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ABSTRACT 

The aim of this article is to propose an analytical micro-mechanical self-consistent approach 

dedicated to mechanical states prediction in both the fiber and the matrix of composite 

structures submitted to a transient hygroscopic load. The time and space dependent 

macroscopic stresses, at ply scale, are determined by using continuum mechanics formalism. 

The reliability of the new approach is checked, for carbon-epoxy composites, through a 

comparison between the local stress states calculated in both the resin and fiber according to 

the new closed form solutions and the equivalent numerical model. 

 

 

Keywords: A. Polymer-matrix composites; B. Hygrothermal effects; B. Microstructure; C. 

Residual stresses; C. Stress concentrations. 
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Moisture diffusion within an epoxy matrix based composite structure exposed to humid 

environmental conditions induces two types of internal stresses: the macroscopic stresses (at 

the scale of the composite plies) and the microscopic stresses (experienced by the elementary 

constituents of a considered ply). Macroscopic stresses induced by gradients of moisture 

concentration and/or the heterogeneity of the coefficients of moisture expansion are 

determined using continuum mechanics classical formalism. This method enables taking into 

account both space and time effects on moisture diffusion in the composite structure [1]. 

Localization of the macroscopic mechanical states at microscopic scale leads to different 

stresses in the matrix and the fiber. The discrepancies come from the strong heterogeneities of 

elastic properties, coefficients of moisture expansion and moisture content of the composite 

plies constituents. Scale transition models are often used in order to achieve the localization 

procedure.  

In the present work, a self-consistent hygro-elastic model, based on Eshelby [2] and Kröner 

[3] pioneering papers, is developed in order to determine the microscopic mechanical states in 

a composite ply. This model takes into account the microstructure of the constituents (in 

particular, the reinforcing fibers morphology) and the heterogeneous microscopic moisture 

content (actually the reinforcing carbon fibers do not absorb moisture, which is consequently 

concentrated in the polymer matrix). The classical purely numerical approach is firstly 

achieved, then closed-form solution for the local mechanical states are proposed in the second 

part of this article. 

 

2. Hygro-elastic micromechanical approach 

2.1. Self-Consistent estimates (SC) for hygro-elastic properties 

The material is investigated at two different scales for the needs of micromechanical 

modeling: the average behavior of a ply, defines the macroscopic scale, denoted by the 
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superscript I, the properties and mechanical states of the matrix and fiber are respectively 

indicated by the superscripts m and f. These constituents define the microscopic (or local) scale 

of the material.  

The hygro-elastic behaviour of the material satisfies:  

 

 ( )��C: αααααααααααααααα ββββεεεεσσσσ −= L  (1) 

 

where α replaces the superscripts I, f or m. L stands for the stiffness tensor, whereas ββββ are the 

Coefficients of Moisture Expansion (CME) and ∆C the moisture content. 

 

The macroscopic stresses and strains are the volume average of the microscopic stresses and 

strains [4]: 
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By using Eshelby’s formalism, we obtain the following relation between macroscopic and 

microscopic fields:  

 

 ( ) ( ) ( ) [ ]
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where RI is the reaction tensor, defined by Eshelby [2], depending on elastic macroscopic 

stiffness and morphology assumed for the constituents. 

Since this relation must be sastified for any hygromechanical state, the first term of the right 

member of (3) must be equal to I, while the second term must be null. Thus, the self-
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consistent estimates for the macroscopic elastic stiffness (4) and the homogenised CME (5) 

are : 
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When the equilibrium state is reached, the moisture contents for the ply ∆CI
 and for the neat 

resin  ∆Cm are linked by the equation (6):  

 
m� v
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where vm stands for the volume fraction of matrix in the considered ply, ρI and ρm are  

respectively the composite and resin densities. 

Introducing (6) in (5) and assuming that fibers do not absorb water (case of carbon/epoxy 

composites), the CME are then expressed  [5]: 

 

 ( ) ( ) mm1IIm
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2.2. Microscopic mechanical states 

Since the carbon fiber do not absorb water, the stress-strain relation (1) rewrites:  

 

 fff L εεεεσσσσ :=  (8) 
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In that case, Eshelby’s formalism leads to the following scale transition relation for the 

microscopic strains experienced by the fibers:  

 

 ( ) ( )IIIIIIff RLRLL εεεεσσσσεεεε ::::
1

++=
−

 (9) 

 

Equation (9) enables to determine the microscopic strains in the fiber from the macroscopic 

stresses and strains. Thereafter, equation (8) is used in order to find the fiber stresses. The 

microscopic mechanical states experienced by the matrix are thereafter deduced from Hill 

volume averages (2): 
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3. Towards an analytical self-consistent model 

3.1. Closed-form solution of Morris’ tensor 

The self-consistent framework is based on the mechanical treatment of the interactions 

between ellipsoidal heterogeneous inclusions (microscopic scale) and the embedding 

homogeneous equivalent medium (macroscopic scale). The average macroscopic elastic 

properties LI of the composite are related to the morphology assumed for elementary 

inclusions, through Morris’ tensor EI. Actually, the reaction tensor RI introduced in equation 

(3) writes: 

�
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Originally, spherical inclusions only were considered by Morris [6]. For ellipsoidal shaped 

inclusions Asaro and Barnett [7] and Kocks et al. [8] have established the following relations 

for numerical calculation of each ijkl subscripted component of Morris’ tensor:  
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Some analytical forms for Morris’ tensor are available in the literature: Mura [9], Kocks et al. 

[8] and Qiu and Weng [10] for example. Nevertheless, these forms were established 

considering either spherical, disc-shaped of fiber-shaped inclusions embedded in an ideally 

isotropic macroscopic medium, that is incompatible with the strong elastic anisotropy 

exhibited by fiber-reinforced composites at macroscopic scale. In the case of fiber-reinforced 

composites, a transversely isotropic macroscopic elastic behaviour being coherent with fiber 

shape is actually expected (and predicted by the numerical computations). This is compatible 

with the following form of K tensor:  
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where .
a

cos
 and 

a
sin sin

 ,
a

cos sin
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2
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1
1

θ=ξφθ=ξφθ=ξ  Assuming that the longitudinal 

(subscripted 1) axis is parallel to fiber axis, one obtains the following conditions for the semi-

lengths of the microstructure representative ellipsoid: a1→∞, a2=a3.  

The determination of Morris’ tensor requires the determination of the inverse of K tensor. 

Due to the above listed conditions over the dimensions a1, a2 and a3 of the considered fiber-

shaped inclusions, drastic simplifications of Morris’ tensor occur: 
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3.2. Analytical solutions for the microscopic stresses 

The epoxy matrix is usually isotropic, so that three components only have to be considered for 

its elastic constants: 
2

 LL
L and L ,L

m
12

m
11m

44
m
12

m
11

−= . One moisture expansion coefficient is 

sufficient to describe the hygroscopic behaviour of the matrix: m
11	 . 

In the case of the carbon fibers, a transverse isotropy is generally observed. Thus, the 

corresponding elasticity constants depend on the following components: 

f f f f f f
11 12 22 23 44 55L , L , L , L , L , and L .  Moreover, since the carbon fiber does not absorb water, its 

CME f f
11 22	  and 	  will not be involved in the mechanical states determination. Introducing 
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these additional assumptions in equation (3), and taking into account the form (14) obtained 

for Morris’ tensor, the following general expressions are found for the components of the 

strain tensor experienced by the matrix: 
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The corresponding analytical form for the microscopic stress tensor in the matrix comes from 
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The local mechanical states in the fiber are provided by Hill’s average laws (2). 

 

4. Example 

Thin laminated composite pipes, with thickness 4 mm, initially dry then exposed to an 

ambient fluid, made up of T300/5208 carbon-epoxy plies are considered for the determination 

of both macroscopic stresses and moisture content as a function of time and space. Table 1 

presents the elastic properties considered for the T300 carbon fiber, N5208 epoxy matrix and 

the effective stiffness deduced from the self-consistent approach for a fiber volume fraction of 

60% in the composite ply. The coefficients of moisture expansion obtained through the same 

approach are:  035.0I
11 =β �and 026.1I

22 =β ( 6.0m
11 =β ). 

 

Figure 1 shows the time-dependent concentration profiles, satisfying an unidirectional Fick’s 

law, resulting from the application of a boundary concentration c0=1.5%, as a function of the 

normalized radial distance from the inner radius rdim. At the beginning of the diffusion process 

important concentration gradients occur near the external surfaces. The permanent 

concentration (noticed perm in the caption) holds with a constant value because of the 

symmetrical hygroscopic loading. 
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Starting with the macroscopic stresses deduced from continuum mechanics (CM), the local 

stresses in both the fiber and matrix were calculated either with the new analytical forms or 

the fully numerical model. The comparison between the two approaches is plotted on Figure 2 

which shows the obtained results for the transverse (σ22) and shear (σ12) stresses for the 

central ply of a unidirectional composite and in the case of a [55/-55]S laminate (for the UD 

composite the shear stress is null at any scale). The Figure 2 demonstrates the very good 

agreement between the numerical approach and the corresponding closed-form solutions 

whatever the stress component and the stacking sequence. The slight differences appearing are 

due to the small deviations on the components of Morris’ tensor calculated using the two 

approaches. 

Actually, it is not possible to assume the quasi-infinite length of the fiber along the 

longitudinal axis in the case of the numerical approach, because the numerical computation of 

Morris’ tensor is highly time-consuming. Thus, the numerical SC model constitutes only an 

approximation of the real microstructure of the composite. In consequence, it seems that the 

new analytical forms, that are able to take into account the proper microstructure for the 

fibers, are not only more convenient, but also more reliable than the initially proposed 

numerical approach. 

The highest level of macroscopic tensile stress is reached for the unidirectional (UD) 

composite, in the transverse direction and in the central ply of the structure (50 MPa, cf. 

Figure 2). The transverse stresses probably exceed the macroscopic tensile strength in this 

direction. The choice of a [+55°/-55°]S laminated allows to reduce the macroscopic stress in 

the transverse direction where the upper level falls down to 25 MPa. Nevertheless, a high 

shear stress rises along the time in the fibers of the central ply of such a structure (35 MPa), 

and the matrix experiences strong compressive stresses that can reach -185 MPa in the studied 

example. 
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Others calculations show that important stresses occur in surface where the epoxy matrix is 

submitted to high compressive stresses : σ11=-280 MPa, σ22=-225 MPa, σ33=-140 MPa. These 

local stresses could help to explain damage occurrence in the surface of composite structures 

submitted to such hygroscopic conditions.  

 

5. Conclusion 

In the present paper, an analytical Self-Consistent model, for the calculation of local hygro-

elastic strains and stresses, is proposed. The first step of this approach is to analytically 

express Morris’ tensor. The new closed-form solutions obtained for the components of 

Morris’ tensor were introduced in the classical hygro-elastic scale transition relation in order 

to find closed-form solutions for the local internal strains and stresses. The closed-form 

solutions demonstrated in the present work were compared to the fully numerical hygro-

elastic self-consistent model for various stacking sequences: unidirectional or laminated 

composites. A very good agreement is obtained between the two models for any component of 

the local stress tensors. The present analytical model, that works faster and is more convenient 

to program than the classical model, could be implemented in a calculation code combining 

both the continuum mechanics formalisms (necessary to determine the macroscopic stresses 

and strains in each ply) and the micro-mechanical model. This new software will constitute an 

accurate and powerful tool for the prediction of a possible damage in the material at every 

scale of a composite structure submitted to a transient hygroscopic stress.  
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Figure 1: Moisture concentration. 
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Figure 2: Analytical and numerical predictions of hygroelastic stresses. 
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 E1 E2, E3 [GPa] ν12, ν13 G23 [GPa] G12 [GPa] 

Fiber T300  230 15 0,2 7 15 

Epoxy matrix 4,5 4,5 0,4 1,6 1,6 

T300/5208  139,6 9,8 0,28 3,5 6,4 

Table 1: Mechanical properties. 

 


