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Buckling of tension-loaded thin-walled

composite plates with cut-outs

T. Kremer a,∗,
H. Schürmann a

aDarmstadt University of Technology, Department of Lightweight Design and

Construction, Petersenstraße 30, 64287 Darmstadt, Germany

Abstract

Plane plates subjected to tensile loads are usually not considered to fail due

to buckling. However if a plate contains a cut-out, regions of compressive stresses

arise under a uniaxial tensile load. In thin-walled orthotropic composite plates these

compressive stresses may cause local buckling.

In general the stress concentration factors of cut-outs are very high, thus the

buckling limits will not be exceeded before fracture. However cut-outs, optimised

by a shape optimisation method, run risk to initiate buckling before exceeding the

fracture load because the stress concentration factors for these cut-outs are very

low.

In this paper the influence of the shape of optimised cut-outs on the buckling be-

haviour is investigated. Besides the critical load the under-critical and post-critical

behaviour of geometrical imperfect orthotropic composite plates is analysed. Meth-

ods that prevent local buckling under tensile stresses are discussed in order to pro-

vide the full advantage of optimised cut-outs.
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1 Introduction

Buckling under nominal compressive loads is well known. Even the influence

of cut-outs on the buckling load is widely investigated (1) but only a few con-

siderations are made on buckling under a nominal tension load. Nevertheless

buckling under tensile loads can be found in various geometries, even in a

pulled flat strip (2). Plates disturbed by cut-outs are notably affected since

holes create an inhomogeneous stress field with high tensile and compressive

stresses. The presence of compressive stresses always indicates a possible buck-

ling problem.

In the past only a few papers dealt with buckling at cut-outs under a global

tensile load. Since Cherepanov (3) in 1963 described the problem for the first

time, it took a long period until further results had been published. A main

focus had been put on isotropic materials and only a few papers took the

orthotropic behaviour of composite plates into account (4; 5). To the authors

best knowledge even for the case of a plate containing a circular hole no ana-

lytic expression for the buckling load with respect to the orthotropic elasticity

exists.

∗ Corresponding author. Address: TU Darmstadt, Fachgebiet Konstruktiver Le-

ichtbau und Bauweisen, Petersenstraße 30, 64287 Darmstadt, Germany. Tel. +49

6151 166532, Fax +49 6151 163260
Email addresses: tobias.kremer@klub.tu-darmstadt.de (T. Kremer),

helmut.schuermann@klub.tu-darmstadt.de (H. Schürmann).
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The buckling load of composite plates is dominated by the local bending stiff-

ness which depends on the spatial direction, the stacking sequence and the

fibre orientation. Besides the bending stiffness the in-plane parameters of elas-

ticity influence the critical load. With the aid of the finite element method

(FEM) one is able to estimate buckling coefficients with respect to the or-

thotropic properties of the plate, like done in (4; 6), but no analytical solution

has been found so far. Larsson notes that even the influence of the Poison’s

ratio and the shear modulus on the buckling load can hardly be described.

While this section deals with the behaviour of isotropic plates ans an intro-

duction, sections 2 to 4 take orthotropic composite plates into account.

1.1 Fracture load and critical load

The fracture load (index: fr) is the maximum load a plate can carry without

generating a crack under the assumption that no out of plane deflection is

allowed. Therefore the fracture load is determined by the stress distribution

an the strength of the material. Failure of composite plates is differed in fibre

failure and inter-fibre failure.

Considering the stability problem, the eigenvalue of the linear buckling prob-

lem is equal to the critical load (index: cr). Thus the critical load is the

maximum load a plate can carry without an out of plane deflection, ignor-

ing whether the material’s strength is exceeded or not. Only terms of stiffness

and the stress distribution affect the critical load.
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For real structural applications applications the minor of both loads deter-

mines the maximum applicable load. Especially since modern shape optimi-

sation methods are able to rise the fracture load of structures disturbed by

cut-outs the buckling load is of major interest in a design process. However,

by shape optimisation the absolute value of compressive stresses can – in

many cases – not be reduced in the same way tensile stresses are minimized.

This leads to an increasing relevance of the stability problem, because tensile

stresses are decreasing and compressive stresses remain on their level.

1.2 Geometrical imperfections

Another aspect, which makes it necessary to consider buckling of plates under

tensile loads, is that real structures always include geometrical imperfections.

Imperfections may arise from the manufacturing process or an imperfect bear-

ing. These imperfections cause out of plane deflections at undercritical loads.

Thus a structure can only reach its fracture load if the critical load is signifi-

cant higher.

Since the buckling and post-buckling behaviour of isotropic plates with cir-

cular holes is quite well understood, this case is used to make the buckling

mechanism clear.
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1.3 Buckling and post-buckling mechanism in isotropic plates

1.3.1 Model description

A thin-walled aluminum plate with a centrical circular hole is chosen as an

example to explain the buckling mechanism. The thickness of the plate is

t = 0.01mm, so the thickness corresponds to a standard aluminum foil. Table

1 summarises the parameters introduced in figure 1. The parameters of the

present plate are identical with the experimental setup of Gilabert (7). This

makes the numerical results, obtained in this paper, comparable to Gilabert ’s

experimental results. The plate is placed in the xy-plane, as shown in figure

1, and discretised in order to solve the problem with a standard finite element

program. The whole structure was discretized by approximately 6000 and the

cut-out by 160 linear shell elements. The elements are based on the equations

of Kirchhoff ’s theory. In the case of layered materials the classical lamination

theory (CLT) is used to obtain the layer-wise stresses. The basic theory can

be found in (8), for example.

The critical load and the corresponding buckling mode were obtained by a

linear eigenvalue analysis using the Lanczos method. After this analysis a

general nonlinear static procedure was used to obtain the stress distribution

and to perform the post-buckling analysis.

The edges in x-direction are coupled to a rigid bar, the edges in y-direction are

free. Setting the edges rigid will ensure that all nodes at the edge perform the

same displacement. Thus the tensile load can be applied directly to the bar.

Regarding the cross-section of the plate A = t ·W the external load F can be

transformed to a mean uniaxial stress σx,0 = F/A acting in x-direction.
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Table 1

Geometric and elastic properties of an aluminum plate containing a centrical circular

hole

Plate width W 300 mm

Hole diameter D 32 mm

Plate thickness t 0.01 mm

Young ’s modulus E 72000 N/mm2

Poisson’s ratio ν 0.3

W D

y

x
A

F

Figure 1. Geometrical parameters of a plate with a centrical circular hole. ”A” de-

notes the apex and ”F” the flank of the hole

1.3.2 Buckling behaviour

Figure 2 shows the result of a static FE-analysis. The minimal principle stress

σII shows a butterflylike pattern with stresses less or equal to zero. These

regions will cause local buckling. Because the principal stress state at the

cut-out boundary is uniaxial the minimal principle stress corresponds to the

σy-stress in point A. Therefore the maximum compressive σy-stress in the apex

is σy = −σx,0. The tangential stress σx at point F can be obtained by a stress

concentration factor. The Ktg-factor for a plate with the present finite width

leads to σx = Ktg · σx,0 = 3.04 · σx,0.
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Figure 2. Distribution of the minimal principal stress σII.

Subsequent to the stress analysis a buckling analysis has been performed. Fig-

ure 3 shows the first buckling mode. Regions with high compressive loads

are deflected normal to the plate plane in z-direction. Transverse to the load

direction the plate remains plane since these regions are dominated by ten-

sile stresses. Although the edges transverse to the load are not clamped, the

buckling deflection remains a local effect. This behaviour differs significantly

from buckling under a compressive load. Buckling at cut-outs under a global

compressive in-plane load always affects major regions of the structure.

Considering the buckling load, one recognizes the very low critical load Fcr =

0.419N. The corresponding experiments by Gilabert showed that at the very

beginning of the load-increase first buckling patterns could be observed (7).

Since the buckling load depends on the bending stiffness (9) a very small

wall thickness, like t = 0.01mm at the current plate, leads to a very low

buckling load. Therefore in practice it is possible, that local buckling occurs

at significant lower loads than the fracture load.

1.3.3 Post-buckling behaviour

Gilabert ’s experimental results also showed that a considerable load-increase

could be applied, although the critical load had been exceeded.
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z

F

F

Figure 3. First buckling mode of a plate with circular hole under a tensile load.

Corresponding critical load is Fcr = 0.419N and accordingly σcr = 0.14N/mm2

By performing a further FEM-analysis the described post-buckling behaviour

of the plate was investigated. The post-buckling analysis is based on a geo-

metric imperfect model. Thus a critical load in the sense of a bifurcation load

does not longer exists. The term ”critical load”always refers to the geometrical

perfect model.

As an imperfection the first buckling mode is superimposed to the plate. Other

imperfections than the first buckling mode hardly influence the shape of the

post-buckling pattern. For this reason the first buckling-mode was chosen as

the most critical imperfection. As an amplitude of the imperfection an ex-

tremely small value 0.001mm is chosen. Thus the structure is expected to

behave like a quasi-perfect structure. Applying a load to such an imperfect

plate will not result in a stability problem but a static bending problem.

Figure 4 shows the plate at a tensile load of F = 140N, that is more than

300 times higher than the corresponding critical load. Besides the first buck-

ling mode additional ”waves” appear. This behaviour is different from common

buckling problems. A column or a plate under a compressive post-critical load

will not generate a shape different from the first buckling mode. Additional de-

flections to the first buckling mode are typical for the post-buckling behaviour

of plates with cut-outs under tensile loads. Gilabert called these shapes ”mal-

tese cross buckling”.
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F

Figure 4. Post-buckling pattern. F = 140N and accordingly σx,0 = 46.7N/mm2.

Scaling factor in z-direction is 50

Considering the total collapse of a structure the loss of global stiffness is of

prime importance. Under a constant load a loss of global stiffness leads to large

deformations that structures cannot withstand. If a snap-through behaviour

can be prevented, structures can be loaded beyond the critical load. Light-

weight structures have a strong need for a stable post-buckling behaviour.

Since buckling loads in general are very low compared to its corresponding

fracture loads, the utilisation factor would be inadmissibly small if post-critical

loads would not be accepted.

Figure 5 shows the global in-plane displacement ux as a function of the nor-

malised load. Since the relation between external load and displacement is

linear, no snap-through effect occurs. The plate can be loaded far beyond the

critical load without a significant loss of global stiffness. But nevertheless post

critical deflections induce high local curvatures.

These curvatures lead to moments and high local bending stresses respectively.

The difference between the σy-tension on the upper- and underside of the plate

is proportional to the additional bending moment. Figure 6 shows these σy-

stresses. For post critical loads the tension on the upper side turns from a

compressive to a tensile stress. At a normalized load of 5 the σy-stresses are

approximately 4 and 5 times higher than the critical load.

Geometrical imperfections give rise to out-of-plane deflections even for under-

9
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Figure 5. Global displacement of the plate edge in direction of the tensile load. Load

is normalised to the critical load. A star marks the critical point.
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Figure 6. Normalized σy-stress at the point of maximum curvature (Point A) at the

upper- and underside of the plate. A star marks the critical point.

critical loads. A geometrical perfect structure would not show any under-

critical deflections. Therefore a crucial factor is the magnification of out-of-

plane deflections which are initialized by geometrical imperfections. The more

the deflection increases the higher the local curvature of the plate becomes.

Figure 7 shows the out-of-plane deflection at point A. Displacement is nor-

malised by the plate thickness t = 0.01mm. At a normalised load of 1 the

external load is equal to the critical buckling load and the deflection gradient

is maximum. Post critical loads still increase the deflection but the gradient is

decreasing. Regions with tensile stresses stabilise the deflection and thus there
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Figure 7. Normalised out of plane deflection at point A. Progressive incline for un-

der-critical loads σx,0/σcr < 1. Degressive incline for post-critical loads σx,0/σcr > 1.

A star marks the critical point.

is no unbounded increase.

1.3.4 Analytical prediction of the buckling load

Buckling of a structure is dominated by a change of the membrane stress state

to a bending dominated stress state. Thus there is an obvious dependence of

the buckling load on the bending stiffness. As known from Euler ’s buckling

stress, the critical load is a linear function of bending stiffness which consists

of Young ’s modulus and the wall thickness to the power of three (9; 2; 7).

Besides the bending stiffness the critical load depends on the plate’s width W

and its hole radiusR. To identify the influence of the hole radius, a systematical

variation of the relative hole radius R/t was performed. To prevent finite

width effects the width W was chosen W/R > 40. The following results were

computed with the aid of the FEM. Hooke’s law of the model corresponds to

steel E = 210000N/mm2, ν = 0.3.

In figure 8 the gradient of t/σcr is independent from the radius R. By comput-
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Figure 8. Critical load σcr as a function of the plate thickness t for different hole

radii R for isotropic materials (here: Steel). Ri = 5, 10, 20, 40mm
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Figure 9. Critical load σcr as a function of the hole radius R for different plate

thickness t for isotropic materials (Steel). ti = 0.0625, 0.25, 0.5, 1.0mm

ing the gradient in a log-log-domain, one obtains the unknown exponent n of

x if the dependence f(x) = xn is assumed. In the present figure the gradient is

∂σcr/∂t = 2. As mentioned before, the critical load is a function of the bending

stiffness. If the critical load is given as a stress, the bending stiffness is divided

by the wall thickness t and therefore the critical stress is proportional to t2,

like found in figure 8.
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Figure 9 shows that the gradient, and therefore the exponent of R, does not

dependent on the plate thickness t. This means that the dependence of t can

be expressed without considering the radius R. Computing the gradient one

gains −2 which corresponds to σcr ∝ 1/R2.

The buckling stress can now be estimated by the following equation:

σcr = K · E · t2

R2
(1)

E is Young ’s modulus and K a buckling coefficient. Using an isotropic material

with an Poisson’s ratio of ν = 0.3 gives a buckling coefficient of

K = 3.55 (2)

for an infinite plate. Considering Euler ’s buckling equation of columns in equa-

tion (3), for example,

σcr = π2 · E · 1

λ2
cr

=
π2

A
· E · I

l2cr
(3)

one can notice an analogy of the structure of equation (1) and Euler ’s buckling

equation. The radiusR corresponds to effective length lcr which is the geometry

term of the buckling equation. E · I is the bending stiffness term in Euler ’s

buckling equation which corresponds to the bending stiffness E · t2 expressed
in terms of a stress.

2 Optimised cut-outs in layered composites

The CAO.FKV-method is a FEM-based parameter-less shape optimisation

method. The boundary of a cut-out is varied by a redesign rule based on an

13
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optimality criterion. As design variables the node coordinates of the discretized

FEM model are used. With the help of this method one obtains cut-outs in

layered composite materials with a maximum fracture load (10; 11). Since the

CAO.FKV-method is based on the physically based fracture criterions by Puck

(12; 13) the layer-wise stress exposure 1 is taken as a measure of the quality

of a cut-out shape.

In the present case the maximum stress exposure is taken as a stop condition.

If the maximum stress exposure at the complete cut-out is less than 1 – which

means that no fracture occurs – the optimization is stopped. The redesign rule

is adjusted in a way that regions with a stress exposure less than 1 are not

influenced by the algorithm any longer. Without these boundary conditions all

cut-outs would degenerate to the global optimum shape for an uniaxial load

case: a crack in load-direction. Thus the results of the CAO.FKV-method in

the present case depend on the initial cut-out geometry.

The lay-up of the considered CFRP plate is a [0/90]S cross-ply. The properties

of an unidirectional layer which form the cross-ply can be found in table 2.

Since no edge effects are included, the stacking sequence does not influence

the fracture load, whilst no tension-bending coupling exists. The CAO.FKV-

method homogenises the stress exposure for inter-fibre failure in order to raise

the fracture load. In the present case the exposure is dominated by stresses

σ2 normal to the fibre direction. Figure 10 shows the distribution of the σ2

stress around a cut-out in the 90◦-layer of the cross-ply. To obtain the optimal

1 The stress exposure of composite materials is defined in the German VDI-

guideline 2014 Part 3
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shape, the CAO.FKV-method took approximately 10 iterations.

Table 2

Elastic properties and strength of an unidirectional CFRP layer.

E1 =139280N/mm2 R+
‖ =2000N/mm2

E2 = 11672N/mm2 R−
‖ =1650N/mm2

G21= 5766N/mm2 R+
⊥ = 70N/mm2

ν21 = 0.26 R−
⊥ = 240N/mm2

ν12 = 0.022 R⊥‖= 105N/mm2

= 79 N/mm2

2 = 43 N/mm2y

x

circular optimised

2

2

2

Figure 10. Inter-fibre failure dominating stress σ2 in the 90◦-layer (the layer trans-

verse to the external load) of a cross-ply before and after the shape optimisation.

The peak is almost halved.

Figure 11 shows cut-outs with identical fracture loads and cut-out width of

w = 20mm. The first optimised shape is named optimised circular because it

is deviated from a circle. The CAO.FKV-method reduced the curvature of the

circle until the stress exposure is constant.

The second optimised shape is based on a square, therefore it is called opti-

mised square. Besides the curvature of the flank, the edges are softened by the

CAO.FKV-method in order to increase the fracture load.
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1 : 1.78

optimised

circular square

x,0

x,0

cross-ply
x

y

Figure 11. Cut-outs after the shape optimisation. All shapes have the same fracture

load and the same width w = 20mm. A small circle indicates the location of the

maximum pressure stress σy.

The last considered shape is an ellipse. Its aspect ratio is chosen in a way that

the fracture load matches the fracture loads of the previous discussed shapes.

Lekhnitskii showed that compressive stresses at an elliptical cut-out under

uniaxial tension does not depend on the aspect ratio (14). The compressive

stress at the apex (see point A in figure 1) is given by the following equation.

σy,A = −σ0

√
Ey

Ex
(4)

Since the stacking sequence does not influence the modulus Ex and Ey, all

cross-plies, with equal layer thickness for 0◦- and 90◦ layers, have a maximum

compressive stress of σy,A = −σ0. The compressive stresses at the optimised

cut-outs are not exactly independent from the cut-out shape. In table 3 the

ratio σx,0/σy,A is given. It is found, that the optimised square shape has a

significant lower compressive stress.

16



ACCEPTED MANUSCRIPT 
 

Table 3

Compressive in-plane stresses at the apex of the cut-outs normalised to the external

tension load σx,0

cut-out ratio σx,0/σy,A

circular −1.00

elliptical −1.00

optimised circular −0.96

optimised square −0.76

3 Buckling of layered composites

In the following, two different stacking sequences are examined.

• [0/90/90/0]

• [90/0/0/90]

The first lamina provides a high bending stiffness D11 · t in x-direction, thus

in the load direction. The second lamina has a high bending stiffness D22 ·
t perpendicular to the load, the y-direction, where t denotes the laminate

thickness. Equation (1) showed, that the critical load is expected to be a

function of Et2/R2. Because the width of the considered cut-outs is w =

R = 20mm, as a free choice, the laminate thickness is chosen t = 0.25mm

to provide a suitable t/w-ratio. One has to bear in mind that layups with a

greater laminate thickness and at the same time a wider cut-out width are

mechanical equivalent as long as they have the same t/w-ratio.

17
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Since the buckling mode is dominated by the curvature κy (see figure 3), the

high bending stiffness D22 · t of a [90/0/0/90] lamina is expected to give higher

critical loads. Table 4 lists the critical loads and the corresponding fracture

loads for a linear static analysis, neglecting pre-buckling deformations in the

static analysis. Ratios σcr/σfr smaller than one show that buckling occurs in

prior to fracture. At ratios exceeding one, the critical load is higher than the

fracture load, thus no buckling occurs because the lamina suffers inter-fibre

failure or fibre failure before the buckling load is reached.

Table 4

Critical load σcr and corresponding tension load at fracture σfr for different cut-outs

and stacking sequences. CFK t = 0.25mm, w = 20mm

stacking cut-out σcr σfr
σcr

σfr

sequence N/mm2 N/mm2 –

[0/90/90/0] circular 89 96 0.93

elliptical 125 145 0.86

optimised circular 81 145 0.56

optimised square 62 145 0.42

[90/0/0/90] circular 300 96 3.13

elliptical 445 145 3.07

optimised circular 270 145 1.86

optimised square 194 145 1.34

18
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As expected, higher bending stiffness in y-direction leads to a higher critical

load. Because fracture is assumed to be independent of the stacking sequence

the σcr/σfr-ratio increases for a [90/0/0/90] lamina and no buckling is expected.

The presumption, that higher induced compressive stresses cause lower critical

loads, does not prove true for cut-outs in composite materials. Tables 3 and

4 show that an elliptical cut-out generates the highest compressive stress –

compared to an optimised cut-out – but has the highest critical load. Therefore

a so far unconsidered parameter, that has to be determined in the following,

influences the buckling load as well.

Taking the critical load into account it can be found out, that a high cut-out

curvature, at the point of maximum compressive stress, corresponds with a

high critical load. The circular hole and the optimised circular shape have

exactly the same curvature 1/R and almost the same critical load. At the

ellipse the curvature is 3.13/R and thus the critical load is less than the critical

load for a circular hole. Since the boundary of the optimised square cut-out is

straight at the point of maximum compressive stress, the cut-out curvature is

zero and thus the critical load least.

Nevertheless the dependency on the cut-out curvature can only be assumed

in the present discussed cases. Especially for arbitrary lamina configurations

the dependence remains to be proved true.
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4 Post-buckling behaviour

Ratios σcr/σfr less than 1 should be prevented at all circumstances. Even if the

critical load is not exceeded, the magnification of imperfections leads to men-

tionable local bending stresses. The optimised square shape, in a [0/90/90/0]

lamina, buckles at 42% of its fracture load. Even if the fracture load is max-

imum, the exploitation factor of this setup is very low since the applicable

load is constrained by the critical load. A simple permuation of the stacking

sequence increases the utilisation significantly (see table 4).

Nevertheless the post-buckling behaviour of a [0/90/90/0] layup is analysed in

the following because other influences than the buckling behaviour may also

influence the choice of this stacking sequence. No attention is payed to the

fracture load of the imperfect model in the post-buckling analysis. The main

focus is put on the post-buckling mechanisms at the optimised cut-outs. Since

these mechanisms do not depend on the amplitude of the imperfection, the

imperfection amplitude is chosen to 0.25mm which corresponds to the thick-

ness of the plate.

Earlier paragraphs of the present paper showed a significant difference in the

buckling load of the optimised circle or a square shapes. Therefore the post-

buckling behaviour of both shapes is analysed.

Figure 12 shows the region of maximum buckling curvature and thus maximum

bending stress at a cout-out. The 90◦-layer can not resist high σ2 stresses, that

may lead to inter-fibre failure.
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Figure 12. Deflection of an geometric imperfect plate containing a cut-out in the

post-buckling analysis. Local curvature causes inter-fibre failure.

Even though the critical load of the optimised circular cut-out is 1.3 times

higher than the square shape (see table 4), no clear difference in the maximum

bending moment-flow at these cut-outs could be found. Figure 13 shows the

moment-flow m = M/w in x-direction around the circular and the square

shape. The additional bending stresses, caused by the moment, are acting in

y-direction and thus rise the σ2-load. Since both cut-out shapes are optimised

to an identical fracture load and have almost an identical additional bending

moment they are expected to fail at the same postcritical load, even though

their critical loads differ.

Even if the optimised square shape buckles at an earlier stress state, its final

fracture load is not expected to differ significantly from the optimised circular

shape. In addition one has to keep in mind, that only a few inter-fibre cracks

cause a sudden loss of bending stiffness, see figure 12. A reduced bending

stiffness reduces the critical load as well. This mechanism leads, in practice,

to lower critical loads than predicted by a numerical analysis.
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Figure 13. Moment-flow mx around the optimised cut-outs at the fracture load.

Deflection caused by the geometricl imperfect structure.

5 Conclusions

Buckling at cut-outs under a tensile load is not exclusively an academic case.

It is relevant for many engineering problems, especially in light weight design.

The domination factor is not the bending-stiffness of the plate but the ratio

stiffness to cut-out width. Shimizu et al. remark that even in design of high-

way bridges buckling under tensile loads is not negligible (9). In the case of

circular holes in isotropic materials the influence of the hole radius on the crit-

ical load could be determined. The buckling mechanism of isotropic materials,

observed in experiments and numerical analysis, helps to understand buckling

of composite materials.

Since shape optimisation methods for FRP give shapes with very high fracture

loads, buckling under a tensile load becomes dangerous.

It could be shown that shapes with the same static fracture load differ signif-

icantly in their corresponding buckling loads. Besides the cut-out shape the
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stacking sequence and the bending stiffness respectively influence the critical

load. It was shown, that an improper lay-up results in a undetected stabil-

ity problem. However an appropriate stacking sequence rises the critical load

without influencing the static fracture load.

Post-buckling analysis on geometrical imperfect composite structures were

made. Because in practice engineering structures are always superimposed by

imperfections, out of plane deflections arise at under-critical loads as well. The

analysis showed that the values of the bending moments, resulting from the

deflection of the considered shapes, do not significant depend on the critical

load.
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