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Prediction of local hygroscopic stresses for composite structures -analytical and numerical micromechanical approaches

Introduction

Moisture diffusion within an epoxy matrix based composite structure exposed to humid environmental conditions induces two types of internal stresses: the macroscopic stresses (at the scale of the composite plies) and the microscopic stresses (experienced by the elementary constituents of a considered ply). Macroscopic stresses induced by gradients of moisture concentration and/or the heterogeneity of the coefficients of moisture expansion are determined using continuum mechanics classical formalism. This method enables taking into account both space and time effects on moisture diffusion in the composite structure [START_REF] Jacquemin | A closed-form solution for the internal stresses in thick composite cylinders induced by cyclical environmental conditions[END_REF].

Localization of the macroscopic mechanical states at microscopic scale leads to different stresses in the matrix and the fiber. The discrepancies come from the strong heterogeneities of elastic properties, coefficients of moisture expansion and moisture content of the composite plies constituents. Scale transition models are often used in order to achieve the localization procedure.

In the present work, a self-consistent hygro-elastic model, based on Eshelby [START_REF] Eshelby | The determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems[END_REF] and Kröner [START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF] pioneering papers, is developed in order to determine the microscopic mechanical states in a composite ply. This model takes into account the microstructure of the constituents (in particular, the reinforcing fibers morphology) and the heterogeneous microscopic moisture content (actually the reinforcing carbon fibers do not absorb moisture, which is consequently concentrated in the polymer matrix). The classical purely numerical approach is firstly achieved, then closed-form solution for the local mechanical states are proposed in the second part of this article.

Hygro-elastic micromechanical approach

Self-Consistent estimates (SC) for hygro-elastic properties

The material is investigated at two different scales for the needs of micromechanical modeling: the average behavior of a ply, defines the macroscopic scale, denoted by the superscript I , the properties and mechanical states of the matrix and fiber are respectively indicated by the superscripts m and f . These constituents define the microscopic (or local) scale of the material.

The hygro-elastic behaviour of the material satisfies:
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where R I is the reaction tensor, defined by Eshelby [START_REF] Eshelby | The determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems[END_REF], depending on elastic macroscopic stiffness and morphology assumed for the constituents.

Since this relation must be sastified for any hygromechanical state, the first term of the right member of (3) must be equal to I, while the second term must be null. Thus, the self-consistent estimates for the macroscopic elastic stiffness (4) and the homogenised CME [START_REF] Jacquemin | A hygro-elastic self-consistent model for fiberreinforced composites[END_REF] are : 

where v m stands for the volume fraction of matrix in the considered ply, ρ I and ρ m are respectively the composite and resin densities.

Introducing ( 6) in ( 5) and assuming that fibers do not absorb water (case of carbon/epoxy composites), the CME are then expressed [START_REF] Jacquemin | A hygro-elastic self-consistent model for fiberreinforced composites[END_REF]:
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Microscopic mechanical states

Since the carbon fiber do not absorb water, the stress-strain relation (1) rewrites:
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In that case, Eshelby's formalism leads to the following scale transition relation for the microscopic strains experienced by the fibers:
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Equation ( 9) enables to determine the microscopic strains in the fiber from the macroscopic stresses and strains. Thereafter, equation ( 8) is used in order to find the fiber stresses. The microscopic mechanical states experienced by the matrix are thereafter deduced from Hill volume averages (2):
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Towards an analytical self-consistent model

Closed-form solution of Morris' tensor

The self-consistent framework is based on the mechanical treatment of the interactions between ellipsoidal heterogeneous inclusions (microscopic scale) and the embedding homogeneous equivalent medium (macroscopic scale). The average macroscopic elastic properties L I of the composite are related to the morphology assumed for elementary inclusions, through Morris' tensor E I . Actually, the reaction tensor R I introduced in equation (3) writes: [8] and Qiu and Weng [START_REF] Qiu | The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite[END_REF] for example. Nevertheless, these forms were established considering either spherical, disc-shaped of fiber-shaped inclusions embedded in an ideally isotropic macroscopic medium, that is incompatible with the strong elastic anisotropy exhibited by fiber-reinforced composites at macroscopic scale. In the case of fiber-reinforced composites, a transversely isotropic macroscopic elastic behaviour being coherent with fiber shape is actually expected (and predicted by the numerical computations). This is compatible with the following form of K tensor: 
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Analytical solutions for the microscopic stresses

The epoxy matrix is usually isotropic, so that three components only have to be considered for 

Example

Thin laminated composite pipes, with thickness 4 mm, initially dry then exposed to an ambient fluid, made up of T300/5208 carbon-epoxy plies are considered for the determination of both macroscopic stresses and moisture content as a function of time and space. Table 1 presents the elastic properties considered for the T300 carbon fiber, N5208 epoxy matrix and the effective stiffness deduced from the self-consistent approach for a fiber volume fraction of 60% in the composite ply. The coefficients of moisture expansion obtained through the same approach are: Starting with the macroscopic stresses deduced from continuum mechanics (CM), the local stresses in both the fiber and matrix were calculated either with the new analytical forms or the fully numerical model. The comparison between the two approaches is plotted on Figure 2 which shows the obtained results for the transverse (σ 22 ) and shear (σ 12 ) stresses for the central ply of a unidirectional composite and in the case of a [55/-55] S laminate (for the UD composite the shear stress is null at any scale). The Figure 2 demonstrates the very good agreement between the numerical approach and the corresponding closed-form solutions whatever the stress component and the stacking sequence. The slight differences appearing are due to the small deviations on the components of Morris' tensor calculated using the two approaches. Actually, it is not possible to assume the quasi-infinite length of the fiber along the longitudinal axis in the case of the numerical approach, because the numerical computation of Morris' tensor is highly time-consuming. Thus, the numerical SC model constitutes only an approximation of the real microstructure of the composite. In consequence, it seems that the new analytical forms, that are able to take into account the proper microstructure for the fibers, are not only more convenient, but also more reliable than the initially proposed numerical approach.

The highest level of macroscopic tensile stress is reached for the unidirectional (UD) composite, in the transverse direction and in the central ply of the structure (50 MPa, cf. Others calculations show that important stresses occur in surface where the epoxy matrix is submitted to high compressive stresses : σ 11 =-280 MPa, σ 22 =-225 MPa, σ 33 =-140 MPa. These local stresses could help to explain damage occurrence in the surface of composite structures submitted to such hygroscopic conditions.

Conclusion

In the present paper, an analytical Self-Consistent model, for the calculation of local hygroelastic strains and stresses, is proposed. The first step of this approach is to analytically express Morris' tensor. The new closed-form solutions obtained for the components of E 1 E 2 , E 3 [GPa] ν 12 , ν 13 G 23 [GPa] G 12 [GPa] Fiber 
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 1 where α replaces the superscripts I , f or m . L stands for the stiffness tensor, whereas β β β β are the Coefficients of Moisture Expansion (CME) and ∆C the moisture content.The macroscopic stresses and strains are the volume average of the microscopic stresses and strains using Eshelby's formalism, we obtain the following relation between macroscopic and microscopic fields:

  state is reached, the moisture contents for the ply ∆C I and for the neat resin ∆C m are linked by the equation (6):

  inclusions only were considered by Morris[START_REF] Morris | Elastic constants of polycrystals[END_REF]. For ellipsoidal shaped inclusions Asaro and Barnett[START_REF] Asaro | The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion[END_REF] and Kocks et al.[START_REF] Kocks | Texture and Anisotropy[END_REF] have established the following relations for numerical calculation of each ijkl subscripted component of Morris' tensor: analytical forms for Morris' tensor are available in the literature: Mura[START_REF] Mura | Micromechanics of Defects in Solids[END_REF], Kocks et al.

  axis is parallel to fiber axis, one obtains the following conditions for the semilengths of the microstructure representative ellipsoid: a 1 →∞, a 2 =a 3 .The determination of Morris' tensor requires the determination of the inverse of K tensor. Due to the above listed conditions over the dimensions a 1 , a 2 and a 3 of the considered fibershaped inclusions, drastic simplifications of Morris' tensor occur:
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 1 expansion coefficient is sufficient to describe the hygroscopic behaviour of the matrix: m 11 .In the case of the carbon fibers, a transverse isotropy is generally observed. Thus, , L , L , L , and L . Moreover, since the carbon fiber does not absorb water, its CME f f 11 22 and will not be involved in the mechanical states determination. Introducing these additional assumptions in equation (3), and taking into account the form (14) obtained for Morris' tensor, the following general expressions are found for the components of the strain tensor experienced by the matrix:The corresponding analytical form for the microscopic stress tensor in the matrix comes from (states in the fiber are provided by Hill's average laws (2).
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 1 Figure1shows the time-dependent concentration profiles, satisfying an unidirectional Fick's
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 2 Figure2). The transverse stresses probably exceed the macroscopic tensile strength in this
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 1 Figure 1: Moisture concentration.

Figure 2 :

 2 Figure 2: Analytical and numerical predictions of hygroelastic stresses.

Table 1 :

 1 Mechanical properties.

	T300	230	15	0,2	7	15
	Epoxy matrix	4,5	4,5	0,4	1,6	1,6
	T300/5208	139,6	9,8	0,28	3,5	6,4