, r 2 ]| ≥ k log(p)/10. We now define the subset U ′ 2 [k, p, r 1 , r 2 ] of U 2 [k, p] by U ′ 2 [k, p, r 1 , r 2 ] := Ω = T * S -1 T , T ∈ T (2) 2 [k, p, r 2 ] and S ∈ S ′ [A c , p, r 1 ] .
In order to apply Lemma 3. T and S correspond to the Cholesky decomposition of Ω. Straightforward computations allow to prove that each diagonal element of T * T is between 1 and 1+r 2 2 and the sum of the absolute value of the off-diagonal elements of T * T on each line is smaller than 2r 2 . Hence, T * T is diagonally dominant and ϕ max (T * T ) ≤ (1 + r 2 ) 2 and ϕ min (T * T ) ≥ 1 -2r 2 . Since r 2 is constrained to be smaller than 1/8 than the eigenvalues of T * T are between 3/4 and 3/2. The eigenvalues of S are between 1 and 5/4, because r 1 is constrained to be smaller than 1/4. The eigenvalues of Ω are bounded as follows: ϕ max (Ω) ≤ ϕ max (T * T )ϕ max (S -1 ) and ϕ min (Ω) ≥ ϕ min (T * T )ϕ min (S -1 ). Hence, we conclude that the eigenvalues of Ω are between 1/2 and 2. 

Let us now lower bound

d(Ω, Ω ′ ) if Ω = Ω ′ . The quantity d H (t i , t ′ i )r
2 [k, p, r 2 ] and S ′ [A c , p, r 1 ], we get

d(Ω, Ω ′ ) = p-k i=1 f s i s ′ i + k i=p-k+1 log 1 + d H (t i , t ′ i )r 2 2 4 ≥ p -k 4 [f (1 + r 1 ) ∧ f (1/(1 + r 1 ))] + d H (T, T ′ )r 2 2 8 ≥ L (p -k)r 2 1 + k log(p)r 2 2 ≥ L pr 2 1 + k log(p)r 2 2 ,
since k is assumed to be smaller than p/2.

Let us upper bound the Kullback divergence between two element Ω and Ω

′ in U ′ 2 [k, p, r 1 , r 2 ] 2K (Ω; Ω ′ ) = p i=1 s i s ′ i -log s i s ′ i -1 + l i (t i , t ′ i ) s ′ i = p-k i=1 s i s ′ i -log s i s ′ i -1 + k i=p-k+1 l i (t i , t ′ i ) .
Since the smallest eigenvalue of Ω is smaller than 1/2, it follows that

l i (t i .t ′ i ) is smaller than 2 t i -t ′ i 2
l2 which is smaller than 4r 2 2 by definition of T

2 [k, p, r 2 ]. Let us recall that the function f defined by f (x) = x -1log(x) is positive and equivalent to (x -1) 2 when x is close to one. Since r 1 is smaller than 1/4, there exists some numerical constant L such that f

(s i /s ′ i ) ≤ Lr 2 1 .
All in all, we obtain the upper bound

K (Ω; Ω ′ ) ≤ L (p -k)r 2 1 + kr 2 2 ≤ L pr 2 1 + kr 2 2 .
4. Finally, we lower bound the cardinality of

U ′ 2 [k, p, r 1 , r 2 ]. log |U ′ 2 [k, p, r 1 , r 2 ]| ≥ p -k 8 + k log p 8 ≥ L [p + k log(p)] .
Applying Lemma 3.2, we conclude that inf

Ω sup Ω∈U ′ 2 [k,p,r1,r2] E K Ω; Ω ≥ L pr 2 1 + k log(p)r 2 2 ,
provided that r 1 ≤ 1/4, r 2 ≤ 1/8, and n pr

2 1 + kr 2 2 ≤ L 1 [p + k log(p)]. Choosing r 2 1 = 1/16 ∧ (L 1 ∧ 1)/n and r 2 2 = 1/64 ∧ (L 1 ∧ 1) log(p)/n yields inf Ω sup Ω∈U ′ 2 [k,p,r1,r2] E K Ω; Ω ≥ L p + k log p n ,
since we assume that n ≥ log(p). Let us now prove that the set

U ′ 2 [k, p, r 1 , r 2 ] is included in B K (1). K (Ω; I p ) ≤ [ϕ min (Ω)] -1 kr 2 2 2 + p -k 2 f (1 + r 1 ) ≤ k log p n + p -k ≤ p ,
since f (5/4) ≤ 1 and n ≥ log(p). Hence, the following minimax lower bound also holds inf

Ω sup Ω∈U2[k,p]∩BK(n β ) E K Ω; Ω ≥ L p + k log p n .
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If log p ≤ 21, we consider the set U ord [0, . . . , 0, 1, . . . , 1, r] where there are pk times 0 and k times 1. It is included in U 2 [k, p] and by Proposition 3.5, we conclude that inf

Ω sup Ω∈U2[k,p] E K Ω; Ω ≥ L p + k n ≥ L p + k log p n ,
since log p ≤ 21. Besides, one can prove that the set U ord [0, . . . , 0, 1, . . . , 

1, r] is included in B K (1) if r is smaller than 1/ √ n ∧ 1/8.
|Θ[k, p/2]| ≤ x∈Θ ′ [k,p/2] B H x, 0.5k p 2 .
The balls B H (x, kp/4) can also be considered as subsets of the set {0, 1}

(p/2) 2
kp/2 of binary sequences of size (p/2) 2 with exactly kp/2 non-zero coefficients. In the proof of Lemma 4.10 in [START_REF] Massart | Concentration Inequalities and Model Selection, École d'été de probabilités de Saint Flour[END_REF] For any symmetric matrix A, we denote {ϕ i (A)} 1≤i≤pn the set of its eigenvalues. Since x-log x-1 is equivalent to (x-1) 2 when x goes to one, the Kullback-Leibler divergence K (Ω; Ω ′ ) decomposes imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 as

K (Ω; Ω ′ ) = 1 2 [tr (Ω ′ Σ) -log (|Ω ′ Σ|) -p n ] = 1 2 pn i=1 ϕ i √ ΣΩ ′ √ Σ -log ϕ i √ ΣΩ ′ √ Σ -1 = 1 4 pn i=1 ϕ i √ ΣΩ ′ √ Σ -1 2 + o [K (Ω; Ω ′ )] = 1 4 pn i=1 ϕ 2 i √ ΣΩ ′ √ Σ -I pn + o [K (Ω; Ω ′ )] ,
when K (Ω; Ω ′ ) is close to 0. This last sum corresponds to the Frobenius norm of

√ ΣΩ ′ √ Σ -I pn . Hence, we get √ ΣΩ ′ √ Σ -I pn 2 F = 4 [K (Ω; Ω ′ )] + o [K (Ω; Ω ′ )] , (28) 
when K (Ω; Ω ′ ) is close to 0. Let us come back to the Frobenius distance between Ω ′ and Ω,

Ω ′ -Ω 2 F = tr √ Ω √ ΣΩ ′ √ Σ -I pn Ω √ ΣΩ ′ √ Σ -I pn √ Ω ≤ ϕ 2 max (Ω) √ ΣΩ ′ √ Σ -I pn 2 F .
Gathering this upper bound with the preceding result yields

Ω ′ -Ω 2 F ≤ 4ϕ 2 max (Ω) [K (Ω; Ω ′ ) + o (K (Ω; Ω ′ ))] , (29) 
when K (Ω; Ω ′ ) is close to 0. By Corollary 5.1, the risk of Ω d ord on U ord [k 1 , , . . . , k p , +∞] ∩ B op (γ) is upper bounded

E K Ω; Ω d ord ≤ L K,η p n + pn i=1 k i n + τ n (K, η, Ω) .
The Kullback divergence K (Ω; I pn ) /p n is upper bounded by ϕ max (Ω)∨(log[1/ϕ min (Ω)]-1) ≤ L γ . Hence, the term τ n (K, η, Ω) is upper bounded by L K,η,γ p n /n. We conclude that

E K Ω; Ω d ord ≤ L K,η,γ p n + pn i=1 k i n .
Gathering this upper bound with (29) yields the first result. By Proposition 5.3, we know that

E K Ω; Ω d ord ≤ L K,η,γ p n R 2 2s+1 n -2s 2s+1 ∧ p n n .
We prove the second result using this last bound and (29).

The corresponding minimax lower bounds are proved as Propositions 3.5 and 5.3. Indeed, we consider again the set U ′ ord [k 1 , . . . , k pn , r] defined in the proof of proposition 3.5 with r ≤ (8k) -1 ∧ 1/n. We recall that this set belongs to B op [START_REF] Baraud | Adaptative tests of linear hypotheses by model selection[END_REF]. For any two matrices Ω 1 = Ω 2 in this set,

K(Ω 1 ; Ω 2 ) ≥ 2d(Ω 1 , Ω 2 ) ≥ L pn i=1 k i + p n r 2 ,
imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 where d(., .) is introduced in Lemma 3.2. The second lower bound is given at the end of the proof of Proposition 3.5. We also have stated the converse upper bound

K(Ω 1 ; Ω 2 ) ≤ L pn i=1 k i + p n r 2 .
Arguing as previously, we connect the Frobenius distance between Ω 1 and Ω 2 with the Kullback entropy.

Ω 1 -Ω 2 2 F ≥ ϕ 2 min (Ω 1 ) Ω 1 -1 Ω 2 Ω 1 -1 -I pn 2 F ≥ 4ϕ 2 min (Ω 1 ) K (Ω 1 ; Ω 2 ) + o [K (Ω 1 ; Ω 2 )] ≥ K (Ω 1 ; Ω 2 ) + o [K (Ω 1 ; Ω 2 )] ,
because ϕ min (Ω 1 ) is larger than 1/2. Since r 2 is assumed to be smaller than 1/n and since pn i=1 k i + p n = o(n), K (Ω 1 ; Ω 2 ) goes to 0 when n goes to infinity. Hence, for n sufficiently large,

Ω 1 -Ω 2 2 F ≥ 1 2 K (Ω 1 ; Ω 2 ) ≥ L pn i=1 k i + p n r 2 . Applying suitably Lemma 3.3 yields inf θ sup Ω∈U ord [k1,...,kp n ,r]∩Bop(γ) E Ω -Ω 2 F ≥ L pn i=1 k i + p n r 2 ∧ 1 n ,
as long as n is large enough. This proves the first minimax lower bound.

Let us define k n := (R 2 n) 

E Ω -Ω 2 F ≥ L p n k n n ≥ Lp n R n s 2 2s+1 ∧ p n -1 n ,
for n large enough.

Proof of Corollary 6.3

From the previous proof, we know that for any estimator Ω such that K(Ω;

Ω) = o P (1) satisfies Ω -Ω 2 F = O P [K(Ω; Ω)].
Let us apply Corollary 6.1:

E K Ω; Ω ≤ L K,η (k n + 1) log p n n + L K,η n 5/2 [p + K (Ω; I pn )] exp [-nL K,η ] . The Kullback divergence K (Ω; I pn ) is upper bounded by p n [ϕ max (Ω) ∨ (log[1/ϕ min (Ω)] -1)].
Hence, we get

E K Ω; Ω ≤ L K,η,γ p n + k n log p n n [1 + o(1)] .
Gathering this last upper bound with (28) yields the first result. Since the Frobenius norm dominates the operator norm, the second result follows.

The corresponding asymptotic minimax lower bound is proved as Proposition 6.2 using again the lower bound of the Frobenius distance Ω-Ω 

I d = +∞ 0 log(2t)e -t t d/2-1 Γ(d/2) dt = 0 + +∞ 0 e -t t d/2-2 1 + log(2t)(d/2 -1) Γ(d/2) = 1 d/2 -1 + I d-2 .
Hence, we only have to work out I 1 and I 2 in order to compute I d .

I 2 = log(2) + Γ ′ (1)/Γ(1) = log(2) -γ , I 1 = log(2) + Γ ′ (1/2)/Γ(1/2) = -log(2) -γ ,
where γ is the Euler constant. For any positive integer d, we therefore derive that

Ψ(2d) = d-1 i=1 1 i -γ -log(d) , Ψ(2d + 1) = d i=1 2 2i -1 -γ -2 log(2) -log(d + 1/2) .
Using the asymptotic expansion of the harmonic series yields Ψ(2d) = -1/(2d) + O 1/(2d) 2 . We note h(d) the d-th partial sum of harmonic series. Straightforwards computations lead to

Ψ(2d + 1) = 2h(2d) -h(d) -γ -2 log(2) -log(d + 1/2) = O 1 d 2 + log d d + 1/2 = -1 2d + 1 + O 1 (2d) 2 .
Thus, we obtain the asymptotic expansion Ψ(d) = -1/d + O 1/d 2 . Let us turn to the lower bound. From now on, we assume that d ≥ 3. We define the sequence v d by v d := Ψ(d) + 1/(d -2). We know that v d converges to 0 when d goes to infinity. Let us prove that the subsequences (v 2d ) d>1 and (v 2d+1 ) d≥1 are decreasing. Since log(1x) ≤ -xx 2 /2 for any 0 ≤ x < 1,

v 2d+2 -v 2d = 3 2d - 1 2d -2 + log 1 - 1 d + 1 ≤ 1 d - 1 2d(d -1) - 1 d + 1 - 1 2(d + 1) 2 ≤ 1 2d(d + 1) 2 - 1 d(d + 1)(d -1) < 0 .
Analogously, we compute

v 2d+1 -v 2d-1 = 3 2d -1 - 1 2d -3 + log 1 - 2 2d + 1 ≤ 4 (2d -1)(2d + 1) 2 - 8 (2d -3)(2d -1)(2d + 1) < 0 .
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We conclude that v d is non-negative for any d ≥ 3. It follows that Ψ(d) ≥ -1/(d -2).

Proof of Proposition 7.2

For the sake of clarity, we forget the subscript p -1 and p in the collection of models M, the penalty pen(.) and the vector t.

The proof is divided in two steps. First, we explain why the "true" model m * belongs to M with high probability. Then, we prove that m * minimizes the penalized criterion over the whole collection M D co with high probability. The matrix Σ 1:(p-1) refers to the submatrix of Σ where the last line and the last column are removed.

The restricted eigenvalues of order q * of the matrix Σ 1:(p-1) lie between c * and c * . Define

Z = X 1:(p-1) √ Σ - 1 
1:(p-1) . The matrix Z follows a standard Wishart distribution with parameters n and p -1. Let us define V = ∪ |A|=q * ∪ supp(u)=A √ Σu as the images of q * -sparse vectors by √ Σ. The set V is the union (p-1)

q * subspaces of of dimension q * . Let us call V 1 one of these subspaces. By Theorem 2.13 in [START_REF] Davidson | Handbook of the geometry of Banach spaces[END_REF], it holds that

1/2 ≤ u * Z * Zu nu * u ≤ 2, ∀u ∈ V 1 with probability larger than 2 exp[-n(1-1/ √ 2-q * /n)].
Applying an union bound, we conclude that

c * /2 ≤ u * √ ΣZ * Z √ Σ A u nu * u ≤ 2c * ,
∀A with |A| = q * and u ∈ R q * , with probability going to one. Hence, the empirical design X 1:(p-1) satisfies a sparse Riesz condition of order q * with spectrum bounds c * /2 and 2c * with probability going to 1.

We will apply Theorem 2 in [START_REF] Zhang | The sparsity and bias of the LASSO selection in highdimensional linear regression[END_REF]. In order to check the assumptions of this theorem, we shortly use the notations of Zhang and Huang (See Section 2 in [START_REF] Zhang | The sparsity and bias of the LASSO selection in highdimensional linear regression[END_REF]). Since t is q-sparse, we have η 1 = η 2 = 0. Moreover, M * 1 and M * 3 only depend on c * and c * . As p is large, we can take λ = 4 √ 2c * s log(p)n. By Theorem 2 in [START_REF] Zhang | The sparsity and bias of the LASSO selection in highdimensional linear regression[END_REF], the Lasso estimator t λ selects all non-zero coefficients of t and selects no more than (M * 1 -1)q other variables with high probability. We conclude that m * belongs to M with probability going to one.

The notations o(1), O(1) respectively refer to sequences that converge to 0 or stay bounded when n goes to infinity. These sequences may depend on K, but do not depend on m * , on the true covariance Σ, or a particular model m. Let us turn to A 2 . Consider u ∈ (0, 1) and let F -1 D,N (u) denote the 1u quantile of a Fisher random variable with D and N degrees of freedom. By Lemma 1 in [START_REF] Baraud | Adaptative tests of linear hypotheses by model selection[END_REF], it holds that

DF -1 D,N (u) ≤ D + 2 D 1 + 2 D N log 1 u + 1 + 2 D N N 2 exp 4 N log 1 u -1 .
Let us set u to

u = p -2 p -q |m \ m * | -1 .
Applying the inequality r s ≤ s log(er/s), we get the upper bound 

A 2 = F -

  , p, r]. Let us upper bound the Kullback entropy between the corresponding precision matrices.

  , p, r]. We are now in position to apply Lemma 3.2 to T (2) 1 [k, p, r] with the bounds (23), (25), and (26).

  ′ , p ′ , p, r] defined in the proof of Proposition 3.6. Finally, one uses the set T ord [(0, . . . , k, . . . , k), r] if log(p/k) ≤ 19 + log(2).

2 ,

 2 we need to bound the eigenvalues of the matrices in U ′ 2 [k, p, r 1 , r 2 ], lower bound the function d(., .) defined in (13), upper bound the Kullback divergence between elements of U ′ 2 [k, p, r 1 , r 2 ], and lower bound the cardinality of U ′ 2 [k, p, r 1 , r 2 ]. 1. Let us first bound the smallest and the largest eigenvalues of the matrices Ω in this set. Let

4 .

 4 /b) b and a! ≥ (a/e) a . Hence, we obtain log |Θ 2 [k, ⌊p/2⌋]| ≥ log ⌊p/2⌋ k + log(k!) ≥ k log ⌊p/2⌋ e . Let us combine the previous bounds and and let us apply the inequality a b ≤ (ae/b) b which holds for any positive integer a and b. Hence, we get log |Θ ′ 2 [k, ⌊p/2⌋]| ≥ ρk log (⌊p/2⌋) -2k ≥ k [ρ log(p)ρ log(4) -2] ≥ ρk 2 log(p) , since log(p) ≥ 21. Proof of the Frobenius bounds 4.1. Proof of Corollary 5.4

⊥ m X p 2 nX p 2 n

 22 For any model m of size smaller than D, let us define ∆(m, m * ) := Π e pen(m) -Π ⊥ m * e pen(m * ) , where the notation Π ⊥ m is defined in Section 10.1. Observe that m = m * if ∆(m, m * ) is positive for any model m.

CASE 1 :

 1 m * m. We have ∆(m, m * ) ≥ 0 if Π m ⊥ * ∩m ǫ 2 n /|m \ m * | Π ⊥ m ǫ 2 n /(n -|m|) ≤ e pen(|m|)e pen(q) (n -|m|) |m \ m * |e pen(q)(30)imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010Let us call A 1 and A 2 the right and the left expression of (30). By definition (21) of the penalty, we derive thatA 1 ≥ 2K log p |m| (1 + o(1)) ,(31)since q log(p)/n goes to 0 and p/|m| goes to infinity (uniformly with respect to m such m ≤ D = n/ log 2 (p).

  by Assumption H K,η and since n ≥ 17. Let us turn to R 4,2 ( m). We apply Hölder's inequality with v := ⌊n/8⌋ and u = v/(v -1).

	since |m| ≤ n/2
	) ,
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.

  Since v is smaller than n/8 and since |m| is smaller than n/2 it follows that n -|m| -2v is larger than n/4. Hence, we can apply Lemma 2.1 to any model m ∈ M.

  we consider the set U ord [0, 1, . . . , k -1, k, . . . , k, r]. Let (T, S) refer to the Cholesky decomposition of a matrix Ω belonging to this set. By definition of U ord ,

	i-1
	j=1

  r] be a maximal subset of T ord [k 1 , . . . , k p , r] which satisfies the property: "for any two different elements T andT ′ of T ′ ord [k 1 , . . . , k p ,r], the Hamming distance d H (T, T ′ ) is larger than 1≤i≤p k i /4". By Lemma 3.1, there exists such a set T ′ ord [k 1 , . . . , k p , r] which satisfies log |T ′ ord [k 1 , . . . , k p , r]| ≥ 2≤i≤p k i /8. Let T be a matrix in T ′ ord [k 1 , . . . , k p , r]. Standard computations allow to prove that
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  1, we define a subset S ′ [A, p, r] of S[A, p, r] such that log |S ′ [A, p, r]| ≥ log (|A c |) /8 and such that its elements are |A c |/4-separated with respect to the Hamming distance. If r is smaller than 0.5, then the eigenvalues of any matrix in S ′ [A, p, r] are between 1 and 1.5. Finally, we define the set U ′ ord [k 1 , . . . , k p , r] as U ′

ord [k 1 , . . . , k p , r] := {T * ST, T ∈ T ′ ord [k 1 , . . . , k p , r] and S ∈ S ′ [A, p, r]} . We therefore lower bound its cardinality log |U ′ ord [k 1 , . . . , k p , r]| ≥ |A c | + p i=1 k i /8 ≥ p + p i=1 k i /16 . Moreover, if r ≤ 1/(8k), the eigenvalues of any matrix in this set are between 1/2 and 2. Let us upper bound the Kullback entropy between any two elements

  Let T ∈ T 1 [k, p, r] be the set of lower triangular matrices of size p with a unit diagonal and such that each line contains at most k non-zero off-diagonal entries. These entries are also smaller than r in absolute value. We first provide a minimax lower bound on the minimax risk over T ∈ T 1 [k, p, r]. Let k and p be two positive integers such that k ≤ p. Assume that n ≥ Lk 2 [1 + log(p/k)], where L is some universal constant exhibited in the proof. Then, for any r > 0, the minimax rates of estimation over the set T 1 [k, p, r] is lower bounded as follows

	Proposition 3.6. inf	sup
	Ω	T ∈T1[k,p,r]

imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 3.3. Complete graph selection (proof of Proposition 6.2) 3.3.1. First case: minimax rate over U 1 (k, p)

  Assume that log(p/k) ≥ 19. Let Θ[k, p/2] be equipped with Hamming distance d H . There exists some subset Θ ′ [k, p/2] of Θ[k, p/2] with the following properties d H (θ, θ ′ ) > pk/4 for every (θ, θ ′ ) ∈ Θ ′2 with θ = θ ′ and log |Θ ′ | ≥ kp/20 log p k .

)

imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 Lemma 3.7.

  This proof follows the same sketch as the proof of Proposition 3.6. Let k be an integer smaller than p/2. It is sufficient to prove the result (25) for all k smaller than p/2 since this lower bound holds up to a multiplicative numerical constant. Assume first that log(p) ≥ 21.Let us take A := {pk + 1, . . . , p}. We need to build a suitable subset of U 2 [k, p] that is well separated with respect to the function d(., .) introduced in Lemma 3.2. Let r 1 and r 2 be two positive numbers respectively smaller than 1/4 and 1/8. We shall fix them later.Let us introduce the set S[A c , p, r 1 ] of diagonal matrices S such thatS[i, i] = 1 if i ∈ A and S[i, i] is either 1 or 1 + r 1 if i ∈ A c. The cardinality of this set is 2 |A c | . Applying Lemma 3.1, there exists a subset S ′ [A c , p, r 1 ] that satisfies log |S ′ [A c , p, r 1 ]| ≥ |A c |/8 and such that any two elements of S ′ [A c , p, r 1 ] are |A c |/4 separated with respect to the Hamming distance d H . [k, p, r] of lower triangular square matrices T of size p such that:1. the diagonal of T is made of 1, 2. the lower left submatrix of T of size k × ⌊p/2⌋ contains exactly one entry that equals r 2 on each line and at most one on each column. 3. every other entry of T is zero. Lemma 3.8. Assume that log p ≥ 21. There exists some subset T

	(1) 2 (2) Let us consider the set T 2 [k, p, r 2 ] of T 2 [k, p, r 2 ] such (1) (2) 2 [k, p, r 2 ] is larger than k/2 that the Hamming distance between any two different elements of T and such that log

imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 3.3.2. Second case: minimax rate over U 2 (k, p)

  2 2 /4 is smaller than 2. Hence, by the mean value theorem log(1 + d H (t i , t ′ i )r 2 2 /4) is larger than d H (t i , t ′ i )r 2 2 /8. By

imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 definition of the sets T

  Hence, the same minimax lower bound holds on U 2 [k, p] ∩ B K (n β ) 3.3.3. Technical lemmas Proof of Lemma 3.7. Let Θ ′ [k, p/2] be a maximal subset of Θ[k, p/2] which is pk/4-separated with respect to the Hamming distance. Then, the closed Hamming balls B H (x, pk/4) centered at the elements of Θ ′ [k, p/2] and with radius kp/4s are covering Θ[k, p/2]. Hence,

  [k, p, r 2 ] is in one to one correspondence with the set Θ 2 [k, ⌊p/2⌋] of binary matrices of size k × ⌊p/2⌋ with exactly one non-zero entry on each line and at most one on each column. The proof is then quite similar to the proof of Lemma 3.7. Let Θ ′ 2 [k, ⌊p/2⌋] be a maximal subset of Θ 2 [k, ⌊p/2⌋] such that the Hamming distance between any two different elements of Θ ′ 2 [k, ⌊p/2⌋] is larger than k/2. Then, we take the set T The cardinality of Θ 2 [k, ⌊p/2⌋] is ⌊p/2⌋!/(⌊p/2⌋k)!. For any positive integers a and b, it holds

	(1) 2 (2) Proof of Lemma 3.8. The set T 2 [k, p, r 2 ] that corresponds to Θ ′ 2 [k, ⌊p/2⌋].
	Let us lower bound the cardinality of Θ ′ 2 [k, ⌊p/2⌋]. Since the closed Hamming balls with radius k/2 and centered at the elements of Θ ′ 2 [k, ⌊p/2⌋] cover Θ 2 [k, ⌊p/2⌋], we get
	|Θ 2 [k, ⌊p/2⌋]| ≥	x∈Θ ′ 2 [k,⌊p/2⌋]	|B H (x, k/2)| .
	One can consider these balls as subsets of the set {0, 1} with exactly k non-zero coefficients. We use the same lower bound for the Hamming balls as in k⌊p/2⌋ of binary sequence of size k⌊p/2⌋ k
	the previous proof:								
	|B H (x, k/2)| ≤	k⌊p/2⌋ k	(⌊p/2⌋) -ρk ,
	if p ≥ 8. We recall that ρ ≥ 0.23. We can apply this result since log(p) ≥ 21. It follows that , Massart shows that if p ≥ 8k B H x, k p 4 kp/2 2k ≤ (p/2) 2 p -ρk(p/2) log |Θ ′ 2 [k, ⌊p/2⌋]| ≥ ρk log (⌊p/2⌋) + log |Θ 2 [k, ⌊p/2⌋]| -log k⌊p/2⌋ k .
		ρ 2	kp log	p 2k	+ log |Θ[k, p/2]| -log	(p/2) 2 kp/2	.	(27)
										2 s for some integer
	s > 0 and since 2k divides p, one concludes by straightforward induction that
	log |Θ[k, p/2]| ≥ k 2 log |Θ[1, p/(2k)]| .
	Moreover, Θ[1, p/2k] is in correspondence with the set of permutations of p/2k elements. Thus,
	log |Θ[1, p/(2k)]| ≥	p 2k	! ≥		p 2k	log	p 2ek	,
	since a! ≥ (a/e) a for any positive integer a. If follows that log |Θ[k, p/2]| ≥ pk/2 log [p/(2ek)]. In contrast, log (p/2) 2 kp/2 is upper bounded by kp/2 log[pe/(2k)] since a b ≤ (ae/b) b for any
	positive integers a and b. Gathering these bounds with (27) yields
	log |Θ ′ [k, p/2]| ≥	pk 2	ρ log	p k	-ρ log 2 -2 ≥	ρ 4	kp log	p k	,
	since log(p/k) is assumed to be larger than 19 which is larger than 2 log 2 + 4/ρ.
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, where ρ ≥ 0.23. Since we assume that log(p/k) ≥ 19, we can apply this result. If follows that log |Θ ′ [k, p/2]| ≥ Let us now lower bound the cardinality of Θ[k, p/2]. Observe that |Θ[2k, 2p]| ≥ |Θ[k, p]| 4 . Let us indeed cut the square matrix of size 2p into four square matrices of size p. Then, any combination of any four elements of Θ[k, p] yields an unique element of Θ[2k, 2p]. Since k =

  We straightforwardly check as in the proof of Proposition 5.3 that U ord [0, 1, . . . , k n , . . . k n , r n ] is included in E ′ [s, p n , R] ∩ B op[START_REF] Baraud | Adaptative tests of linear hypotheses by model selection[END_REF].

		Using the last minimax lower
	bound, we conclude that
	inf	sup
	θ	Ω∈E ′ [s,pn,R]∩Bop(2)

1/(2s+1) ∧ (p -1) and r n = 1/(8 √ n). Since s > 1/4, k n is smaller than ⌊ √ n⌋ for n large enough.

  2 F in terms of the Kullback divergence K(Ω; Ω).Let d be a positive integer larger than one. By Jensen's inequality, we first notice that Ψ(d) is non-positive. Using the density of a χ 2 (d) distribution, we obtain

	Ψ(d) =	0	+∞	log(t)e -t t d/2-1 2 d/2 Γ(n/2)	dt -log(d) := I d -log(d) ,
	where Γ(.) stands for the Gamma function. Let us exhibit a recurrence relation for I d applying
	integration by parts:				
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  Let us compare the lower bound (31) of A 1 with the upper bound (32) of A 2 .for n large enough since we assume that 2K(1v) > 4.• If |m| > 2|m * |, we also have A 2 ≤ 4 log p |m| (1 + o(1)) < A 1 ,for n large enough since we assume that 2K > 4.It follows from Ineq. (30) and the definition of A 1 and A 2 that P [m * m] ≤ L/p, for n larger than some positive constant that may depend on K, s, but does not depend on m * . imsart-ejs ver. 2010/09/07 file: Appendix.hyper18499.tex date: October 8, 2010 CASE 2: m * m. The random variable n Π ⊥ m X p 2 n /(s + l(t m , t)) follows a χ 2 distribution with n -|m| degrees of freedom. Applying Lemma 1 in [5], we derive that for any model m with probability larger than 1/p. Let us define the random variable E m byE m = Π ⊥ m ǫ, X(tt m ) X(tt m ) 2The quantity ∆(m, m * ) decomposes as∆(m, m * ) ≥ -Π m ǫ 2 n + Π m * ǫ 2 n -2E m +The random variables involved in this last expression follow χ 2 distributions. Applying Lemma 1 in[START_REF] Laurent | Adaptive estimation of a quadratic function by model selection[END_REF], we get that for all m, which is strictly positive for n large enough since K is larger than 24.By Assumptions (H.1) and (H.2) we derive thatl(t m , t) ≥ c * 2 M 2 (K, c * )s q n log(p) .Since M 2 (K, c * ) > 2(K + 12)/c * , ∆(m, m * ) is positive for n large enough.

	1 |m\m * |,n-|m| (u) ≤ ≤ 4 log 2 log m X p 2 n ≥ s 1 -2 |m| log(ep/|m|) + 2 log p p |m \ m * | + 2 2 log(p) |m \ m * | p n = s(1 + o(1)) , + 2 log(p) |m \ m * | with probability larger than 1 -L/p. Similarly, we get that Π ⊥ m * ǫ 2 n ≤ s 1 + 4 log(p) n = s(1 + o(1)) , n 2 n 1 2 Π ⊥ m X(t -t m ) 2 (1 + o(1)) , |m \ m Π ⊥ Π m ǫ 2 n s ≤ 6 |m| n log p [1 + o(1)] |m| E m s ≤ 6 |m| n log p [1 + o(1)] |m| Π ⊥
	s	, m)	≥	l(t m , t) 2s	+ (K -12)	|m| n	log	p |m|	[1 + o(1)] -K	q n	log	p q	[1 + o(1)] . (33)
	CASE 2.CASE 2.B: |m| ≤ 2q. In such a case, we derive from (33) that
				∆(m, m * ) s	≥	l(t m , t) 2s	-(K + 12)	q n	log	p q	[1 + o(1)] .

* | (1 + o(1)) ,

(32)

since |m| log(p)/n ≤ D log(p)/n goes to 0.

Conclusion.

• Let us first assume that |m| ≤ 2q. Then,

A 1 ≥ 2K log p q (1 + o(1)) ≥ 2K(1v) log(p) (1o(1)) , since q ≤ n v / log(p) ≤ p v . Hence, we get A 2 ≤ 4 log p |m \ m * | (1 + o(1)) < A 1 , n + s[1 + o(1)][e pen(m) -1]s[1 + o(1)][e pen(m * ) -1] . m X(tt m ) 2 n ≥ l(t m , t)/2 ,

with probability larger than 1 -L/p. Hence, with probability larger than 1 -L/p, we get ∆(m * A: |m| > 2q. In this case, we lower bound the difference exp(pen(m))exp(pen(m * )) as in (31). Hence, we obtain that

∆(m, m * ) s ≥ [K(|m|q) -12|m|] log p |m| (1 + o(

1
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