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Abstract  

A high gain observer was designed to estimate the CSD (Crystal Size Distribution) in batch 

crystallization processes. The observer is based on the discretization of population balance 

equations describing the evolution of the CSD using finite difference method. Due to process 

impurities and other batch-to-batch variations, the kinetic parameters involved in the dynamic 

model of the crystallization, relating primary and secondary nucleation in particular, are 

subject to significant variations. In order to avoid any estimation divergence, an on-line 

parameter identification algorithm was added to the observer. Assuming that measurements of 

the nuclei particles are available, the observer is shown to provide a discretized reconstruction 

of the entire CSD which can be used for control purposes or process supervision. 

 

Keywords: Crystallization processes, high gain observer, non linear identification, population 

balance equations, crystal size distribution, finite difference method. 

 

Introduction 

In batch crystallization as well as in most particulate processes, the CSD (Crystal Size 

Distribution) influences the quality of the final product. This is particularly important as one 

considers both application and end-use properties of the crystallized product. However, 

measuring or estimating the CSD is really difficult and remains an open field of research. 



Several techniques for the measurement of solute concentration have been used in the past, 

together with off-line image analysis for the modelling of the time variation of CSD during 

batch solution crystallizations (e.g. by [1], [2], [3], [4], [5], [6])  However it is important to 

notice that no online CSD measurements or estimates were available when such modelling 

studies were published. 

Indeed several sensing in situ technologies are actually available which are supposed to yield, 

at least partially, the CSD during crystallization processes. However, no sensor can really 

provide accurate measurements of the whole CSD and even the physical significance of the 

measured sizes turns out to be questionable. For example, it is well known that the in-situ 

FBRM® probe (Focussed Beam Reflected Measurement) does not yield real particle size 

measurements, but chord length distributions CLD. In order to address this problem, the aim 

of the present work is to design an on line observer to reconstruct the entire crystal size 

distribution using both population balance equations and in-situ, in-line partial measurements. 

For example, measuring the number of nuclei (i.e. the smallest stable crystals) could be 

performed using the FBRM probe (Lasentec, Metters-Toledo). Worlitschek [7] has 

investigated the possibility of restoring CSDs from CLD data using Constrained Least 

Squares Minimization (CLSM). Turbidimetry can also be used to provide quantitative 

information on the number of small particles in suspension ([8], [9], [10]). Such sensors could 

provide reasonable information for the monitoring of the generation of nuclei even if bigger 

crystals cannot always satisfactorily be measured (e.g. turbidimetry is not suitable for big 

particles). This is why the reconstruction of the entire CSD from the measurement of the 

number of nuclei particles would undeniably be a valuable result.  

As far as such observer is based on Population Balance Equations (PBE) describing the time 

variations of the CSD, it is essential that the PBE capture the main dynamic features of the 

process  to yield good estimates.  



Actually, the crystallization rate (i.e. the rate of generation of new crystallized solid) mainly 

depends on two mechanisms: crystal nucleation and growth. With the assumption of invariant 

kinetics parameters, the control of such process has been explored ([11], [12], [13]) However, 

it is clear that the parameters of primary nucleation involved in modeling and control studies 

may present drifts due to significant irreproducibility during the cooling crystallization 

process. In other words primary nucleation “seems” to exhibit random features, which can be 

experimentally observed as batch-to-batch variability. Such variability is inherent to the 

highly non linear features of the crystallization mechanisms, and it is generally attributed to 

possible impurities in the load of the reactor, and to strong dependency of most basic 

crystallization phenomena on tiny differences in the operating conditions (e.g. presence of 

small residual crystals on the reactor wall at the beginning of the batch process). Moreover, 

from a more technical point of view, it is necessary to evaluate the robustness of the 

estimation process to parameter uncertainties. This is a second reason why the initial values of 

the nucleation parameters used by the state observer were set to be different from the values 

which were supposed to relate the “true” experimental nucleation kinetics. 

 

The on-line identification of nucleation parameters was therefore necessary to avoid potential 

drifts of the observer. In order to deal with this difficulty, the available measurements can also 

be used to estimate the nucleation parameter(s) in question. In the following, it is shown that 

combining on-line parameter identification with high-gain CSD estimation allows to 

efficiently monitor the crystallization process.  

The paper is organized as follows; first the batch crystallization model is briefly described in 

section 2. The principle of the discretization of the PBE (Population Balance Equations) 

involved is then exposed in section 3. In section 4, a method for the on-line identification of a 



'sensitive' primary nucleation parameter is presented. Section 5 is devoted to the observer 

synthesis and the estimation technique is validated through simulation in section 6.   

 

Model development 

The population balance approach applied to batch crystallizer yields the following partial 

differential equation (PDE): 
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),( txn  is a number population density function. It represents the number of crystals of size x 

per unit volume of suspension and per unit of size. In model (1), only nucleation and growth 

will be considered, agglomeration and breakage are not taken into account. The growth 

kinetic  is assumed to be size independent. The solute concentration balance describing 

the mass transfer from the liquid to the solid phase is: 
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)(tC  represents the solute concentration,  is the suspension volume, variations of this 

volume, due to solute mass transfer can be neglected.  being the solid concentration, it 

is easily deduced from the crystal size distribution (CSD) : 
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where  is a shape factor (e.g. for spherical particles vK
6
π

=vK ),  is the molecular weight 

of the crystallized solid of density 

sM

sρ , and  is the solution volume (i.e. volume of the 

continuous phase), which is calculated from the following expression : 
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The crystallizer temperature is given by the energy balance around the cooling jacket wall : 



)(
3

1
jcrc

S
Tc

cr

i
ii TTUA

dt
dC

VH
dt

dT
nCp −−Δ−=∑

=

     (5) 

where  and  represent respectively the molar heat capacities and number of moles of the 

different components in the crystallizer.  and  are respectively the crystallizer and jacket 

temperatures.  is the crystallization enthalpy. U  and  are respectively the overall heat 

transfer coefficient and contact surface of the jacket wall. The solubility, which refers to the 

solute concentration under saturated conditions, is assumed to obey Van't Hoff equation: 
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The absolute supersaturation   is the driving force of the crystallization process. The 

overall growth rate, including possible diffusive limitations, is assumed to be represented by 

the following model. In the literature, values of exponent g are generally assumed to lie 

between 1 and 2 [15]: 
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Where  represents the kinetic growth rate coefficient, cK η  represents the effectiveness factor 

which is the solution of the following equation: 
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According to [14], η  relates the actual mass flux of solid integrated in the crystal structure to 

the maximum theoretical flux that would be integrated in the absence of diffusive limitation. 

For very small particles,η  is usually close to 1, which means that the mass transfer resistance, 

due to the diffusion of solute from the bulk to the crystal surface, is negligible for the smaller 

crystals. 



dK  represents the mass transfer coefficient through diffusion. Analytical solution of eq. (8) 

are available if g is equal to 1 or 2, a numerical solution can be considered in the other cases. 

The nucleation rate B  is the result of two competitive nucleation mechanisms. Primary 

nucleation  takes place in the absence of any crystal in the solution [15]: 1B
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Where 
satC

C
=β   is referred to as the degree of supersaturation.  

Secondary nucleation , which may occur at lower supersaturation level, is favored by the 

presence of solid in suspension (i.e. added in the crystallizer through seeding or generated 

through primary nucleation): 
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The primary nucleation parameter  requires to be identified on-line,  and  are 

assumed constant and  is the overall mass of solid in suspension. The boundary condition 

for equation (1) is usually set as follows [16]: 
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Where, according to free energy considerations, only crystal nuclei of critical size  are 

assumed to grow. (i.e. for , the particle will dissolve). 
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Secondary nucleation clearly appears to be less “explosive” than primary nucleation and it is 

known to take place at lower supersaturation values. In other words, the limit curve of 

metastable zone for secondary nucleation is closer to the solubility curve than the limit curve 

of metastable zone for primary nucleation [15]. Actually, it is usually assumed that secondary 

nucleation dominates nucleation phenomena in most industrial crystallization processes. As 

already mentioned, seeding the crystallizer yields secondary nucleation, provided that the 



supersaturation level is sufficient. The mass of seed should yet be sufficient to allow 

significant consumption of solute through crystal growth and, consequently, avoid undesirable 

primary heterogeneous nucleation burst. Therefore, satisfactory seeding conditions are 

expected to lead to both moderate increase in the particle number and supersaturation 

decrease. In the following, unseeded crystallization operations (i.e. primary nucleation takes 

place) are referred to as "case 1" while seeded crystallizations are referred to as "case 2". 

 

Discretization of the PBE "Population Balance Equation" 

 

Many discretization methods were applied to the PBEs (see e.g. [17] and [18]). Finite 

difference methods which are widely developed in numerical analysis and collocation 

methods supported by [19] were both applied during the present study. The discretization of 

the crystallization PDE using the first method is rather well developed. Interestingly, finite 

difference method fits exactly the observer structure. Indeed, the state matrix involved 

exhibits tri-diagonal form. Moreover, the method is consistent with the physical behavior of 

the system. Meanwhile, collocation techniques are based upon polynomial approximations 

correlating states from a mathematical point of view, rather than from the physical point of 

view. The system resulting from the discretization finally turns out to be: 
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With  and . Equations (11-12) assume that the number  of 

particles with minimum size that can be measured represents the number of nuclei . 

Such assumption is valid if the time required by a given nucleus to grow until the minimum 

detectable size is supposed to be negligible. 
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The moment's equations of the CSD are defined by : 
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The computation of the moments allows evaluating overall parameters characterizing the CSD 

like the number mean size  and the variation coefficient  which are calculated as 

follows: 
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Identification of primary nucleation parameter  1Na

Mechanistic modelling of primary homogeneous nucleation was reported by many authors, 

and complex models were proposed for both parameters  and . However, industrial 

and laboratory practice clearly show that the reported nucleation models cannot be considered 

as fully predictive. A good illustration of this problem lies in the fact that, despite 

reproducible operating conditions, it is very frequent to observe batch-to-batch varying 

nucleation temperatures related to irreproducible occurrence of the primary nucleation. The 

resulting variations of nucleation supersaturation, conjugated with the highly non linear 

features of the nucleation kinetics induce dramatic batch-to-batch changes of the particle 

number. As far as CSD modelling and estimation is concerned, it would therefore be illusory 

1Na 1Nb



to rely on constant nucleation parameter values. In the following approach, it is assumed that 

 is a highly uncertain parameter while  is assumed constant, with possible differences 

with respect to the simulated "true" value. In order to estimate the time variations of the CSD, 

a state observer was designed assuming that measurements of the number of the initial 

particles (i.e., the nuclei) are performed. In order to strengthen the estimation scheme, 

parameter  was also estimated. A Levenberg-Marquardt algorithm was used to perform 

such identification, it is based on the minimization of the following quadratic error criterion: 
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The identification is performed on adequate sliding horizon of points. Measurement and 

pseudo-measurements being available, the estimation of the crystal size distributions and the 

calculation of the moments resulting from this estimation can be performed. It is worth noting 

that, in contradiction with CSD measurements, solute concentration measurements are 

currently available in-line ([20], [21]). For example ATR FTIR in situ solute concentration 

measurements were successfully performed for several model crystallization systems. Using 

such technique, our group has reported relative uncertainties of the order of 1-2%, in the case 

of various organic batch crystallization operations (see e.g. [20], [26], [27]). These latter 

measurements can be used to compute the time variations of supersaturation and, therefore, 

the nucleation and growth kinetics leading to the number of generated nuclei, according to 

eq.(11). The estimated values of  are then considered as pseudo-measurements which 

can be updated using any infrequent and/or off-line CSD measurement, allowing variations of 

parameter aN1 to be identified. Such identification of the nucleation kinetic rate B1 improves 

the observer convergence.  

)t,x(n *

It is clear that, given the structure of the primary nucleation model, the identification of both 

parameters  and is impossible from the measurements which are assumed to be 1Na 1Nb



available. However preliminary simulations have clearly shown that for any reasonably 

uncertain initial value of , the observer yields appropriate value of  such that the 

reconstructed CSD is satisfactory. For example, in the following  was assumed to be equal 

to 0.69 (see Table 1) which led to the time variations of displayed in Figure 2. Setting  to 

0.9 obviously yielded different variations of parameter , with a maximum of 0.6 1012 

nb.m-3.s-1. However, in both cases, the two estimated pairs ( , ) produced really similar 

CSD profiles. 
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High gain observer synthesis 

In the case of single output systems, the high gain observer is dedicated to the uniformly 

observable systems class of the following form: 
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System (17) is said to be uniformly observable if for any two initial states  and every 

admissible inputs defined on any [0,T], there exists t

_
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where  is the output associated to the initial state  and the input . This means that 

the observability of the system is not affected by the variation of the input u in the interval of 

observation [0, T]. 
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Here, system (17) takes the particular form of system (12) which is clearly observable due to 

its triangular form. Indeed, in this particular case, the structure of the different differential 

equations (matrix A) shows that, on the observation interval, a given output trajectory implies 



a unique solution of the set of the other crystal classes. Such observability can be proved 

using the well known Kalman criterion: rank[(C, CA, …, CAN-1)]=N. 

The canonical form may be used to construct an exponential observer for system (12) under 

the following technical assumption: 

ξαγξγξγ ≤≤≤∀≤<∃ )(:0,0, ttwith     for some constant γ  and ξ . 

As α(t) represents the growth kinetic which is positive and bounded, this assumption is not 

restrictive in the case of crystallization processes. 

In the case of continuous measurements, a candidate exponential observer for the system is 

given by [22] and [23]:  
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where S is symmetric positive definite matrix given by the following equation: 
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If )(tα  is negative for any time t>0, the sign of the correction term should be changed: 
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Case 2 requires to apply the previous model when seeding is performed. Here the 

discretization is based upon about 50 samples. This number was chosen to allow satisfactory 

accuracy of the model representation. The same number of samples was used in the observer 

synthesis, while in case 1, N was set to 100 so as to improve the model accuracy. Such a 

number is not harmful to the observer computation time, and could be reduced to a quarter 

. The latter simplification allows one to significantly reduce the observer 

variables, and consequently allows saving significant computation time. The model-predicted 

variables and the corresponding estimates will be compared in the next section.  

25=observerN



For case 1 (unseeded solution), matrix A in equation (12) is replaced by: 
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In order to make use of the previous observer structure, we consider the following change of 

variables: 
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The new system is given by: 
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Despite the change of coordinates the structure remains unchanged. Reducing the number of 

variable in the gain matrix S allows saving integration computation time. The new number of 

S components being 
2

)1)(1( 11 −+ NN
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Another alternative is to use the following diffeomorphism φ  :  
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Such diffeomorphism transforms system (12) into the observable canonical form with:  
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Where  is given by the Lyapunov equation: θS
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In the present case, the calculation of φ  is straightforward because matrix A is constant. The 

result is given by the following equation: 
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Simulation results and discussion 

Simulation conditions 

The parameters used to simulate an industrial batch crystallization process were taken from 

the in depth investigation of the crystallization of adipic acid in water reported by Marchal 



[24]. Primary homogenous nucleation models were also taken from [25]. The cooling fluid in 

the jacket was assumed to be brine at . Table 1 summarizes both the kinetic and 

operating parameter values which were used during the simulation. 

C°0

 

Simulation results and discussion, case 1 

Figure 1 displays the concentration diagram of a typical simulated unseeded batch 

crystallization process. The model simulated operating conditions are the following: 

- The initial undersaturated adipic acid solution is kept to 50 °C (323 K). The initial solute 

concentration is 1550 mol/m3 while the corresponding solubility is about 1500 mol/m3. 

- Cooling is assumed through temperature controlled brine initially kept at 320 K (i.e. the 

initial temperature difference between the jacket and the solution is 3 °C). The set point 

trajectory for the cooling brine tracks a constant rate of -1 °C/min until the final crystallizer 

temperature is reached (280 K). 

Stirring effects are not explicitly taken into account in the crystallization model even through 

it is well-known that nucleation phenomena are likely to strongly depend on the stirring 

power. However, it is assumed that such effects are indirectly represented through possible 

variations of the nucleation kinetic parameters.  

The width of metastable zone appears to be rather large while the residual supersaturation 

following the initial nucleation and growth process remains very low. Indeed, Fig. 1 shows 

that due to primary nucleation and growth of the newly generated particles, the solute 

concentration starts to decrease at about 313 K. the corresponding solubility is about 1020 

mol/m3 and the initial supersaturation is therefore  C-Csat=1550-1020=530 mol/m3 . This latter 

point, together with the fast return to solubility after primary nucleation indicates that the 

simulated growth rate is sufficient to allow fast consumption of the solute during the cooling 

process after nucleation. This experimental behavior is indeed observed during the industrial 



crystallization of adipic acid in water. Consequently, due to the low supersaturation values, 

reduced secondary nucleation is expected during the continuation of the batch process. 

Identification of parameter  is shown in figure 2. Despite the simulation of a significant 

initial uncertainty, the convergence appears to be very fast at the onset of primary nucleation 

(i.e. after about 140 s which corresponds to T=312 K the nucleation process is observed). The 

identification then appears to be really stable, accurate and efficient in tracking slight 

temperature variations of parameter . However, after about 400 s, the estimation process 

loses its efficiency, which is neither surprising nor detrimental since, due to negligible 

supersaturation level, the nucleation process is almost terminated. 

1Na
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Figure 3 display the time variations of the number of nuclei which are assumed to be 

imperfectly measured. A noise (gaussian noise with variance of about 0,38) was added to the 

"real" simulated data of the number of generated nuclei (i.e. as outlined above, crystals 

contained in the smallest size class.) Again, the convergence of the estimated number of small 

particles appears to be satisfactory. 

 

As examples of the estimation of particle numbers in the different size classes, Figures 4 and 

5 show a comparison between the evolutions of the numbers of particles in the 9th and 57th 

model classes, respectively. These two classes of size correspond to 18μ m and 104μ m, 

respectively. The classes in Figs. 4 and 5 were arbitrarily selected to illustrate the 

convergence and the performance of the observer. The whole range of other simulated classes 

yielded similar results. In figure 4, the estimation of the number of small particles appears to 

be less stable than for bigger crystals in Figure 5. This is simply due to the fact that big 

particles do not disappear through growth at the end of the batch process while, due to the 



cancellation of primary nucleation when supersaturation tends towards zero, the growth of 

smaller particles make them vanish in the size distribution. 

Even though they provide reduced information about the CSD, the moments of the size 

distribution can be considered as representative of the accuracy of the reconstruction of the 

whole size distribution. From this point of view, Figure 6 represents the third moment which 

is required to compute the weight average particle size. Figure 7 displays the number average 

crystal size (i.e., the ratio 
0

1
meanL

μ
μ

= )  It appears that, except before the occurrence of 

significant primary nucleation (i.e., before the time when it is meaningless to estimate the 

particle sizes), the average size and the moments are well estimated by the high gain observer. 

Finally, a presentation of the simulated CSD, compared with the reconstructed CSD obtained 

with reduced number of size classes, is given in Figures 8, 9. As expected from the previous 

comparisons, the fit between the two plots is satisfactory. 

 

Simulation results and discussion, case 2 

Seeded crystallizations (i.e. case 2) are usually performed in order to circumvent the effects of 

the primary homogeneous nucleation burst, and therefore reduce the detrimental effect of too 

large a number of initial particles on the final CSD. Simulating such operating mode requires 

the knowledge of both the number and size distribution of the seed particles. In the following, 

the mass of seed is set to 5% of the overall expected mass of crystallized product, and its 

average particle size is of the order of  20 μm. In order to evaluate the convergence of the 

observer, a 10% uncertainty was added to every class of the initial seed CSD (i.e., to the 

simulated “real” seed CSD) and introduced as initial CSD estimate.  Figure 10 shows the 

difference between the “actual” seed CSD and the initial guess used by the observer. 

 



Seeding batch crystallizers results in lower initial supersaturation levels, due to the growth of 

seeds. Consequently, the variation of the CSD during seeded crystallizations (case 2) is slower 

than during unseeded operations. This is the reason why satisfactory operation of the state 

observer during seeded operations was found to require fewer measurements than during 

“case 1” situations. Figure 11 demonstrates the very fast convergence of the estimation 

algorithm to reconstruct the time variations of the number of nuclei particles during the 

seeded process.  

 

Finally, Fig. 12 shows a rather satisfactory comparison between both estimated and simulated 

number average particle sizes Lmean. At the beginning of the crystallization, as expected, the 

average size is overestimated, due to the initial underestimation of the particle number (i.e. 

less particles from bigger size classes). At the end of the batch process, the relative 

uncertainty of the estimates is of the order of 5%. 

 

Conclusions 

Actually, the more sophisticated commercially available particle analyzers are unable to 

provide accurate and reliable measurements of the “real” particle size distribution during 

crystallization processes. For both theoretical and numerical reasons, even for suspensions 

exhibiting ideal properties (such as spherical particle shapes and monomodal distributions) 

extracting indicative CSD from sensors raw data remains an open problem. In order to address 

this important difficulty, one can expect powerful state estimation techniques to allow the 

reconstruction of CSD from partial measurements of the size distribution.  

An observation approach based on the design of a high gain observer is presented here, which 

is shown to be efficient in simulation. The proposed state observer assumes in-line 

measurements of the number of nuclei particles (i.e. of the smallest stable crystals in 



suspension). Such requirement, which indeed is rather demanding, is not that unrealistic due 

to the significant progresses accomplished in the field of particle sensing technologies 

together with the possibility of using physical or statistical models to extract dependable 

nucleation data from imperfect measurements. The infinite dimensional system describing the 

time variations of the particle sizes was discretized, allowing a state formulation of the 

population balance equations. Even though it is theoretically possible, the estimation of huge 

a number of variables (the size classes) is numerically difficult to implement. This is why a 

reduction of the order of the state observer was performed. Primary nucleation was assumed 

to be the main crystallization mechanism governing the CSD and particular attention was paid 

to the potential batch-to-batch variations of the pre-exponential parameter  involved in the 

primary nucleation rate model. In order to increase the robustness of the observer, the batch-

to-batch and time variations of  were identified using a Levenberg-Marquardt algorithm. 

Through simulation studies, it is shown that the whole state observation strategy is really 

efficient in reconstructing the time evolutions of the CSD, as far as significant variations of 

the particle size take place (i.e. when unegligible supersaturation is generated as the driving 

force of crystal growth). 

1Na

1Na
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Table 1. Parameters used for the simulation of the crystallization phenomena, after Marchal 

[22] 

 

Parameter Definition Unit Value 

1Na  Pre-exponential primary 

homogeneous nucleation parameter 
13.. −− smnb  Computed 

from [15, 24] 

1Nb  Exponential primary homogeneous 

nucleation parameter 
No dimension 

 

0.69 

2Na  Secondary nucleation parameter 
1)1(3 ... −−−−+ smolmnb jijI  1440 

cK  Growth constant 1)23()1( .. −−− smmol gg  1.57  210−

i  Exponent No dimension 1.968 

j  Exponent No dimension 1 

g  Exponent No dimension 2 

sM  Molar mass of the solute 
1. −molKg  146.14  310−

sρ  Density of the solute 
3. −mKg  1360 

vK  Crystal shape factor No dimension π/6 

1Cp  Solute molar heat capacity 
11.. −− molKJ  3.72 

2Cp  Molar heat capacity of the solid 
11.. −− molKJ  7.44 

3Cp  Molar heat capacity of water 
11.. −− molKJ  75.33 

cHΔ  Crystallization enthalpy 
1. −molJ  -48000 

U  Overall heat transfer coefficient 

through the jacket 
12.. −− KmW  1000 

cA  Contact surface of the jacket  
2m  2.2  210−

 



Figures Captions  

 

Figure 1: Solubility curve (dashed line) and simulation of the concentration profile (solid line) 

during unseeded batch cooling crystallization of adipic acid 

Figure 2: Simulated variations of the primary nucleation parameter  (continuous line) and 

estimates using  Levenberg-Marquardt Algorithm (Dashed line) 

1Na

Figure 3: Simulated measurement of the number of nuclei (continuous line) and estimates 

(Dashed line) during unseeded batch cooling crystallization. 

Figure 4: Simulation (solid line) and reconstructed time variations (Dashed line) of the 9th 

size class (18μ m) of the model (i.e. the 3rd size class of the state observer) during 

unseeded batch cooling crystallization. 

Figure 5: Simulation (solid line) and reconstructed time variations (Dashed line) of the 57th 

size class (104μ m) of the model (i.e. the 15th size class of the state observer) during 

unseeded batch cooling crystallization. 

Figure 6: Simulation (solid line) and reconstructed time variations (Dashed line) of the third 

moment of the size distribution during unseeded batch cooling crystallization. 

Figure 7: Simulation (solid line) and reconstructed time variations (Dashed line) of the 

number average particle size during unseeded batch cooling crystallization. 

Figure 8:  Simulation of the time variations of the CSD during unseeded batch cooling 

crystallization of adipic acid. 

Figure 9: Estimation of the time variations of the CSD during unseeded batch cooling 

crystallization of adipic acid. 

Figure 10: (dashed line) Initial observer CSD (A 10% uncertainty was added to the simulated 

seed CSD) and (solid line) simulated seed CSD during “case 2” batch cooling 

crystallization. 



Figure 11: Simulated measurement of the number of nuclei (continuous line) and estimates 

(Dashed line) during seeded batch cooling crystallization. 

Figure 12: Simulation (solid line) and reconstructed time variations (Dashed line) of the 

number average particle size during seeded batch cooling crystallization. 
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Figure 1: Solubility curve (dashed line) and simulation of the concentration profile (solid line) 

during unseeded batch cooling crystallization of adipic acid 



 

 

 

 

 

 

Figure 2: Simulated variations of the primary nucleation parameter  (continuous line) and 

estimates using  Levenberg-Marquardt Algorithm (Dashed line) 
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Figure 3: Simulated measurement of the number of nuclei (continuous line) and estimates 

(Dashed line) during unseeded batch cooling crystallization 
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Figure 4: Simulation (solid line) and reconstructed time variations (Dashed line) of the 9th 

size class (18μ m) of the model (i.e. the 3rd size class of the state observer) during unseeded 

batch cooling crystallization.
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Figure 5: Simulation (solid line) and reconstructed time variations (Dashed line) of the 57th 

size class (104μ m) of the model (i.e. the 15th size class of the state observer) during 

unseeded batch cooling crystallization 



 
μ 3

   
  (

nb
)

Time (s) 

0.3

0.25

0.2

0.15

0.1

0.05

0

40003500 30002500200015001000 5000

 

 

 

 

 

 

 

Figure 6: Simulation (solid line) and reconstructed time variations (Dashed line) of the third 

moment of the size distribution during unseeded batch cooling crystallization
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Figure 7: Simulation (solid line) and reconstructed time variations (Dashed line) of the 

number average particle size during unseeded batch cooling crystallization 



 

 

 

 

 

Figure 8:  Simulation of the time variations of the CSD during unseeded batch cooling 

crystallization of adipic acid. 
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Figure 9: Estimation of the time variations of the CSD during unseeded batch cooling 

crystallization of adipic acid. 
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Figure 10: (dashed line) Initial observer CSD (A 10% uncertainty was added to the simulated 

seed CSD) and (solid line) simulated seed CSD during “case 2” batch cooling crystallization. 
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Figure 11: Simulated measurement of the number of nuclei (continuous line) and estimates 

(Dashed line) during seeded batch cooling crystallization. 
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Figure 12: Simulation (solid line) and reconstructed time variations (Dashed line) of the 

number average particle size during seeded batch cooling crystallization. 

 


