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The threshold pressure of infiltration into fibrous preforms normal to the fibers' axes

the dimensionless smallest space between

Introduction

Infiltration is one of the useful techniques to produce fibrous composite materials.

The space between the fibers can be filled by molten polymers (PMCs) [START_REF] Bakis | Fiber-reinforced polymer composites for construction -state-of-the-art review[END_REF][START_REF] Arib | A literature review of pineapple fibre reinforced polymer composites[END_REF][START_REF] Clyne | Mechanical and magnetic properties of metal fibre networks, with and without a polymeric matrix[END_REF][START_REF] Ehleben | Manufacturing of centrifuged continuous fibre-reinforced precision pipes with thermoplastic matrix[END_REF][START_REF] Verrey | Dynamic capillary effects in liquid composite moulding with non-crimp fabrics[END_REF][START_REF] Czigány | Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study[END_REF] or by liquid metals or alloys (MMCs) [START_REF] Clyne | The use of delta-alumina fiber for metal matrix composites[END_REF][START_REF] Clyne | The squeeze infiltration process for fabrication of metal-matrix compistes[END_REF][START_REF] Andrews | Lorentz force infiltration of fibrous preforms[END_REF][START_REF] Nakanishi | Ultrasonic infiltration in alumina fiber / molten aluminum system[END_REF][START_REF] Körner | Carbon long fiber reinforced magnesium alloys[END_REF][START_REF] Blucher | Continuous manufacturing of fibrereinforced metal matrix composite wires -technology and product characteristics[END_REF][START_REF] Xu | Effect of Cu content on microstructure and properties of Al 2 O 3 -SiO 2 fiber reinforced aluminum matrix composites[END_REF][START_REF] Rohatgi | Squeeze infiltration processing of nickel coated carbon fiber reinforced Al-2014 composite[END_REF][START_REF] Kientzl | Production and examination of double composites[END_REF]. Interfacial phenomena at the fiber/liquid/gas interface play a key role in the infiltration process. The interplay between the surface tension of the infiltrating liquid, the wettability of the fibers by this liquid and the morphological details of the preform influence the value of the threshold pressure of infiltration. The value of the threshold pressure is generally higher and therefore it is more important for producing MMCs compared to PMCs, due to higher surface tension of liquid metals and their higher contact angle compared to molten polymers. Nevertheless, the improvement of the microstructure and physical properties of both types of composites is possible only through the better understanding of all the processes and their governing equations during the production of fiber reinforced composite materials. The importance of this question for PMCs is demonstrated by the need of surface treatment of fibers [START_REF] Tang | A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix[END_REF][START_REF] Szabo | Effect of fibre surface treatment on the mechanical response of ceramic fibre mat-reinforced interpenetrating vinylester/epoxy resins[END_REF] and by the necessity to measure the adhesion between the fibers and the matrix [START_REF] Difrancia | The single-fibre pull-out test. Review and interpretation[END_REF][START_REF] Chandra | Interfacial mechanics of push-out tests: theory and experiments[END_REF][START_REF] Vas | Strength modeling of two-component hybrid fiber composites in case of simultaneous fiber failure[END_REF].

In this paper a new equation for the threshold pressure will be derived, what is needed to infiltrate the liquid through the small space between parallel fibers in normal direction to their axes.

On the existing equations in the literature

According to the classical Young-Laplace equation, the capillary pressure in a straight, cylindrical capillary of radius r can be written as:

Θ ⋅ = cos r P c σ (1)
where -the surface tension of the infiltrating liquid (J/m 2 = N/m), -the contact angle of the infiltrating liquid on the inner wall of the capillaries, or generally on the solid surface of the preform.

The capillary pressure is a spontaneous pressure, arising perpendicular to the solid/liquid/gas 3-phase line and pulling the liquid into the capillary (P c > 0) or pushing it out of the capillary (P c < 0). To the contrary, the threshold pressure is the minimum pressure required to start infiltration, provided that venting of the gas from the preform takes place without problems (no trapped bubbles) and friction losses and also gravity effects are neglected. By definition, the threshold pressure equals the negative of the capillary pressure: P th = -P c .

In geometries other than cylindrical capillaries Eq.( 1) can be used, if r is treated as the 'effective' radius. Although the effective radius is quite ill-defined in porous solids of random morphologies, sometimes it is used for simplicity [START_REF] Delannay | The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites[END_REF][START_REF] Asthana | Infiltration processing of metal-matrix composites: a review[END_REF]. For absolutely nonwetting liquids ( = 180 o ), infiltrating normal to the axes of the fibers, Clyne et al. [START_REF] Clyne | The squeeze infiltration process for fabrication of metal-matrix compistes[END_REF] used Eq.( 1) with r, taken as the half of inter-fiber spacing.

Considering the infiltration of a perfectly wetting liquid ( = 0 o ) into a porous solid, the following expression for the capillary pressure was obtained by Carman [START_REF] Carman | Capillary rise and capillary movement of moisture in fine sands[END_REF]:

σ ⋅ = S P c 0 , ( 2 
)
where S -the specific surface area of the initial preform (1/m), i.e. the ratio of the solid/gas interface to the volume of the pores within the preform, before infiltration. Independently of Eq.( 2), Eq.( 3) was obtained on pure thermodynamic basis, supposing that the original solid/gas interface is fully replaced by the solid/liquid interface during infiltration, independent of the contact angle [START_REF] White | Capillary rise in powders[END_REF][START_REF] Mortensen | On the infiltration of metal matrix composites[END_REF]:

Θ ⋅ ⋅ = cos σ S P c ( 3 
)
One can see that in the case of perfect wettability ( = 0 o ) Eq.( 3) simplifies back to Eq.( 2), and thus Eq.( 3) can be considered as an extension of Eq.( 2). One can also see that Eq.( 3) becomes identical to Eq.( 1), if the effective radius of the pores is taken equal to: r = S -1 . Nevertheless, it should be mentioned that the basic assumption behind Eq.( 3) is not valid. In fact the original solid/gas interface is not fully replaced by the solid/liquid interface during infiltration, especially for non-wetting liquids and difficult inner morphologies of porous solid preforms [START_REF] Kaptay | On the asymmetrical dependence of the threshold pressure of infiltration on the wettability of the porous solid by the infiltrating liquid[END_REF].

If the preform is made of cylindrical fibers of equal diameters D (m) and with a fiber volume fraction of V f (V f is a dimensionless number, 0 < V f < 1), its specific surface area can be easily expressed as (if the ends of the fibers are neglected):

S = 4V f /D(1-V f ).
Substituting this equation into Eq.( 3) and taking into account P th = -P c , the following final equation is obtained:

Θ ⋅ - ⋅ ⋅ - = cos 1 4 f f th V V D P σ (4)
The threshold pressure in accordance to Eq.( 4) is independent of fiber orientation and distribution [START_REF] Mortensen | On the infiltration of metal matrix composites[END_REF]. In addition to Eq.( 4), an equation for the pressure is given [START_REF] Mortensen | On the infiltration of metal matrix composites[END_REF], requested for a non-wetting metal to infiltrate into the edge where two fibers are in contact.

It is found that an infinitely high pressure would be needed to achieve full infiltration in this case [START_REF] Mortensen | On the infiltration of metal matrix composites[END_REF]. Actually this conclusion also follows from Eq.( 4), as locally V f 1 is taking place, and hence P th .

Eq.( 4) is widespread in both the MMC [START_REF] Xia | Fabrication of fiber -reinforced metal-matrix composites by variable pressure infiltration[END_REF][START_REF] Long | Hydrodynamic analysis of liquid infiltration of unidirectional fibre arrays by squeeze casting[END_REF][START_REF] Yamauchi | Infiltration kinetics of fibrous preforms by aluminum with solidification[END_REF][START_REF] Nishida | Modeling of infiltration of molten metal in fibrous preform by centrifugal force[END_REF] and PMC [START_REF] Ehleben | Manufacturing of centrifuged continuous fibre-reinforced precision pipes with thermoplastic matrix[END_REF][START_REF] Verrey | Dynamic capillary effects in liquid composite moulding with non-crimp fabrics[END_REF][START_REF] Connor | On surface energy effects in composite impregnation and consolidation[END_REF][START_REF] Batch | Capillary impregnation of aligned fibrous beds: experiments and model[END_REF][START_REF] Amico | An experimental study of the permeability and capillary pressure in resin-transfer moulding[END_REF] literature.

However, there are at least two problems with its usage. The first problem is connected with the value of the threshold contact angle ( th ), defined as the contact angle, below which spontaneous infiltration starts. According to Eq.( 4), th = 90 o , as at any < 90 o : P th < 0, i.e. the infiltration takes place spontaneously, without any outside pressure. This is indeed the case, when the preform is infiltrated parallel with the fibers. However, when the infiltration takes place in normal direction to the axes of the fibers, the threshold contact angle is usually lower than 90 o . As was shown independently by Bayramli and Powell [START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber-bundles[END_REF] and later by Yang and Xi [START_REF] Yang | Critical wetting angle for spontaneous liquid infiltration into orderly packed fibres or spheres[END_REF], the threshold contact angle in this case depends on fiber arrangement and on the volume fraction of the fibers and is generally lower than 45 o , what is in contradiction to Eq.( 4). It was also shown by us [START_REF] Kaptay | On the asymmetrical dependence of the threshold pressure of infiltration on the wettability of the porous solid by the infiltrating liquid[END_REF] recently that in most cases the threshold contact angle is below 90 o , and thus Eq.( 4) should be modified. Unsuccessful infiltration of a liquid into a fibrous preform with a contact angle ranging between 60 o and 80 o was experimentally demonstrated in [START_REF] Shi | Effect of wettability and power premixing on the spontaneous infiltration of molten Mg into alumina fiber preform[END_REF], serving as an experimental confirmation of the ideas, developed in [START_REF] Kaptay | On the asymmetrical dependence of the threshold pressure of infiltration on the wettability of the porous solid by the infiltrating liquid[END_REF][START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber-bundles[END_REF][START_REF] Yang | Critical wetting angle for spontaneous liquid infiltration into orderly packed fibres or spheres[END_REF].

The second problem with Eq.( 4) is that it is derived from the average value of the specific surface area (S). It means that infiltration is ensured only into the pores with average openings, and thus into the largest volume segments inside the preform. At the first sight it is sufficient, as it ensures a high filling ratio of the free space in the composite.

However, this will not ensure the infiltration into smaller spaces between the fibers -see appropriate photographs in papers [START_REF] Mortensen | On the infiltration of metal matrix composites[END_REF][START_REF] Pippel | Interlayer structure of carbon fibre reinforced aluminium wires[END_REF][START_REF] Dopler | Simulation of metal-matrix composite isothermal infiltration[END_REF][START_REF] Blucher | Aluminium double composite structures reinforced with composite wires[END_REF] and measured values [START_REF] Kurnaz | Production of saffil fibre reinforced Zn-Al (ZA 12) based metal matrix composites using infiltration technique and study of their properties[END_REF]. It is, however, not entirely clear, whether the empty spaces recorded between the fibers are due to non-infiltration, or to the appearance of the solidification shrinkage. Whatever is the reason these small empty spaces appear to be the weakest points of the composites.

A more advanced equation for the capillary pressure was derived by Bayramli and

Powell [START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber-bundles[END_REF] (see also [START_REF] Carnali | Determination of the capillary nature of simple woven textiles[END_REF][START_REF] Foley | Modeling of the effect of fiber diameter and fiber bundle count on tow impregnation during liquid molding process[END_REF]). The capillary pressure was described as function of the directional body angle (gradually changing while the liquid infiltrates between the fibers in a normal direction to their axes). However, the final equation for the threshold pressure was not given in [START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber-bundles[END_REF].

The goal of the present paper is to derive a new equation for the threshold pressure for the case when the direction of infiltration is normal to fibers' axes. At this point it should be noted that Eq.( 4) is valid for the case when the direction of infiltration is parallel to fibers' axes.

The threshold pressure of infiltration normal to fibers' axes

The threshold pressure of infiltration normal to fiber's axes depends on the arrangements of the fibers. That is why, for simplicity the hexagonal arrangement of equal fibers of diameter D will be considered in this paper with equal smallest separation between each neighboring fiber (see Fig. 1). Then, the volume fraction of the solid phase in the preform can be expressed as:

( ) 2 * 1 3 2 δ π + ⋅ ⋅ = f V ( 5 
)
with D δ δ ≡

The equilibrium depth of penetration in absence of gravity and pressure difference

As one can see from Fig. 1, the elementary process of liquid penetration is taking place through the space between two, neighboring fibers. Let us first find the equilibrium position of the liquid/gas interface in absence of gravity and at no pressure difference between the liquid and the gas phases ( P = 0). As one can see from Fig. 2.a, these conditions are equivalent with a planar liquid/gas interface. Let us suppose that the liquid/gas interface is situated at depth x o below the dashed line, shown in Fig. 2.a.

The total interfacial energy of the unit cell, composed of two half-cylinders of length L (see Fig. 2.a) is written as:

( ) [ ] sg sl sl sl l D l l L G σ π σ σ ⋅ - ⋅ + ⋅ + ⋅ ⋅ = lg lg (6)
Substituting obvious geometrical equations for the lengths of the liquid/gas (l lg ) and solid/liquid (l sl ) interfacial arcs in the plane of Fig. 2.a and the Young equation into Eq.( 6), the total interfacial energy of the system is obtained as function of x o* , defined as the dimensionless depth of infiltration in absence of gravity and pressure difference between liquid and gas phases:

D x x o o ≡ * .
The total interfacial energy shows a minimum value at a certain value x o* . This particular x o* value corresponds to the equilibrium position of the liquid/gas interface. Its value can be found from solving the equation: dG/dx o* = 0. From here the equilibrium position of the liquid/gas interface at absence of gravity and at zero pressure difference between the liquid and the gas phases is obtained:

2 cos 1 * Θ + = o eq x (7)
The same equation is valid for the equilibrium depth if immersion of spheres [START_REF] Kaptay | Classification and general derivation of interfacial forces, acting on phases, situated in the bulk, or at the interface of other phases[END_REF].

In Fig. 3 the possible equilibrium positions of the liquid/gas interface around two neighboring fibers are shown in accordance with Eq.( 7). As one can see from Eq.( 7) and Fig. 3, the relative equilibrium position of the liquid/gas interface is determined only by the contact angle and it is not a function of *.

The threshold contact angle as function of fiber volume fraction

If the equilibrium position of the liquid gas interface reaches the top of the next fiber, it will pull the liquid front further and spontaneous infiltration will take place.

Mathematically it is equivalent with the requirement that x o eq should be higher than x t of Fig. 1. From the geometry of Fig. 1 the dimensionless value D x x t t ≡ * can be written as:

*) 1 ( 2 3 * δ + ⋅ = t x (8) 
From the condition * * t o eq x x ≥ , using Eq-s (7-8) the threshold contact angle equals:

1 *) 1 ( 3 cos - + ⋅ = Θ δ th (9)
The dependence of the threshold contact angle in accordance with Eq.( 9) is shown in Fig. 4.a. The dimensionless separation of the fibers can be converted into the volume fraction of the fibers in the preform through Eq.( 5). Thus, in Fig. 4.b the threshold contact angle is shown also as function of this value. From Fig-s 4.a-b one can see that the threshold contact angle is considerably lower than 90 o for the case of infiltration direction normal to the fibers' axes. Moreover, even the contact angle of 0 o is not sufficient for spontaneous infiltration if the fiber distance is larger than a certain critical value ( * > 0.155), or (what is the same) if the volume fraction of the fibers is smaller than a certain critical value (V f < 0.68). In other words, some outside pressure is needed for full infiltration normal to the fibers axes even in the case of perfect wetting at * > 0.155 or V f < 0.68. Similar results have been obtained previously [START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber-bundles[END_REF][START_REF] Yang | Critical wetting angle for spontaneous liquid infiltration into orderly packed fibres or spheres[END_REF].

The threshold pressure of infiltration

As one can see from Fig. 4.b, in the majority of fiber volume fraction -contact angle combinations spontaneous infiltration is impossible. To overcome this problem, usually a pressure difference is applied to push the liquid/gas interface (and the bulk liquid) into the space between the fibers. The pressure difference ( P) is defined as the difference of the pressure inside the liquid phase and inside the gas phase. In Fig. 2.b the equilibrium position of the interface is shown when some pressure difference is applied. One can see that at P > 0 the following two effects appear compared to the previous case with P = 0: i.

the original position of the liquid/solid/gas 3-phase line is lower:

o eq eq x x > , ii.
the liquid/gas interface becomes curved.

As follows from Fig. 3, at P = 0 angle = 180 o -(for the definition of angle see Fig. 2.b). When P > 0 the level of the liquid/gas interface shifts further down in Fig. 2.b, and therefore for any P > 0, angle will be: > 180 o -. The pressure difference and the curvature of the liquid/gas interface in Fig. 2.b are connected through the Laplace equation (see also Eq.( 1) for comparison):

r r P σ σ =       ∞ + ⋅ = ∆ 1 1 ( 10 
)
where ∞ denotes the infinitely large curvature along the long, straight side of the cylindrical fibers, perpendicular to the page in Fig. 2.b.

From the geometry of Fig. 2.b the values of r and x eq can be expressed. From the value of r, using Eq.( 10), the expressions for P can be obtained. Let us define the dimensionless quantities:

σ D P P ⋅ ∆ ≡ ∆ * and D x x eq eq ≡ * .
From the geometry of Fig. 2.b and taking into account Eq.( 10), the expressions for these two quantities are written as:

α δ α sin 1 * ) 270 cos( 2 * - + - Θ - ⋅ = ∆ o P (11) ( )       - Θ - - Θ - - ⋅ - + + - ⋅ = ) 270 cos( ) 270 sin( 1 sin 1 * cos 1 2 1 * α α α δ α o o eq x ( 12 
)
It should be mentioned that Eq.( 11) was derived earlier [START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber-bundles[END_REF][START_REF] Carnali | Determination of the capillary nature of simple woven textiles[END_REF][START_REF] Foley | Modeling of the effect of fiber diameter and fiber bundle count on tow impregnation during liquid molding process[END_REF]. One can see that the dimensionless pressure P* is a function of angle , and thus Eq.( 11) is not the requested final equation. The dimensionless threshold pressure P th * can be calculated from Eq.( 11), if the appropriate threshold value of angle th is known:

th th o th P α δ α sin 1 * ) 270 cos( 2 * - + - Θ - ⋅ = ( 13 
)
If th is known, the requested values of P th * can be found from Eq.( 13) as function of parameters and *. Unfortunately, however, the value of th cannot be found by a unique algorithm as function of parameters and *. In the case of our periodic geometrical arrangement, the threshold pressure is the pressure, needed to push the liquid trough one period of fibers. Consequently, the following 3 different cases can be distinguished at different ranges of parameters and *:

Case called "max" (see Fig. 5), being characteristic for high contact angles. In this case the dimensionless threshold pressure P th * is taken as the maximum value of P*. As one can see from Fig. 5, in this case max < t and therefore in the process of infiltration the liquid/gas front will touch the next layer of particles after the moment when pressure passes its maximum point.

Case called "touch" (see Fig. 6), characteristic of medium contact angles and small fiber separations: the dimensionless threshold pressure P th * is taken at th = t . As one can see from Fig. 6, in this case max > t and therefore in the process of infiltration the liquid/gas front will touch the next layer of particles before the moment when pressure passes its maximum point. Thus, the maximum value of the pressure is not needed for infiltration.

Case called "end" (see Fig. 7), characteristic of low contact angles and large fiber separations: the dimensionless threshold pressure P th * is taken at = 180 o . In this case the condition * * t eq x x ≥

is not satisfied at any , and the maximum of P* is achieved only at 180 o . Applying a somewhat higher pressure than this maximum pressure, the liquid/gas interface will be pushed to detach from the couple of the fibers considered in this analysis, and therefore further infiltration is ensured.

The case-map for the above cases is shown in Fig. 8. Fig 8 shows the validity regions of different cases, discussed above, as function of parameters and *. In addition to the three cases, also the region of spontaneous infiltration is shown in Fig. 8, what is equivalent to Fig. 4.a (see the curve, corresponding to the "normal" direction).

Let us first write the equations for the threshold values of angle for the three different cases. When the case "max" is applicable, the threshold value of angle is identical to the maximum point of P* (see Fig. 5). Mathematically one should take the derivative of Eq.( 11) and solve the equation 0

* = ∆ α d P d
to find the value of th = max .

The solution is found as:

( )       Θ - + + Θ ⋅ + Θ - = 2 2 max sin * 1 cos * 1 sin cos δ δ α th (14)
When case "touch" is applicable, the values of x t * and x eq * are taken equal (using Eq-s (8, 12)), in accordance with Fig. 6. From this equality the threshold value of angle is expressed as:

2 2 2 2 2 cos C A B C A A C B touch th + - + ⋅ + ⋅ - = α (15)
with parameters A, B and C defined as:

(

) [ ] ( )

1 sin * 1 cos 1 * 1 3 - Θ ⋅ + - Θ ⋅ - + ⋅ = δ δ A (15.a) Θ + + = sin * 1 δ B (15.b) ( ) [ ] ( ) Θ ⋅ + + Θ ⋅ - + ⋅ = cos * 1 sin 1 * 1 3 δ δ C (15.c)
When case "end" is applicable, the threshold value of angle is found from Fig. 7 by definition:

o end th 180 = α (16) 
Now, let us write the equations of the lines, separating different cases in Fig. 8.

These equations are useful to find the exact position of a given point in Fig. 8 in this or that region. The equation of the line, separating case "touch" from the region of spontaneous infiltration was already derived as Eq.( 9). Now let us find the equation of the line, separating cases "max" and "touch". For this, quantities max th α and touch th α were made equal using Eq-s [START_REF] Rohatgi | Squeeze infiltration processing of nickel coated carbon fiber reinforced Al-2014 composite[END_REF][START_REF] Kientzl | Production and examination of double composites[END_REF]. From here the critical value of was found numerically as function of *. The best fit to the numerical solutions is the following equation:

( ) [START_REF] Szabo | Effect of fibre surface treatment on the mechanical response of ceramic fibre mat-reinforced interpenetrating vinylester/epoxy resins[END_REF] For the equation of the line, separating cases "touch" and "end", the values of touch th α and end th α were made equal using Eq-s [START_REF] Kientzl | Production and examination of double composites[END_REF][START_REF] Tang | A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix[END_REF]. The final equation is written as:

1 1 sin 3 cos sin 2 * / - - Θ ⋅ + Θ Θ ⋅ = end touch δ (18)
For the equation of the line, separating cases "max" and "end", the values of max th α and end th α were made equal using Eq-s [START_REF] Rohatgi | Squeeze infiltration processing of nickel coated carbon fiber reinforced Al-2014 composite[END_REF][START_REF] Tang | A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix[END_REF]. The final equation is written as:

* 1 max/ δ + = Θ end tg ( 19 
)
The three lines separating the regions 'max', 'touch' and 'end' in Fig. 8 

δ σ ⋅ = 2 180 , th P ( 20 
)
One can see that in contrast to Eq.( 4) the threshold pressure according to Eq.( 20) is inversely proportional to the separation of the fibers, and not to the diameters of the fibers.

Eq.( 20) can be considered as a straightforward consequence of Eq.( 1) with r = /2 at = 180 o . Practically the same equation was obtained earlier by Clyne et al [START_REF] Clyne | The squeeze infiltration process for fabrication of metal-matrix compistes[END_REF], although that was written in a much more difficult form, expressing as function of D, V f and also the separation between the fiber layers (the latter is not an independent parameter in this paper).

Let us write the threshold pressure for the case "max" and < 180 o in a similar format by substituting Eq.( 14) into Eq.( 13) and making some arrangements: When case "end" is applicable, Eq.( 16) should be substituted into Eq.( 13), leading to the following final equation:

( ) Θ - ⋅ + ⋅ = o end th D P 90 cos 2 δ σ (22) 
A similar, but a more complex equation is obtained in region "touch": For clarity, let us write the threshold pressure for the region "spont", being in agreement with the fact that in this region infiltration takes place spontaneously, without additional pressure:

0 ≤ spont th P ( 24 
)
4. Discussion

How to use the new equations

Unfortunately not a single equation, rather a set of equations was obtained in this paper. That is why, an algorithm how to apply the results of this paper is given here. The following initial data are requested for the calculation: i. diameter of the fibers (D), ii. the space between the fibers ( ), iii. the surface tension of the infiltrating liquid ( ), the contact angle of the infiltrating liquid on the surface of the fibers ( ). From here, the dimensionless separation should be found:

D δ δ ≡ *
. Then, from the selection map of Fig. 8 the appropriate interval should be selected ('max', or 'touch', or 'end' or 'spont'). If the selection is not obvious from the graph, Eq-s (9, 17-19) should be applied. If the data point appears on a line, any interval around this line can be selected. Once the appropriate interval is selected, the threshold pressure is calculated by Eq-s (14, 21.a, 21) for the case of 'max', by Eq. ( 22)

for the case of 'end' and by Eq-s (15, 15.a-c, 23) for the case of 'touch'. The threshold pressure has a negative value for the case 'spont' (see Eq.( 24)). This negative value means that an outside pressure is needed to keep the liquid out of the preform. Let us remind that when infiltration takes place parallel to fibers axes, Eq.( 4) is applicable.

Comparison of our new equations with Eq.(4)

Let us compare our new equations [START_REF] Delannay | The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites[END_REF][START_REF] Asthana | Infiltration processing of metal-matrix composites: a review[END_REF][START_REF] Carman | Capillary rise and capillary movement of moisture in fine sands[END_REF] obtained for the threshold pressure of infiltration in normal direction to the fibers' axes to the widely used Eq.( 4). The relationship between the fiber separation and fiber volume fraction described by Eq.( 5) will be taken into account for an adequate comparison.

For region 'max' Eq.( 21) is compared to Eq.( 4) in Fig. 9. One can see that the threshold pressure calculated by Eq.( 21) is somewhat larger than that calculated by Eq.( 4), the difference becoming especially large as * approaches zero. Particularly, at * = 0.01

Eq.( 21) provides a result, being more than 6 times higher compared to Eq.( 4). Thus, one can conclude that for non-wetting liquids the widespread Eq.( 4) seriously underestimates the threshold pressure. Moreover, it should be mentioned that at 90 o Eq.( 21) still provides positive values, while Eq.( 4) provides zero (at = 90 o ) or even negative values (at < 90 o ). Thus, Eq.( 4) differs from Eq.( 21) not only in a quantitative, but also in a qualitative way.

The same can be said about regions 'touch' and 'end'. In the whole interval of possible and * values (see Fig. 8) both Eq-s. [START_REF] Asthana | Infiltration processing of metal-matrix composites: a review[END_REF][START_REF] Carman | Capillary rise and capillary movement of moisture in fine sands[END_REF] provide positive values, in contrary to Eq.(4). Only in region "spont" (see Fig. 9) Eq-s (4, 24) have at least the same sign, indicating that infiltration in this case can take place spontaneously.

The threshold pressure for non-wetting liquids (region 'max') is inversely proportional to the smallest separation between the fibers. This value is determined by the roughness and other surface imperfections of the fibers and can be as small as 1 % of the fiber diameter, or even smaller. The local threshold pressure, requested to fill such a small space is 1-2 orders of magnitude higher compared to the threshold pressure, calculated from Eq.( 4), especially if the average volume fraction of fibers is used for Eq.( 4) (what is actually the case).

Let us consider as an example a preform made of long, (more or less) parallel fibers of diameter D = 10 m and local surface imperfections of about 50 nm. Thus, if the fibers are closely packed, = 100 nm, i.e. * = 0.01. Let the average volume content of the fibers V f = 0.6. Let the surface tension to be 1 N/m (it will cancel when the ratio of the threshold pressures is considered). Let us first consider a non-wetting liquid with = 120 o . Then, Eq.( 4) provides the following value: P th = 3 bar. As one can see from Fig. 8, this situation appears to be case "max", and thus Eq-s (21, 21.a, 14) are to be used. The result is: max th P = 101 bar. Thus, to fill the smallest spaces between the fibers (in normal direction to the fibers axes) the requested pressure would be about 33 times higher compared to the pressure, calculated from Eq.( 4).

In the second example let us keep all the above parameters the same, but let us consider a wetting liquid with = 60 o . From Eq.( 4) the threshold pressure would be: P th = -3 bar. Thus, spontaneous infiltration is predicted by Eq.( 4). From Fig 1 one can see that the case "touch" applies, with appropriate Eq-s [START_REF] Kientzl | Production and examination of double composites[END_REF][START_REF] Carman | Capillary rise and capillary movement of moisture in fine sands[END_REF]. The result is touch th P = 1.7 bar, i.e. in reality a considerable pressure is requested to fill the spaces between the fibers even by a wetting liquid.

Comparison of our model to real systems

The new equations obtained in this paper correspond to a strict theoretical model, shown in Fig. 1. In reality, the following modifications should be taken into account:

i. the fibers are not straight,

ii. the fibers are not perfectly cylindrical,

iii. the fibers have not identical diameters, iv. the fibers have some roughness, v. the fibers are not packed regularly, vi.

There is not a particular value, rather a distribution of fiber distances.

All these real factors are difficult to take into account in a theoretical model.

Nevertheless, our new equations can be applied to real systems, in the following way. For a given preform the average diameter of the fiber (D) and the average smallest ( min ) and largest ( max ) separations between the fibers can be defined. The equations, developed in this paper can be applied to all existing combinations of D and , and the distribution of the requested threshold pressure can be calculated. When the calculation is performed by the largest separation ( max ), the smallest threshold pressure follows. This is the pressure, needed to fill the majority of pores in the preform. When the liquid passed the bottleneck through the fibers, the liquid will penetrate parallel to fibers axes, as it requires a lower pressure (see Fig. 9). However, there will be some small pores remained unfilled. When the maximum value of the threshold pressure is calculated by the smallest separation ( min ), the smallest pores will be filled, as well. The ultimate value for min is the roughness of the fibers, which is never zero, and thus the calculated threshold pressure is never increased to infinity.

Conclusions

1. It has been shown that the widely accepted equation ( 4) for the threshold pressure of infiltration describes correctly the condition of infiltration only along the fibers' axes and it seriously underestimates the condition of infiltration in direction normal to fibers' axes.

2. The threshold pressure of infiltration normal to fibers' axes was described as function of the contact angle and smallest separation of the fibers divided by the fiber diameter.

Four different cases were distinguished (see Fig. 8) and the equations of threshold pressures were obtained for all of the cases (see Eq-s 21-24). In all parameter combinations our new equations provide higher values of threshold pressure compared to the classical Eq.( 4). 13) with parameter intervals of contact angle and dimensionless fiber separation, corresponding to cases "max", "touch", "end" (see text).

Also, the interval "spont" is shown, corresponding to the spontaneous infiltration of the liquid with P th * 0 (see also Fig. 4.a, curve "normal") 

  meet in the 'triple' point, having coordinates: = 60 o and 1 3 * -= δ. Now, the equations for the dimensionless threshold pressure of infiltration can be obtained for the three different cases by substituting Eq-s (14-16) into Eq.(13). The dimensionless threshold pressure can be written in real dimensions by taking into account the definitions of the dimensionless values: case "max", Eq (14) at = 180 o provides a special value of max th α = 90 o . Substituting this value into Eq.(13), the following expression is obtained at = 180 o :

  -s.(15, 15.a-c).
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