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An inverse problem of elastostatics in mechanics of composites 

A.N. Galybin 

Wessex Institute of Technology, Southampton, UK  

Phone +44 (0) 238 029 3223; E-mail: agalybin@wessex.ac.uk  

Abstract  

In this study we consider an inverse problem of elastostatics and its applications appearing in 

mechanics of composites. In many cases surface displacements can be monitored on a part of a 

stress-free boundary of an elastic composite (in general, heterogeneous). When this information 

is further used for stress analysis it leads to redundancy in boundary conditions on the part where 

displacements have been measured. To compensate this redundancy no boundary conditions are 

imposed on some internal boundaries such as cracks, inclusions or interfaces between dissimilar 

materials in a particular composite. As the result one arrives to an ill-posed boundary value 

problem of elasticity overspecified on a part of the entire boundary and underspecified on the 

rest of it. This paper presents general approach based on integral equations and studies one 

particular example for the reconstruction of characteristics of narrow process zones developing 

near the  crack tips.  

Key words: B. Fracture; B. Interface; C. Crack; C. Delamination; Inverse problems 

1. Introduction 

Boundary value problems, BVPs, in mechanics of composites often employ the elastic 

assumption and certain relationships on the interfaces within considered bodies. These 

relationships usually express continuity of tractions, stresses or displacements across the 

boundary (or its part) between two (or more) contacting materials having, in general, different 

elastic properties. Due to the presence of interfaces one needs to consider simultaneously the 

problem for exterior and interior domains bounded by the same contours. Apart from this, there 

is no essential differences with the usual BVP of elasticity.  

Classical formulation of elastic BVPs requires one of the following surface conditions to 
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be known on the boundary of a domain: (i) stress vector or tractions; (ii) displacement vector; or 

(iii) certain combinations of stress and displacement components (mixed problems, widely used 

in formulations of contact problem). The boundary conditions should be posed on the entire 

boundary and should not be overspecified, i.e., for instance, stress and displacement vectors 

should not be given simultaneously on any part of the boundary. Then all the cases (i)-(iii) yield 

a well-posed BVP with unique and stable solution. The theory of classical BVPs of plane 

elastostatics is fully presented in the classical monograph by Muskhelishvili [1]. Different types 

of contact conditions are discussed in detail in Johnson [2], they also lead to well-posed 

formulations. 

However there are many applications where data on stresses or displacements may not be 

available on the entire boundary of a body (including internal boundaries). Such problems appear 

in strain-stress measurements, interferometry, rock mechanics, monitoring the fracture 

development in strength tests etc. They require the consideration of a specific BVP, which is 

overspecified on a part of the boundary and underspecified on the rest of it. In order to reduce 

such a problem to one of the conventional types one needs to recover boundary conditions on the 

entire boundary,  therefore  they are often referred to as inverse problems.  It is known [3] that 

inverse problem are usually ill-posed in the sense that their solutions are unstable, i.e. small 

perturbations in boundary conditions lead to essentially different solutions. 

Overview of recent results and approaches for solving inverse problems in different fields 

is presented by Bonnet and Constantinescu [4], in particular, they have mentioned some 

problems related to mechanics of composites such as identification of distributions of elastic 

moduli and parameters or buried objects as well as detection of different defects, for instance, 

cracks. All these problems can be effectively reduced to the inverse problem described above.  

During the last two decades there have been numerous attempts to solve problems of this 

(or close) type in respect to different engineering problems. Earlier works became available in 

late 80th -mid 90th.  Most of them employed methods based on integral equations, see, for 
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instance, [5] for identification of flaw shape in a body, [6] for overview of inverse problems in 

fracture mechanics, [7] for contact problems where measurements at the contact area are 

difficult, [8] for taking into account plastic flow near crack tips,  [9] for non-destructive cavity 

identification, [10] for analytic solutions in half-plane for surface subsidence monitoring, [11,12] 

for providing integral equations. Finite element formulations have also been employed, e.g. [13].  

However no complete analysis of solvability and uniqueness have been performed in early 

numerical studies. Perhaps, the first comprehensive analysis of solvability of these problems has 

been reported by Shvab [14] for an isotropic elastic domain with the following boundary 

conditions: displacement vector is given on a part of the boundary simultaneously with the stress 

vector; the rest of the boundary has no conditions posed. This problem referred further to as 

tractions-displacements problem, TDP, can be viewed as consecutive problems for holomorphic 

vectors, on which the proof of uniqueness can be based, e.g. [15]. Methods using complex 

variables for investigation of TDP in 2D have also been applied, e.g., [16,17]. 

One can rarely find analytical solutions of the TDP (with exceptions for simple domains, 

e.g. for wedge-like domains [16]), therefore the development of stable numerical methods has 

been the main focus during the last years. The considerable progress has recently been achieved 

on this topic in UK at University of Leeds by L.Marin, L.Elliott, D.B.Ingham, D.Lesnic and 

D.N.Hào in the development of regularisation techniques, iterative methods and algorithms for 

solving inverse BVPs of the TDP or close types [18-24]. In particular it has been shown that the 

methods based on the Tikhonov regularisation  provide stable solutions [18] in elastostatics. 

Other studies, e.g. , [25], confirm this conclusion, in particular, it has been found [20, 26] that the 

use of the SVD regularisation presents a valuable computational tool in elastostatics.  

In the next sections we present general formulation of the plane elastic TDP for the case 

of a body composed of two dissimilar materials, derive integral equations for this TDP, consider 

simple cases relevant to mechanics of composites and present details of SVD regularisation. In 

order to illustrate the approach we consider a TDP for a crack with narrow process zones 
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developing near the crack tips. We conduct numerical experiments for recovering stresses and 

crack opening displacements, COD, in these process zones by utilising synthetic data on COD on 

the opened part of the crack followed by statistical analysis of the results. 

2. Formulation and integral equations of the problem 

Formulation of TDP 

General solution of plane elastic boundary value problems is given by the Kolosov-

Muskhelishvili formulae [1] in terms of two holomorphic functions (complex potentials) ϕ(z) 

and ψ(z) of complex variable z=x1+ix2. Let Γ be a closed (or open) contour separating the entire 

complex plane on exterior Ω+ and interior Ω− domains that, in general, have different elastic 

properties, G± (shear moduli) and ν± (Poisson’s ratios).  

Boundary values of displacements, w=(w1,w2) , tractions t=(t1,t2), and stress vector, 

p=(p1,p2), can be presented as complex valued functions (of complex variable ζ∈Γ) w, t and p 

respectively via boundary values of complex potentials 

 

( )±±
ζ∂
ζ∂±±±

ζ∂
∂±±±

±±±±±±

±±±±±±±±±

ψ′+ϕ ′′ζ+ϕ′+ϕ′==+=
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ψ−ϕ′ζ−ϕκ=+=
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21
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Hereafter “±” denote boundary values obtained by approaching Γ from domains Ω± respectively; 

piecewise elastic constants κ± are defined as κ± =3-4 ν± to for plane strain and κ±=(3- ν±)(1+ ν±)-1 

for plane stress; the argument, ζ, of complex valued functions is not shown for compactness.  

We consider the following BVP formulated in terms of tractions (stresses) and 

displacements (tractions-displacements problem, TDP) 

 

;0or0;0:

;or,:

;0or0:

2
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±±
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 (2) 

Here <f> stand for the jump of a quantity across the contour defined as <f>=f+−f−; the function 

ω=ω(ζ) is known form measurements, therefore it is subjected to experimental errors; Γ0 , Γ1 and 

Γ2 are non-intersecting portions of Γ, such that Γ=Γ0∩Γ1∩Γ2, transition points between the parts 
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Γ0 and Γ2 are, in general, unknown. 

Reduction to integral equations 

 It follows from (2) that <t>=0 (and/or <p>=0) on the entire boundary and therefore the 

boundary values of holomorphic functions in (1) are expressed through the jump of 

displacements and the traction t=t+=t− (or the stress vector p=p+=p−). In view of the Cauchy 

integral formula one can present the potentials as 

 ( ) ( ) ±

Γ
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z
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 (3) 

Here for simplicity it is assumed that the potentials vanish at infinity (although general case does 

not present significant difficulties); the function h(η) is expressed via the function g(η) 

)()()( η−η′η−=η ggh due to continuity of tractions. Bearing in mind that 2G±w±+t±=(κ±+1)ϕ ± 

and  tw GG 2
1

2
1 −ϕ= +κ one obtains the following relationships by the Sokhotski-Plemelj 

formulae [1] applied to the potentials in (3)  

 −+−

−

+

+

−

−

+

+ −=γ−=β+=α+γ=β+α +κ+κ+κ+κ
GGGGGG

wtgg
2

1
2

1
4

1
4

1
4

1
4

1 ,,,S  (4) 

Operator Sg introduced in (4) has the following properties 
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from which it is also evident that Sg  is singular operator while R1g  is regular operator. 

It should be noted that expressions (3)-(5) preserve their form if boundary conditions 

employ continuity of the stress vector across the boundary (instead continuity of tractions), in 

this case the function g(η) has to be replaced by its derivative as well as complex potentials. 

In the case Γ0=∅ one faces an overspecified problem, which is evident from the fact that the 

jumps of displacements and tractions determine unique solutions in both domains (see for 

instance, Savruk [27]). 

In the general case Γ0≠∅ the problem is overspecified on Γ1 and underspecified on Γ0, 

which allows one to find unique solutions for both domains. They can be derived 

simultaneously, for which it is sufficient to determine g(η) on Γ0 from an integral equation that is 
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derived as follows. Firstly let us obtain an expression for tractions, t=t+=t− via g(η) on Γ that 

follows from (1) by taking into account equations (3)-(5) 

 gggggt 22
1

12
1, RRSQQ −−==  (6) 

where I is the identity operator and regular operator R2 has the form 
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Substitution of (6) into (4) results in the following relationships between COD and auxiliary 

function g(η)   
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Now one can derive integral equations of BVP specified by (2) in one of the following 

equivalent forms  

 1
1

1
1 onoron Γτ=Γω= −− wt QTTQ  (9) 

To invert operator Q one should solve the integral equation of the first boundary value 

problem of plane elasticity presented by (6). It has a unique and stable solution, which is 

symbolically denoted here as the inverse operator Q-1. Despite Q-1 is stable, equation (9) belongs 

to the class of ill-posed problems [3], because it is a Fredholm-type equation of the first kind. 

The latter is evident if one exchanges the order of operators in (9); it can be shown that although 

SQ-1t produces non-integral term βt known on the boundary Γ1 and all other (integral) terms are 

written on Γ0∩Γ2. Therefore operator S is not singular and (9) is a Fredholm equation of the first 

kind. Similar conclusion is valid for T-1Q.  

Special cases 

In special cases of geometry equations (9) can be radically simplified.  Two cases 

presented in this subsection are of particular interest in mechanics of composites. They address 

situations where delamination occurs on the interfaces between two lengthy laminates (the case 

of half-planes) of between matrix and aggregate (circular inclusion embedded in the plane).  

In the case of half planes it is evident that R1= R2=0, therefore Q-1=S and the first 

equation in (9) reads as αSt=ω on Γ1 , which can also be written down in the integral form 
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 It should be noted that (10) can also be used for the case of a finite rectilinear crack (or 

even for a number of cracks on the x-axis). However more accurate numerical results will be 

obtained if instead of infinity in (10) one uses actual coordinates of the crack ends. Then the 

operator Q-1 will have correct behaviour near the ends and the continuity condition on the rest of 

the x-axis is automatically satisfied. The next section investigates a finite crack in detail. 

In the case of unit circular inclusion embedded in the plane   π≤ϑ<π−=ζ ϑ ,ie  hence 

1−ζ=ζ  and regular operators become 
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The inverse operator assumes the form g(η)=St-cη, therefore (9) can be transferred into the 

following integral form  
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After integration of the inverse operator (g(η)=St-cη) divided by η2 one finds an expression for 

the unknown constant c through the tractions in the form 
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It is evident that  c is real because the imaginary part of the integral vanishes due to global 

equilibrium (resultant moment and resultant force are both zero). Now the constant c is found 

from the linear system obtained after solving (12) followed by the substitution of the solution for 

t(θ) into (13). 

Numerical solution 

Due to ill-posedness any solution of (9) is unstable and special regularisation is required 

to obtain stable approximate solutions. Here we use the SVD regularisation that, as shown in 

[20,26], is an effective tool for this type of problems. 
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First of all equations (8) or (9) are reduced to a linear system of algebraic equation 

AC=W. This system can be obtained by different methods. In this study, we seek solutions as 

linear combinations of independent functions, fj(η) with unknown coefficients {cj}, j=1…n, 

which immediately reduces integral equation (9) to a functional equation of the form  

c0F0(ζ)+c1F1(ζ)+ …+cnFn(ζ)=ω(ζ) where Fj(ζ) are functions obtained by applying the 

operator(s) in the left hand sides of (8) or (9) to fj(η). This functional equation is further 

converted into the linear system by application of the collocation method with m collocation 

points, ζm, such that array {ω(ζm)} forms the right hand side of the linear system, W, and 

{Fj(ζm)} its matrix A. The latter obviously has m rows (equations) and n columns (unknowns), in 

general,  n≤m.  Then an approximate solution of this system is found by the SVD method as 

follows 

 UWDVC ′= T  (14) 
Here U (mxn) and V (nxn) are orthogonal matrices in the SDV decomposition A=UDVT and 

D(nxn) is a diagonal matrix formed by the singular values, dj, placed in descending order on the 

main diagonal, d1≥d2≥…≥dn; the matrix D′ is the regularised inverse of D with the rank k: 

D′=diag{d1
-1,d2

-1 ,…dk
-1,0…0}. 

Stability of the solution is controlled by the condition number determined as the ratio of d1/dk. In 

all examples considered further on the condition number is kept below 103. 

3. Recovering characteristics of process zones near rectilinear crack  

Crack with narrow process zones  

The knowledge of stress distribution in an narrow process (cohesive) zone developing on the 

continuation of the crack ahead of crack tips is fundamental for the investigation of fracture 

propagation in many quasi-brittle materials such as concretes, rocks, ceramics, alloys, etc. Since 

1959 when the first model of process zone for brittle fracture was introduced in [28], a number 

of theoretical models of the process zone have been suggested, however none of them can be 

considered as a universal model. Comprehensive survey of up-to-date achievements in this field 
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can be found in Engineering Fracture Mechanics 69 (2) (2002). 

A possible general approach can employ experimental data on displacements spread over a 

sample with the crack followed by the inverse analysis. This procedure is based on solving a 

system of certain functional equations with respect to parameters describing a softening law in 

the process zone, [29]. Such a problem belongs to a wide class of identification problems that are 

usually ill-posed.  Paper [30] refers the identification problem to the class of constrained 

optimisation problems and states that one could face significant difficulties while solving the 

problem of this type. On the other hand it is possible to treat this problem as a direct one by 

reducing it to a TDP formulated above. This reduction retains the ill-posed nature of the problem 

but allows for a relatively simple numerical analysis as compared to the case of the optimisation 

problem with multiple constrains. The present subsection investigates a general method for the 

determination of stress distributions inside the process zone proposed in [25,26]. The method 

uses data on crack opening displacements, COD, as input information. 

Integral equation for a straight crack in a plane is obtained from the equation for half-

planes differentiated with respect to the contour variable. It is also worth to introduce the crack 

ends (their positions are in general, unknown) and obvious corrections addressing loads at 

infinity or on a part of the crack surfaces. In order to illustrate the approach proposed in the 

previous section let us consider two simple symmetrical cases depicted in Fig 1: cracks subjected 

to normal loads only, they occupy interval (-L,L) with the traction-free part (-1,1) on which COD 

are monitored. Integral equation for these cases assumes the following form 

 10),()(
)(2

0

1

22

22

22
<≤µ−µ=η

−η
ηη−

−π

−
� xxxd

x

pL

xL

x
L

 (15) 

Here the right hand side is considered as the sum of two terms: the first one is proportional to the 

derivatives of measured COD, µ(x)=α-1ω´(x), while the second one is proportional to COD due 

to exactly known stresses applied on the crack surfaces and/or at infinity, µ0(x).  The condition of 

single-valuedness should is automatically satisfied, which provides uniqueness of the solution of 
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integral equation (15). 

For the determination of unknown crack length (parameter L) it is assumed that the 

presence of process zones make stresses to be bounded at the crack tips. Therefore the mode I 

stress intensity factor, KI, should vanish, which leads to the following condition  

 ( ) ( )
0

2

1
22

0 =
−π

+ �
L

I dx
xL

xpL
LK  (16) 

where K0
I(L) corresponds to exactly known stresses and the stress p is solution of (15). 

Two cases of loads are considered: uniform tension, σ0, at infinity (Fig 1a) and concentrated 

force, P0, applied at the crack centre (Fig 1b). For these cases  

 ( ) Lt
LtP

t

tL
t <

�
	

 πσ

−π
=µ − forcesedconcentratfor

loaduniformfor1
1

0

0

220  (17) 

 ( )
��

�
	




π

πσ
=

forcesedconcentratfor

loaduniformfor
0

0
0

L
P

L
LK I  (18) 

In order to model unknown stresses in the process zone we examine polynomial 

distributions as described in the next subsection.  

Model examples of stress recovering in the process zone 

This subsection describes the algorithm used in numerical modelling of the cohesive stress 

recovering and presents the results of numerical experiments. Modelling undergoes the following 

major steps.  

- ideal distributions of normal stresses acting in the process zone are introduced and ideal 

densities of COD are calculated; 

-  synthetic data are generated by adding normally distributed errors to ideal densities of COD; 

- stress distributions in the process zone are recovered for different lengths of process zones by 

solving integral equations (15) followed by recovering the length of the process zone by 

satisfying the condition of boundedness of the solution (16); 

- statistical analysis for different sets of errors has been performed to find out accuracy in the 

reconstruction.  
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Synthetic data 

 The following polynomial distributions of compressive stresses (referred to as ideal 

stresses further) have been used in modelling 

 ( ) njLxp jj
ideal �0,)1()1( 1

0 =−−−= −  (19) 
where j is associated with the numerical test number and L0  is a given length of the process 

zone. It should be noted that different smooth distributions of cohesive stresses can be composed 

from (19) by means of power series. All distributions (19) are monotonic, vanish at x=1 and have 

minimum magnitude of –1 at the crack tips.  

 Distributions (19) may occur in the process zones if and only if the applied load is of 

certain magnitude determined from the condition KI=0. This leads to the following tensile load at 

infinity 

 ( ) ( ) ( ) njLLJL j
jj

�0,1,,12 0000 =−−=σ −  (20) 
or to 

 ( ) ( ) ( ) njLLJLLP j
jj

�0,1,,12 00000 =−π−= −  (21) 
for the case of concentrated forces. Hereafter the following integral is used 

 ( ) ( )
� −

−−
π

=
L k

k dx
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axxL
aLtJ

1

22

221
,,  (22) 

Dimensionless magnitudes the loads in (20) and (21) are given in Table1. 

Densities of COD corresponding to the distributions presented by formulas (19)-(21) are  

 ( ) ( ) ( ) ( )[ ] 000022
0

0,1,,12 LtLtJL
tL

t
t j

jj <≤−+σ
−

=µ −
σ  (23) 

for the case of a uniform load and 

 ( ) ( ) ( ) ( )[ ] 00
2

00022
0

0,1,,12
1

LtLtJtLPL
tLt

t j
jj

P <≤−π+
−π

=µ −  (24) 

for the case of concentrated forces. They are referred to as ideal densities further on. 

Experimental measurements of COD on the visual part of the crack (-1,1) are obviously 

subjected to errors. These errors appear only in the right-hand sides of integral equation and 

linear algebraic system. They are modelled by introducing a distortion in the right hand side of 
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the linear system. Such a distortion has independently been generated at every collocation point 

by introducing random errors normally distributed within the range of ±5% of calculated values 

by formulas (23) or (24). Therefore in the calculations the vector W had the following 

components 

 
( ) ( )
( ) ( ) forcesedconcentratfor,1

loaduniformfor,1
2

mPmm
P
m

mmm

tt

t

µξ+=ω

µξ+=ω σ
σ

 (25) 

where ξm (m=1…M) are Gaussian errors. In all calculations below the collocation points have 

been chosen equidistant on (0,1), i.e. as tm=(2m-1)/2M, m=1…M.. 

Solution 

Solution of integral equation (15) is sought in the form 

 ( ) ( ) Lxxcxp
n

k

k
k ≤≤−=�

=

1,1
0

 (26) 

After substitution of (26) into (15) and (16) one obtains the following functional equations 
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It follows from (18) and (26) that the unknown coefficients are linked with the applied loads as  

 ( ) ( )1,,2,1,,2
0
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n
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k
k ��

==
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Substitution of (27) into (25) with the account for (17) leads to transformed functional equations 

for the determination of the unknown constants ck. For the case of uniform loads 
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For the case of concentrated forces  
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t
k

n
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=

1,1,,1,,
2 2

0

22

22
 (29) 

Accordingly the coefficients ak,j of matrix A ={ak,m}in the linear system are as follows 

 ( ) ( ) ( )[ ]
Mmt

tL

LtJLLJt
La m

m

mkkm
mk �1,10,

1,,1,,2
22, =<<

−

−=  (30) 
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 ( ) ( ) ( )[ ]
Mmt

tL

LtJLLJt
La m

m

mkkm
mk �1,10,

1,,1,,2
22, =<<

−

−=  (31) 

The right hand sides of the linear system AC=W are given by (25) W={ωm}. Its stable 

solution, vector C={ck}, is obtained by formula (14), it is evident that this solution depends on L. 

The latter is further found from (26) as detailed in the next subsection. 

The approach employed here has no restriction for studying more complex (although 

smooth) distributions of stresses in the process zone. General case can be easily obtained if 

instead of basic distributions (19) their linear combinations are considered. In this case one 

arrives to polynomial distributions with respect to the powers of (x-1). This does not complicate 

the analysis since the sought solutions have exactly the same form given by (26). 

Numerical results 

The normalised length of the process zones, l=L-1, has been varied from 0 to 2 in all 

numerical calculations. The choice of the value for the upper bound is justified by the previous 

results [25] that have shown satisfactory recovering of the cohesive stresses within this range for 

the case when the length of the process zone is known (longer process zones are unlikely to be 

observed in quasi-brittle materials as well). Once solutions ck depending on the length of the 

process zone have been obtained, the values of applied loads can be calculated by formulas (27) 

(for uniform load or for concentrated forces). Then the length of the process zone is recovered by 

solving the following equations with respect to parameter L 

 ( ) ( ) ( ) nj
forceedconcentratLL

loaduniform
LLJLLLJc j

j
k

n

k
k �0,

1
1,,11,,

0
000

0

=
�
	



−= −

=
�  (32) 

Here the coefficients ck depend on the crack length, L, and the test number, j. The right hand 

sides in (32) represent the applied loads (Table 1) and solutions are sought within the interval 

(1,3) for all given L0 from the same interval. Step-by-step method with correction is used for 

calculations of the roots, at each step the coefficients ck have been determined as described 

above. Due to 10% errors introduced in the right hand side, the accuracy in calculations of the 

roots has been restricted by 0.01.  
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 Beforehand the problem has been solved for the case when the right-hand sides (25) are 

known exactly. This has been done in order to determine the number of collocation points in the 

modelling and to check whether or not the choice of the condition number, C, within 102-103 

provides sufficient accuracy in the reconstruction of cohesive stresses. All calculations have been 

restricted by the fourth order polynomials (n=4). It has been found that 2-3 nonzero diagonal 

elements (of maximum 5) in the matrix D' provide C=102-103 and no significant refinement of 

results have been observed if M varies from 20 to 100. The number of collocations has been set 

M=100 in all subsequent numerical experiments. The condition number has been set less than 

103 for the case of uniform load and less than 102 for the case of concentrated forces. This choice 

is explained by much more sensitive behaviour of solutions in regard to distortions imposed in 

the right hand side in the latter case.  

 Figure 2 illustrates the recovered and ideal stress distributions in the process zone for the 

case j=1 under uniform loading at infinity for different condition numbers. Digits in the figure 

refer to the numbers of non-zero terms in the truncated matrix D'. Corresponding condition 

numbers are: 1 – C=1; 2 – C≈10; 3 – C≈250; 4 – C≈8⋅103; 5 – C≈4⋅105. Figure 2a presents the 

case when no errors have been imposed in the right hand side of the integral equation. For this 

case three non-zero elements in D' give satisfactory accuracy while for four non-zero elements 

the solution recovered completely coincides with the ideal distribution. Figure 2b presents 

similar case with 10% errors (-0.053≤ξm≤0.05) introduced in the right hand side of linear 

equation. As obvious from the figure curves 4 and 5 deviates from the ideal distribution 

significantly, these solutions corresponding to C≈8⋅103 and C≈4⋅105 are unstable. Despite other 

curves 1-3 are much closer to the ideal distribution, the curves1-2 show greater errors for the 

case of the non-disturbed right hand side (Figure 2a). Therefore, 3 non-zero terms are kept in the 

truncated matrix, which seems to be the best compromise between the accuracy and stability. It 

is used further on for statistical analysis of the results of numerical experiments. 
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Statistics 

 Numerical experiments have been performed in order to estimate the accuracy of 

reconstruction in the range of the process zone lengths being 0÷2 of the length of the visual part 

of the crack. For this purpose 200 sets of errors have been generated in the right hand sides for 

the both types of loading for every case of the ideal stress distributions in the process zone. 

Polynomial distributions of up to the fourth order have been tested. Then the results obtained 

have been compared with the ideal solutions obtained for the following set of 14 given lengths: 

L0= 1.1, 1.25, 1.4, 1.5, 1.6, 1.75, 1.9, 2, 2.1, 2.25, 2.4, 2.5, 2.6, 2.75. 

 Two scalar parameters have been calculated in each test. The first one is the ratio 

 2001,40,0 �� ===λ kjLL jkjk  (33) 
which characterises relative errors in the determination of the length of the process zone. Here Ljk 

are roots of (32) in jth test for kth set of errors. Components λjk form array ΛΛΛΛ which statistical 

properties are presented in Figure 3.  

 The second set of parameters computed is the deviations of the recovered stresses from 

the ideal cohesive stresses, δjk. These have been calculated by using the L2-norm as follows 

 ( ) ( ) ( ) ( )( )
( )

2001,40,
,min

1
0,min

1

2

0

2
�� ==−=δ � kjdxxpxp

ll

LL

j
idealjk

jk
ik

jk

 (34) 

Here ljk=Ljk-1 are recovered lengths of the process zones ; l0=L0-1 are ideal lengths of the process 

zones; pjk(x) are recovered distributions of normal stresses in the process zones, ( ) ( )xp j
ideal  are 

ideal stresses in the process zones specified by formula (19). The array of deviations δjk is 

denoted as ∆∆∆∆ further on. 

 Means and standard deviations of both arrays ΛΛΛΛ and ∆∆∆∆ have been studied. They are 

presented in Figures 3-4 as dependencies from ideal lengths of the process zone, l0. The results 

have been obtained for 14 values of parameter L0 specified above but for the sake of 

representation all curves have been drawn with the use of cubic spline interpolation.  

 It is seen from Figure 3 that the poorest case in reconstruction of the process zone length 
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is the case of uniform distribution of cohesive stresses load ahead of the crack in a plane loaded 

by uniform load at infinity. In this case the recovered lengths of the process zone deviate more 

than 15% from the ideal lengths for l0>1.2 while standard deviations exceed 0.1. Other types of 

cohesive loads are reconstructed with higher accuracy of about 10% that corresponds to the level 

of generated errors. Standard deviations have also tendency to increase as far as length of the 

process zone increases. This indicates that recovered lengths would have less accuracy being 

determined for extensive process zones.  Figure 6 also indicates that the case k=0 for uniform 

load is a poorest one although the difference with other cases is less pronounced then for array ΛΛΛΛ. 

This agrees with the previous result obtained in [25] with the use of Tikhonov’s regularisation 

method for the case when the length of the process zone is known exactly. The cases k=0, 1 seem 

to be weak among the others for concentrated forces: for k=1 the mean is highest when l0>1 and 

the case k=0 has highest standard deviations in the range examined. However the difference 

cannot be referred to as significant. 

 Both Figures 3 and 4 demonstrate that recovering of process zone characteristics can be 

performed with satisfactory accuracy within the range 0<l0<2. Largest ranges have not been 

investigated since they can rarely be observed in practice. 

 Few numerical experiments have been performed in order to investigate how well 

process zone characteristics can be recovered if the number of terms in (26) is relatively large. In 

these calculations n=15, i.e. the distribution of cohesive stresses has been approximated by 

polynomials of the 15th order. In particular Figure 5 represents an example of such 

reconstruction, in which ideal stress was given as power function of the 10th degree (j=10 in 

(19)).  The errors have been distributed normally within the range -0.045≤ξm≤0.039. As evident 

from the figure the results of reconstruction are rather good. Statistical analysis in this case has 

not been performed due to time consuming algorithms used in previous calculations. 

Reconstruction of softening laws 

 The approach can also be used for studying non-linear softening laws in the process zone 
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of the crack. Typical dependencies used by different researches usually include exponential, 

power, power-exponential and bilinear (or 3-brach) decaying laws (e.g., [31]). For instance, 

process zones in concretes may be satisfactory described by bilinear laws in which case three 

independent parameters are to be determined.  It is commonly believed that identification of 

more than three parameters are unlikely to be done with satisfactory accuracy due to few factors 

among which are experimental errors and ill-posed nature of the mathematical problem, Bazant 

[31].  However, an example presented below demonstrates that the accuracy in revealing the 

softening law by monitoring of the COD is rather satisfactory. This indicates that much greater 

number of parameters (than 3) describing the softening law can also be recovered. More 

examples of softening curve recovering can be found in [26]. 

 Let the plane with the crack be loaded uniformly at infinity and the distribution of 

stresses in the process zone of the length l0=1 be cubic, i.e. j=3 and L0=2 in (19) and other 

formulas used for calculations. The ideal density of crack opening displacements has the form 

presented in (28) with σj
0=0.324 in this case. Then applying the approach discussed above one 

determines length, L, distribution of cohesive stresses, prec, and density of crack opening 

displacements, µrec. Both the ideal and recovered crack opening displacements are found by 

integration as follows 

 ( ) ( ) ( ) ( ) LxdttxgLxdttxg
L

x

recrec

L

x

ideal <≤µ=<≤µ= �� σ 0,,0, 0

0

 (35) 

By plotting dependencies of stresses versus crack opening displacements pideal=p(gideal) and  

prec=p(grec) one obtains two softening laws illustrated in Figure 6. 

 It can be seen from the figure that the difference between the ideal and recovered 

softening laws is insignificant despite of 10%-errors introduced to model experimental 

measurements (in this particular case the range is -0.053≤ξm≤0.05). 
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4. Conclusions 

This paper presents integral equations for the inverse BVP in mechanics of composites 

presented by equation (2) in which  relative displacements of delaminating surfaces are measured 

experimentally. Approximate stable solutions of this problem are found by the SDV 

regularisation of the corresponding linear system of algebraic equations. 

Numerical experiments have been performed for a special case in which COD are 

measured on a part of a crack with narrow cohesive zones. Statistical analysis has shown that the 

crack length (cohesive zone length) and cohesive stresses can reliably be determined with 

sufficient accuracy (comparable with the accuracy of COD data) as well as softening laws. 
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Figure 1 Cracks with process zones 
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Figure 2 Deviation from the ideal linear stress distribution in the process zone for uniform loading of 

intensity σσσσ0=0.436:  (a) – no distortion in the right hand side, (b) – 10% error. Digits refer to the number of 

non-zero diagonal elements in matrix D'.  
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Figure 3 Statistical characteristics of ΛΛΛΛ. 
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Figure 4 Statistical characteristics of ∆∆∆∆. 
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Figure 5 Examples of reconstructions obtained for the case of L0=2 and j=10 with the normally distributed 

errors in the right hand side. Solid lines represent exact solutions; dashed line represents solution 

approximated by a polynomial of the 15th order, recovered parameter L =2.00. 
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Figure 6 Ideal and recovered softening laws in the process zone of the crack in the plane subjected to uniform 

load at infinity for L0=2 and j=3. 

Table 1. Magnitudes of the loads used in modelling. 

Load j=0 j=1 j=2 j=3 j=4 
σ0

(j) 0.738 0.480 0.381 0.324 0.287 
P0

(j) 4.189 2.739 2.174 1.855 1.645 
 

 


