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A Loss-Minimization DTC Scheme
for EV Induction Motors

Abdelhakim Haddoun, Mohamed El Hachemi Benbouzid, Senior Member, IEEE,
Demba Diallo, Senior Member, IEEE, Rachid Abdessemed, Jamel Ghouili, and Kamel Srairi

Abstract—This paper proposes a strategy to minimize the losses
of an induction motor propelling an electric vehicle (EV). The
proposed control strategy, which is based on a direct flux and
torque control scheme, utilizes the stator flux as a control variable,
and the flux level is selected in accordance with the torque demand
of the EV to achieve the efficiency-optimized drive performance.
Moreover, among EV’s motor electric propulsion features, the
energy efficiency is a basic characteristic that is influenced by
vehicle dynamics and system architecture. For this reason, the
EV dynamics are taken into account. Simulation tests have been
carried out on a 1.1-kW EV induction motor drive to evaluate
the consistency and the performance of the proposed control
approach.

Index Terms—Direct torque control (DTC), electric vehicle
(EV), induction motor, loss minimization.

I. INTRODUCTION

A S SHOWN in [1], an electric vehicle (EV) drive system
must feature the following:

— high instant power and high power density;
— high torque at low speeds for starting and climbing, as

well as high power at high speed for cruising;
— very wide speed range including constant-torque and

constant-power regions;
— fast torque response;
— high efficiency over wide speed and torque ranges;
— high efficiency for regenerative braking;
— high reliability and robustness for various vehicle-

operating conditions;
— reasonable cost.

The shortcomings, which caused the EV to lose its early
competitive edge, have yet to be totally overcome. Indeed,
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EVs have low energy density and long charging time for the
present batteries. Therefore, optimal energy management is
very important in EVs; in addition, optimum design of the
motor, selection of a proper drive, and optimal control strategy
are the other major factors in EVs.

For EV propulsion, the cage induction motor seems to be a
candidate that better fulfills the aforementioned major features
[2]. Induction motor drive control techniques are well treated
in the literature. The most popular is the so-called vector
control technique that is now used for high-impact automotive
applications [EV and hybrid EV (HEV)]. In this case, the torque
control is extended to transient states and allows better dynamic
performances [1], [3]. Among these techniques, direct torque
control (DTC) appears to be very convenient for EV applica-
tions [4]–[7]. DTC has the advantage of not requiring speed or
position encoders and uses voltage and current measurements
only. Flux, torque, and speed are estimated. It also has a faster
dynamic response due to the absence of the proportional–
integral (PI) current controller. The input of the motor controller
is the reference speed, which is directly applied by the pedal of
the vehicle.

Furthermore, the typical advantages of DTC are not
sufficient. EV induction motor drive has also to possess high
efficiency in order to extend the running distance per bat-
tery charge. Therefore, DTC should be associated to a loss-
minimization strategy to maximize the drive efficiency. Indeed,
EV motors have a high torque-to-volume ratio and a wide speed
operation range [8]. Consequently, these motors are character-
ized by their low inductance and high current density, so that
they run at high speed and produce a high starting torque. Due
to the low-inductance coil design, the current ripple caused by
pulsewidth modulation switching makes a significant amount
of eddy current losses and hysteresis losses, especially in high-
speed operation. If we simply neglect the iron losses, then it
detunes the overall vector controller and results in an error
in the torque control [9]. Loss minimization in the induction
motor is directly related to the choice of the flux level. The
higher the flux level is, the larger the iron losses are. However,
extreme minimization causes high copper losses. There is an
optimal flux level that guarantees loss minimization. Choosing
the level of flux in the induction motor remains an open problem
from the perspective of maximizing motor efficiency, and many
researchers continue to work on this problem. Numerous op-
eration schemes have been proposed by many researchers con-
cerning the optimal choice of excitation current or flux level for
a given operating point. In low-frequency operation, core loss
(hysteresis and eddy current loss) is rather low compared with
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copper loss. As the speed goes up, however, the contribution of
the eddy current loss increases and finally becomes dominant.
Hence, the optimal combination of d-axis and q-axis currents
varies depending on the required torque and speed [10].

Among the aforementioned motor drive features, the energy
efficiency is a basic characteristic that is influenced by vehicle
dynamics and system architecture. Therefore, in this paper, a
detailed dynamic model of an EV is introduced and associated
with the proposed loss-minimizing DTC induction motor drive
strategy. The objective here is to test the effectiveness of the
proposed efficiency optimization strategy on the whole vehicle
and not on the sole induction motor. Simulation tests have
been carried out on a 1.1-kW EV induction motor drive to
evaluate the consistency and the performance of the proposed
optimization approach.

II. VEHICLE DYNAMICS ANALYSIS

A. Nomenclature

v Vehicle speed.
α Grade angle.
Pv Vehicle driving power.
Fw Road load.
Fro Rolling resistance force.
Fsf Stokes’ force or viscous friction force.
Fad Aerodynamic drag force.
Fcr Climbing and downgrade resistance force.
µ Tire rolling resistance coefficient (0.015 < µ < 0.3).
m Vehicle mass.
g Gravitational acceleration constant.
kA Stokes’ coefficient.
ξ Air density.
Cw Aerodynamic drag coefficient (0.2 < Cw < 0.4).
Af Vehicle frontal area.
v0 Headwind velocity.
F Tractive force.
km Rotational inertia coefficient (1.08 < km < 1.1).
a Vehicle acceleration.
J Total inertia (rotor and load).
ωm Motor mechanical speed.
TB Load torque accounting for friction and windage.
TL Load torque.
Tm Motor torque.
i Transmission ratio.
ηt Transmission efficiency.
R Wheel radius.
JV Shaft inertia moment.
JW Wheel inertia moment.
λ Wheel slip.

B. Dynamics Analysis

Based on the principles of vehicle mechanics and aerody-
namics, one can assess both the driving power and energy
necessary to ensure vehicle operation (Fig. 1) [8], [11], [12].
1) Road Load and Tractive Force: The road load consists of

Fw = Fro + Fsf + Fad + Fcr. (1)

Fig. 1. Elementary forces acting on a vehicle.

The rolling resistance force Fro is produced by the tire
flattening at the roadway contact surface, i.e.,

Fro = µmg cos α (2)

where µ is nonlinearly dependent of the vehicle speed, tire
pressure and type, and road surface characteristic. It increases
with vehicle speed as well as during vehicle turning maneuvers.
The rolling resistance force can be minimized by keeping the
tires as much inflated as possible, i.e.,

Fsf = kAv. (3)

This force is generally neglected according to the rolling
resistance [12]. Aerodynamic drag Fad is the viscous resistance
of air acting upon the vehicle, i.e.,

Fad =
1
2
ξCwAf (v + v0)2. (4)

The climbing resistance (Fcr with positive operational sign)
and the downgrade force (Fcr with negative operational sign)
are given by

Fcr = ±mg sin α. (5)

The tractive force in an EV is supplied by the electric
motor in overcoming the road load. The equation of motion is
given by

kmm
dv

dt
= F − Fw. (6)

The net force (F − Fw) accelerates the vehicle (or decelerates
when Fw exceeds F ).
2) Motor Ratings and Transmission: The power required to

drive a vehicle has to compensate the road load Fw, i.e.,

Pv = vFw. (7)

The mechanical equation (in the motor referential) used to
describe each wheel drive is expressed by

J
dωm

dt
+ TB + TL = Tm. (8)

The following equation is derived due to the use of a reduc-
tion gear: {

ωWheel = ωm

i

TWheel = Tmiηt

. (9)



HADDOUN et al.: LOSS-MINIMIZATION DTC SCHEME FOR EV INDUCTION MOTORS 83

The load torque in the motor referential is given by

TL =
TLWheel

i
=

R

i
Fω. (10)

The vehicle global inertia moment in the motor referential is
given by

{
J = JW + JV

JV = 1
2m

R2

i2 (1 − λ)
. (11)

If the adhesion coefficient of the road surface is high, then λ is
usually low and can be neglected.

III. DTC

The basic idea of the method is to calculate flux and
torque instantaneous values only from the stator variables.
Flux, torque, and speed are estimated. The input of the motor
controller is the reference speed, which is directly applied by
the pedal of the vehicle. Control is carried out by hysteresis
comparators and a switching logic table selecting the appropri-
ate voltage inverter switching configurations [6]. Fig. 2 gives
the global configuration of a DTC scheme and shows how the
EV dynamics will be taken into account.

A. Nomenclature

Vs (Vr) Stator (rotor) voltage space vector.
λs (λr) Stator (rotor) flux space vector.
Rs (Rr) Stator (rotor) resistance.
Ls (Lr) Stator (rotor) inductance.
Lm Magnetizing inductance.
σ Total leakage coefficient σ = 1 − L2

m/LsLr.
ωr Rotor electric speed.
θλs Stator flux angular position.
p Pole-pair number.

B. DTC

The induction motor model in the stator-fixed d−q reference
frame is described by




Vs = Rsis + dλs

dt

0 = Rrir + dλs

dt − jωrλr

λs = Lsis + Lmir

λr = Lmis + Lrir

(12)

whereas the mechanical equation is given in (8).
The induction motor stator flux can be estimated as follows:



λds =
∫

(Vds −Rsids)dt
λqs =

∫
(Vqs −Rsiqs)dt

|λs| =
√

λ2
ds + λ2

qs

θλs = tan−1
(

λqs
λds

)
. (13)

Fig. 2. DTC general configuration. (a) Vehicle dynamics. (b) EV dynamics.

Then, the electromagnetic torque is estimated using

Tem =
3
2
p

2
(λdsiqs − λqsids). (14)

IV. INDUCTION MOTOR LOSS MODEL

A. Nomenclature

Rfs Stator core loss resistance.
Rfr Rotor core loss resistance.
fs Stator frequency.
kh Hysteresis loss coefficient.
ke Eddy current loss coefficient.
s Per-unit slip.
Ps Stator copper losses.
Pr Rotor copper losses.
Pfs Core losses.
ωs Stator angular velocity.
A Current ratio (isq = Aisd).
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B. Loss Model

The motor losses are calculated from the induction motor
equivalent circuit in Fig. 3. The stator and rotor resistances are
temperature dependent and thereby dependent on the speed and
torque. The magnetizing inductance Lm includes saturation.
The core loss resistance Rfs depends on air-gap flux, stator
frequency, and slip. However, it is more sensitive to frequency
variation [9], [10]. It is therefore expressed by

Rfs = khfs + kef
2
s . (15)

This resistance could be neglected at low speed according to the
Rs value. However, neglecting Rfs results in an error in the slip
and rotor flux calculations; therefore, it leads to a torque offset
error and a failure in d−q phase current decoupling control. As
a result, it degrades the speed response in the high-speed range
[9]. The rotor core loss resistance Rfr is given by

Rfr = khsfs + ke(sfs)2. (16)

At high speed, the stator flux frequency is almost the same as
the speed frequency. The slip frequency is nearly zero, and the
rotor core losses could be neglected.

There are four types of losses in an induction motor pro-
pelling an EV: 1) copper loss in the stator; 2) core loss in the
stator; 3) copper loss in the rotor; and 4) core loss in the rotor.
Friction and windage losses are generally neglected.

Using the steady-state induction motor equivalent circuit in
Fig. 4 and the power-invariant three-to-two axis transformation,
it is observed that the motor loss consists of the following
components [13], [14]:


Ps = Rs

(
i2sd + i2sq

)
Pr = Rr

(
isq − ωsLm

Rfs
isd

)2

= Rr

(
i2sq + (ωsLm)2 1

R2
fs
i2sd − 2ωsLm

1
Rfs

isdisq

)
Pfs = (ωsLm)2 1

Rfs
i2sd

.

(17)

Rearranging (17), we obtain the following loss components:




Ploss,d =
(
(ωsLm)2 1

Rfs
+ Rs + (ωsLm)2 Rr

R2
fs

)
i2sd

Ploss,q = (Rr + Rs)i2sq
Ploss,dq = −2ωsLm

Rr

Rfs
isdisq

. (18)

Using the torque expression and the definition of A

Tem = pLmisdisq

the total loss becomes

Ploss =
Tem

pLm

{ [
(ωsLm)2

1
Rfs

+ Rs + (ωsLm)2
Rr

R2
fs

]

× 1
A

+ (Rr + Rs)A− 2ωsLm
Rr

Rfs

}
. (19)

Fig. 3. Induction motor equivalent circuit used to model the losses.

Fig. 4. Induction motor steady-state equivalent circuit.

Differentiating the loss expression (19) with respect to A and
assuming that the model parameters are independent of A


∂Ploss
∂A =0

⇒−
[
(ωsLm)2 1

Rfs
+Rs+(ωsLm)2 Rr

R2
fs

]
1

A2 +(Rr+Rs)=0

will lead to minimum loss and particularly to the following:

Ploss,d = Ploss,q. (20)

The induction motor losses are thus minimal when “direct”
losses are equal to “quadrature” ones.

The proposed “model-based” loss-minimization DTC
scheme for an EV is shown in Fig. 5. In this case, the
model-based control has the advantage over the simple state
control [15], [16] in that it can include inverter losses in the
calculation. It should be noticed that (20) is solved with a PI
controller [17].

It should be kept in mind that model-based loss minimization
as adopted here (18), (20) depends on four parameters (Rs, Rr,
Rfs, and Lm) of the induction motor equivalent circuit (Fig. 4).
The motor operates below the rated speed at the rated flux
and above the rated speed with the optimal flux (weakened).
Since the optimal flux is usually lower than the rated one for
EV application, there is no magnetic saturation. Otherwise,
magnetic saturation could be neglected on the basis of physical
consideration. Indeed, the induction motor temperature increase
(thermal effect) due to its operation will perturb and slow down
the magnetic saturation process [18]. Therefore, Lm could be
considered approximately constant. Rfs is assessed using (15).
Rs and Rr are temperature dependent and thereby dependent
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Fig. 5. Scheme for energy-optimal model-based control.

on the speed and torque. They are estimated based on the
sensitivity of torque [7].

Loss minimization is performed using search control, which
is also called adaptive control or online optimization. In this
case, a significant parameter is minimized or maximized by trial
and error. In our study, the criterion is minimum motor loss.
The principle of the search control is to keep the output power
of the motor constant and find the operating point where the
input power has a minimum. Measuring the input power and
iteratively changing the flux level in small steps until the input
power minimum is detected will lead to this minimum. The
output power is normally kept constant by keeping the speed
constant and assuming a constant load torque [14].

The main advantages of search control is that it does not
depend on motor or converter parameters as other control
strategies do, and it leads to the true optimal efficiency. An
obvious disadvantage is that the speed should be measured.
Moreover, the convergence time to reach the optimal efficiency
is not less 4 s. Therefore, the method is unusable if the load
is changing more often than that. Optimistically, this is not
the case. Indeed, in real-time driving, an EV rarely operates in
extreme conditions [19].

V. SIMULATION RESULTS

Numerical simulations have been carried out on an EV pro-
pelled by a 1.1-kW induction motor drive, the ratings of which
are summarized in the Appendix. The magnetizing inductance
and the core loss resistance are determined by no-load tests. The
rotor resistance and the leakage inductances are determined by
locked-rotor tests with stator frequencies from 10 to 50 Hz, and
the determined constants are extrapolated down to a few hertz
to take into account the skin effect in the rotor.

The objectives of the simulations that were carried out are to
assess the efficiency and dynamic performances of the proposed

Fig. 6. Stator flux trajectories. (a) Without optimization. (b) With
optimization.

control strategy. The following simulation strategy has been
adopted: 1) Nominal flux is applied to the induction motor
drive until it reaches its steady state; 2) at t = 2.3 s, the loss-
minimization strategy is engaged.

Fig. 6 illustrates stator flux estimation robustness. Indeed,
the flux estimation was not affected by the loss-minimization
process apart from a small transient shown in Fig. 6(b).

Fig. 7 shows the performance of the proposed loss-
minimization strategy. Indeed, in Fig. 7(a), the rapid conver-
gence of the optimization process (Ploss,d = Ploss,q) in less
than 2 s should be noticed (the stator flux reaches its optimal
value). In this case, the efficiency increases from 77% to 80%
[Fig. 7(b)]. Even if the increase in efficiency is about 3%,
the above results confirm the effectiveness of the proposed
loss-minimization strategy. Indeed, no further increase in the
efficiency would be expected for this induction motor, mainly
due to its rated power. Small induction motors are generally
characterized by a relatively small efficiency according to large
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Fig. 7. Efficiency and power optimization. (a) Ploss,d and Ploss,q variations.
(b) Efficiency.

motors [20]. Therefore, further increase in the efficiency is
expected when using larger induction motors [14].

Figs. 8 and 9(a) illustrate the EV dynamics (the speed and the
developed torque, respectively) with changes in the acceleration
pedal position and a varied road profile (rising and downward
portions). It should be noticed that the speed and torque vari-
ations are as large as the variations of the accelerator pedal
and the road profile. Moreover, Fig. 9 shows that the estimated
torque and the developed one are quite similar, which confirms
the good torque control of the induction motor.

VI. CONCLUSION

This paper presented a detailed dynamic model of an EV
that is associated with a loss-minimizing DTC induction mo-
tor drive strategy. Compared to previous works, the proposed
energy optimization strategy is applied to the whole vehicle
(by taking into account its aerodynamics) and not to the sole
induction motor. This approach was used to directly minimize

Fig. 8. Speed curve.

Fig. 9. Torque curves. (a) Developed torque. (b) Estimated torque.
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the induction motor losses in order to evaluate the optimal
magnetizing flux, thus maximizing the efficiency and extending
the running distance per battery charge.

Simulations tests that have been carried out on a 1.1-kW EV
induction motor drive show that the proposed control approach
provides effective loss-minimization control while maintaining
a good dynamic response. As small motors are generally char-
acterized by a relatively small efficiency, no further increase
in the efficiency would be expected for this induction motor.
However, further increase in the efficiency should be achieved
when using larger induction motors.

For applications permanently operating in a steady-state
mode, applying this approach would produce significant sav-
ings. For tolerant systems to slight variations in dynamic re-
sponse, this application would prove to be very efficient.

APPENDIX

A. Rated Data of the Simulated Induction Motor

• 1.1 kW, 50 Hz, 220/380 V, 5.9/3.4 A, 7 N · m, 1500 r/min;
• Rs = 8 Ω, Rr = 3.1 Ω, Rfs = 86.47 Ω;
• Ls = Lr = 0.47 H, Lm = 0.443 H;
• p = 2, J = 0.06 kg · m2;
• β = 0.042 N · m · s.

B. Vehicle Parameters

• m = 150 kg;
• Af = 1 m2;
• R = 0.23 m;
• µ = 0.015;
• Cw = 0.25;
• g = 9.81 m/s2;
• kA = 0.22, km = 1.08;
• ξ = 0.23 kg/m2;
• i = 5.

REFERENCES

[1] C. C. Chan, “The state of the art of electric and hybrid vehicles,” Proc.
IEEE, vol. 90, no. 2, pp. 247–275, Feb. 2002.

[2] M. E. H. Benbouzid et al., “Electric motor drive selection issues for HEV
propulsion systems: A comparative study,” IEEE Trans. Veh. Technol.,
vol. 55, no. 6, pp. 1756–1764, Nov. 2006.

[3] D. O. Neacsu et al., “Comparative analysis of torque-controlled IM drives
with applications in electric and hybrid vehicles vehicle,” IEEE Trans.
Power Electron., vol. 16, no. 2, pp. 240–247, Mar. 2001.

[4] G. S. Buja et al., “Direct torque control of PWM inverter-fed ac
motors—A survey,” IEEE Trans. Ind. Electron., vol. 51, no. 4,
pp. 744–757, Aug. 2004.

[5] C. Lascu et al., “A sensorless hybrid DTC drive for high-volume low-cost
applications,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1048–1055,
Oct. 2004.

[6] J. Faiz et al., “Sensorless direct torque control of induction motors used in
electric vehicle,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 1–10,
Mar. 2003.

[7] ——, “Different techniques for real time estimation of an induction motor
rotor resistance in sensorless direct torque control for electric vehicle,”
IEEE Trans. Energy Convers., vol. 16, no. 1, pp. 104–109, Mar. 2001.

[8] M. Ehsani et al., “Propulsion system design of electric and hybrid vehi-
cles,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 19–27, Feb. 1997.

[9] J. Jung et al., “A vector control schemes for EV induction motors
with a series iron loss model,” IEEE Trans. Ind. Electron., vol. 45, no. 4,
pp. 617–624, Aug. 1998.

[10] S. Lim et al., “Loss-minimizing control scheme for induction motor,”
Proc. Inst. Electr. Eng.—Electr. Power Appl., vol. 151, no. 4, pp. 385–397,
Jul. 2004.

[11] B. Szadkowski et al., “A study of energy requirements for electric and
hybrid vehicles in cities,” in Proc. Int. Conf. Clean, Efficient and Safe
Urban Trans., Gdansk, Poland, Jun. 4–6, 2003, pp. 1–8.

[12] I. Husain et al., “Design, modeling and simulation of an electric vehicle
system,” Paper 1999-01-1149, SAE Technical Paper Series.

[13] F. Abrahamsen et al., “Efficiency-optimized control of medium-
size induction motor drives,” IEEE Trans. Ind. Appl., vol. 37, no. 6,
pp. 1761–1767, Nov./Dec. 2001.

[14] ——, “On the energy optimized control of standard and high-efficiency
induction motors in CT and HVAC applications,” IEEE Trans. Ind. Appl.,
vol. 34, no. 4, pp. 822–883, Jul./Aug. 1998.

[15] D. Diallo et al., “A fuzzy technique for loss minimization in scalar-
controlled induction motor,” Electr. Power Compon. Syst., vol. 30, no. 6,
pp. 625–635, Jun. 2002.

[16] M. E. H. Benbouzid et al., “An efficiency-optimization controller
for induction motor drives,” IEEE Power Eng. Rev., vol. 18, no. 5,
pp. 43–45, May 1998.

[17] K. S. Rasmussen et al., “Model based energy optimizer for vector con-
trolled induction motor drives,” in Proc. Eur. Power Electron. Conf.,
Trondheim, Norway, Sep. 1997, vol. 3, pp. 711–716.

[18] M. E. H. Benbouzid et al., “Induction motors direct field oriented con-
trol with robust on-line tuning of rotor resistance,” IEEE Trans. Energy
Convers., vol. 14, no. 4, pp. 1038–1042, Dec. 1999.

[19] Z. Rahman et al., “An investigation of electric motor drive characteristics
for EV and HEV propulsion systems,” Paper 2000-01-3062, SAE Techni-
cal Paper Series.

[20] A. H. Bonnett, “An update on ac induction motor efficiency,” IEEE Trans.
Ind. Appl., vol. 30, no. 5, pp. 1362–1372, Sep./Oct. 1994.

Abdelhakim Haddoun was born in Constantine,
Algeria, in 1967. He received the B.Sc. and M.Sc.
degrees in electrical engineering from the Univer-
sity of Batna, Batna, Algeria, in 1993 and 1999,
respectively. He is currently working toward the
Ph.D. degree in electric vehicle control and power
management from the University of Batna.

In 2000, he joined the Department of Electrical
Engineering, University of Oum El Bouaghi, Oum
El Bouaghi, Algeria, as a Teaching Assistant.

Mohamed El Hachemi Benbouzid (S’92–M’95–
SM’98) was born in Batna, Algeria, in 1968. He
received the B.Sc. degree in electrical engineering
from the University of Batna, in 1990, the M.Sc. and
Ph.D. degrees in electrical and computer engineering
from the National Polytechnic Institute of Grenoble,
Grenoble, France, in 1991 and 1994, respectively,
and the Habilitation à Diriger des Recherches de-
gree from the University of Picardie “Jules Verne,”
Amiens, France, in 2000.

After receiving the Ph.D. degree, he joined the
Professional Institute of Amiens, University of Picardie “Jules Verne,” where
he was an Associate Professor of electrical and computer engineering. In
September 2004, he joined the University Institute of Technology (IUT) of
Brest, University of Western Brittany, Brest, France, as a Professor of electrical
engineering. His main research interests and experience include analysis,
design, and control of electric machines, variable-speed drives for traction and
propulsion applications, and fault diagnosis of electric machines.

Prof. Benbouzid is a Senior Member of the IEEE Power Engineering,
Industrial Electronics, Industry Applications, Power Electronics, and Vehicular
Technology Societies. He is an Associate Editor of the IEEE TRANSACTIONS

ON ENERGY CONVERSION, the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
and the IEEE/ASME TRANSACTIONS ON MECHATRONICS.



88 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 1, JANUARY 2007

Demba Diallo (M’99–SM’05) was born in Dakar,
Senegal, in 1966. He received the M.Sc. and Ph.D.
degrees in electrical and computer engineering from
the National Polytechnic Institute of Grenoble,
Grenoble, France, in 1990 and 1993, respectively,
and the Habilitation à Diriger des Recherches degree
from the University of Paris VI, Gif-Sur-Yvette,
France, in 2005.

From 1994 to 1999, he was a Research En-
gineer with the Laboratoire d’Electrotechnique de
Grenoble, where he worked on electrical drives and

active filters (hardware and software). In 1999, he joined the University of
Picardie “Jules Verne,” Amiens, France, as an Associate Professor of electrical
engineering. In September 2004, he joined the University Institute of Technol-
ogy (IUT) of Cachan, University of Paris VI & XI, as an Associate Professor of
electrical engineering. He is currently with the Laboratoire de Génie Electrique
de Paris, Unite Mixte de Recherche 8507, Centre National de la Recherche
Scientifique, University of Paris VI & XI. His current area of research includes
advanced control techniques and diagnosis in the field of ac drives.

Rachid Abdessemed was born in Batna, Algeria, in
1951. He received the M.Sc. and Ph.D. degrees in
electrical engineering from Kiev Polytechnic Insti-
tute, Kiev, Ukraine, in 1978 and 1982, respectively.

He has been working for more than 18 years with
the Department of Electrical Engineering, University
of Batna, as a Professor. Currently, he is the Director
of the Electrical Engineering Laboratory. His current
area of research includes design and control of in-
duction machines, reliability, magnetic bearings, and
renewable energy.

Jamel Ghouili was born in Ghardimaou, Tunisia,
in 1962. He received the B.Sc., M.Sc., and Ph.D.
degrees from the University of Québec at Trois-
Rivières, Trois-Rivières, QC, Canada, in 1986, 1998,
and 2004, respectively.

He is currently a Professor with the University
of Moncton, Moncton, NB, Canada, where he has
been responsible for teaching and research program
in power electronics and drives since 2000. Early
in his career, he served as a Professor with the
Ecole Polytechnique de Masuku, Masuku, Gabon.

His main research interests include power converters, ac drives, DSP and FPGA
control, sensorless control, EV/HEV drives, and fuzzy logic and neural network
applications in power electronics and drives.

Kamel Srairi was born in Batna, Algeria, in 1967.
He received the B.Sc. degree in electrical engi-
neering from the University of Batna, in 1991, the
M.Sc. degree in electrical and computer engineering
from the National Polytechnic Institute of Grenoble,
Grenoble, France, in 1992, and the Ph.D. degree
in electrical and computer engineering from the
University of Nantes, Nantes, France, in 1996.

After receiving the Ph.D. degree, he joined the
Department of Electrical Engineering, University of
Biskra, Biskra, Algeria, where he is an Associate

Professor. His main research interests include analysis, design, and control of
electric machines.


