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Failure Diagnosis and Nonlinear Observer.
Application to a Hydraulic Process.

H. Hammouri, P. Kabore, S. Othman and J. Biston
LAGEP, UPRES-A CNRS Q 5007/ CPE Bat G308, Universite Claude

Bernard, 43 bd du 11 Nov. 1918, 69622 Villeurbanne Cedex
e-mail: hammouri@lagep.cpe.fr

Abstract : This paper deals with the problem of fault detection and isolation for non-

linear systems. The proposed approach is based on nonlinear disturbance decoupling

techniques and nonlinear observers. First, we give sufficient conditions and a design

procedure for the synthesis of residual generators. Next, we characterize a class of

nonlinear systems for which a high gain observer can be designed. Finally, the two

above developments are illustrated through a real application dealing with the detec-

tion and isolation of three failures in a hydraulic process. The design of the residual

generators is shown and their performances are discussed.

Key words: Nonlinear system, Diagnosis, Observer, Hydraulic process.

1 Introduction

Over the last two decades, fault diagnosis has become an issue of primary impor-
tance in modern process automation as it provides a basis for the reliable and
safe fundamental design features of many complex engineering systems. Failure
diagnosis consists of providing information on the time and on the location of
faults that occur in the supervised process. The former task is called fault de-
tection problem while the latter is referred to as fault isolation. Several methods
for Fault Detection and Isolation (FDI) have been presented since the original
works of Beard [3] and Jones [23]. The most important ones are based on the
concept of analytical redundancy, which consists of observing certain variables
that are identically equal to zero (or under a predetermined threshold) as long
as no failure occurs. Such observed signals are called residuals, and their gen-
erating system is referred to as a residual generator. If a residual is not altered
by a subset of failures, we say that this residual is unaffected by the subset. In
fact, such a residual is aptly known as a structured residual. Making a diagnosis
therefore consists of comparing various structured residuals with different decou-
pling properties. The analysis of the distinguishably nonzero residuals leads to
fault isolation. Parity space techniques (see e.g. [13] and the references therein),
parameter estimation techniques (see e.g. [21], [7], [9] ), statistical techniques
[2] and observer-based techniques (see e.g. [26]; [27]; [8]; [29]; [1]; [18]; [19] and
the references therein) are amongst the most important contributions to the
analytical redundancy-based failure diagnosis approach.

Many solutions for the FDI problem that use an observer-based approach
have been proposed. These include an Eigenstructure Assignment approach, an
Unknown Input Observer approach , and a geometric approach proposed in [26]
and [27] (see e.g. [8]; [29] as surveys of existing techniques). In fact, observers
are used to estimate a part of the state vector which allows the reconstruction of
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the output functions and the innovation is then taken as a residual. The choice
of such output functions depends on their decoupling properties with respect
to failures ([26]; [27]). For nonlinear systems, the FDI problem was initially
introduced by P. M. Frank [7]. More recently, many technics were proposed in
order to solve the FDI problem for nonlinear systems:

• L. R. Seliger and P. M. Frank [31] propose some solutions based on robust
observer approach.

• Combining the geometric decoupling technics together with the nonlinear
observer synthesis, the authors in ([30], [1]; [18]; [19]; [20]) gave sufficient
conditions permetting to solve the FDI problem.

The outline of this paper is as follows. In section 2, we define a sufficient
condition for the solution of the FDI problem for of nonlinear systems. In section
3, we show how one can extend the high gain observer (stated in [11]) to a more
general class of nonlinear systems. In section 4, we apply the theoretical results
stated in sections 2 and 3 to a hydraulic process.

2 Fault detection and isolation for nonlinear systems

We consider the following class of nonlinear systems:







ẋ = f(x) +
m
∑

i=1

uigi(x) +
mf
∑

i=1

viei(x)

y = h(x)
(1)

where the state x(t) ∈ V is an open set of R
n, the input u(t) = (u1(t), . . . , um(t)) ∈

U is an open set of R
m and the output y(t) = (y1(t), . . . , yp(t)) ∈ R

p, the vi are
unknown scalar failure modes and the vector failure vi is given by (v1, . . . , vi−1, vi+1, . . . , vmf

).
The following definition extends the definition of the FPRG (fundamental

problem in residual generation) proposed by M. A. Massoumnia et al. in [27].

Definition 1 The FDI w.r.t. vi admits a solution if we can find a dynamical
system called residual filter (or residual generator):

ż = F (u, z, y) (2)

r = H(y, z)

satisfying the following conditions:
C1) The residual r depends upon vi in the following sense: There exists

an initial state (x(0), z(0)) of the augmented system (1), (2) and time varying
signals u, vi such that the input-output map vi → r(x(0), z(0), u, vi, vi) is not
trivial one (It is not a constant map).

C2) If vi = 0, then
i) For every initial state (x(0), z(0)) of (1), (2) and for every signals u, vi,

lim
t→∞

r(t) = 0

ii) r doesn’t depend on vi.
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For linear systems, the residual generator proposed by Massoumnia et al. is a
linear one, and the authors gave a geometric condition (necessary and sufficient
condition) that allows them to solve the FDI problem of definition 1.

In what follows, we give a sufficient condition together with a design proce-
dure to solve the FDI w.r.t. v1. Concerning the standard geometric notions of
distributions, the reader is referred to the well-known books of Isidori [22], and
Nijmeijer and Van Der Schaft [28].

For the sake of simplicity, we will consider the FDI w.r.t. v1 (i = 1). Consider
the following distributions ∆1 ⊂ ∆2 ⊂ . . . ⊂ ∆k−1 ⊂ ∆k ⊂ . . .. where: ∆1 is
spanned by {e2, . . . , emf

} and for k ≥ 2, ∆k is the distribution spanned by ∆k−1

and [G, ∆k−1] where G={f, g1, . . . , gm} and [G,∆k−1] denotes the family of all
vector fields [X,Y ], X ∈ G and Y ∈ ∆k−1, [, ] is the Lie Bracket operator.

Assuming that the ∆i’s are of constant dimension (i.e. dim ∆i(x)= dim
∆i(x

′), ∀x, x′ ∈ V , i = 1, 2, . . .). Then, there exists an integer k such that:

∀i ≥ k, ∆i+1 = ∆i = ∆∗

Now, consider the functional space Ω of smooth functions σ : R
p −→ R such that

LX(σ ◦ hj) = 0, for j = 1, .., p. Here LX(ψ) =
m
∑

l=1

Xi
∂ψ
∂xi

is the Lie derivative of

ψ w.r.t. the vector field X. Noticing that Ω is not empty (since 0 is a solution).
Denote by dΩ the co-distribution spanned by all one-forms d(σ ◦hj), σ ∈ Ω and
assume that dΩ is of constant dimension on V . Let ϕ1, . . . , ϕp̄ ∈ Ω such that
(dϕ1, . . . , dϕp̄) forms a basis dΩ. In what follows, ϕ denotes the vector map






ϕ1

...
ϕp̄






.

Now, consider the nominal system (1) in which v2 = ... = vmf
= 0 with the

output map ϕ ◦ h:







ẋ = f(x) +
m
∑

i=1

uigi(x)

ȳ = ϕ ◦ h(x) = h̄(x) = (h̄1(x), . . . , h̄p̄(x))⊤
(3)

Denote by Oϕ◦hthe observation space of system (3): the smallest real vec-
tor space containing h̄1, . . . , h̄p̄ and such that for every σ ∈ Oϕ◦h, LXσ ∈ Oϕ◦h,

where X = f+
m
∑

i=1

uigi, (u1, . . . , um) is any m-tuple of U . Assume that the codis-

tribution defined by dOϕ◦his of constant dimension on V and (dΨ1, . . . , dΨd) is
a basis of dOϕ◦h. Consider a local system of coordinates ξ = (ξ1, . . . , ξn) such
that ξi = Ψi(x) for i = 1, . . . , d, and set ξ1 = (ξ1, . . . , ξd)

⊤, ξ2 = (ξd+1, . . . , ξn)⊤,
we obtain:
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Lemma 2 In this system of coordinates, system (3) takes the following form:

ξ̇1 = F 1(ξ1) +
m

∑

i=1

uiG
1
i (ξ

1) (4)

ξ̇2 = F 2(ξ) +

m
∑

i=1

uiG
2
i (ξ) (5)

ȳ = H(ξ1) (6)

The decomposition (4), (5), (6) is well-known and can be found in the general
literature on nonlinear systems. In what follows, we assume that the system of
coordinates (ξ1, . . . , ξn) is a global one: i.e. the map x 7→ (ξ1(x), . . . , ξn(x))
is a diffeomorphism from V into its range. If this is not the case, we restrict
ourselves to an open subset of V on which (ξ1, . . . , ξn) is well defined.
Now, denote by ker dOϕ◦h the distribution spanned by vector fields X such that
LX(ψ) = 0 for every ψ ∈ Oϕ◦h.

We can state our main result :

Theorem 3 Assume that the following conditions hold:
i) e1 /∈ ker dOϕ◦h

ii) system (4), (6) admits an asymptotic observer then the FDI w.r.t. v1

possesses a solution.

Proof. In what follows, we will construct a residual filter that can be used
to detect and isolate the failure mode v1 (in other words, a residual generator
satisfying conditions C1) and C2) of definition 1 ). To do so, using the construc-
tion of ∆∗ and the definition of ϕ ◦h, we obtain Lej

(τ) = 0 for 2 ≤ j ≤ mf and
for every τ ∈ Oϕ◦h. In particular, Le2

(ξi) = ... = Lemf
(ξi) = 0, for 1 ≤ i ≤ d.

Using lemma 2 and taking into account this last fact, system (1) takes the
form:

ξ̇1 = F 1(ξ1) +

m
∑

i=1

uiG
1
i (ξ

1) + v1E
1
1(ξ) (7)

ξ̇2 = F 2(ξ) +
m

∑

i=1

uiG
2
i (ξ) +

mf
∑

i=1

viE
2
i (ξ) (8)

ȳ = H(ξ1) (9)

From condition ii), system (4), (6) admits an observer which takes the gen-
eral form:

{

ζ̇ = Λ(ζ, u, ȳ − H(ξ̂1))

ξ̂1 = Φ(ζ)

where ȳ is the output of system (4), (6) and ξ̂1 is the variable which estimates
ξ1.
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Our candidate residual generator is then of the form:

ζ̇ = Λ(ζ, u, ȳ − H(Φ(ζ))) (10)

r = H(Φ(ζ)) − ȳ

where ȳ is the output of (7), (8). In what follow, we will show that system
(10) satisfies conditions C1), C2) of definition 1.

Condition C2):
Condition C2) − i), comes from the fact that system (10) is an asymptotic

observer for system (7), (9) in which v1 = 0.
Condition C2)-ii). Using the structure of system (7), (9), it is easy to see

that if v1 = 0, then ȳ doesn’t depend on v2, ..., vmf
and in similar way, r doesn’t

depend on v2, ..., vmf
.

Condition C1):
There exists an initial state (x(0), z(0)) of the augmented system (1), (2)

and time varying signals u, vi such that the Frechet derivative of the functional
map vi → r(x(0), z(0), u, vi, vi) does not vanish.

Assume that C1) is not satisfied. Then for every initial state (ξ(0), ς(0)) of
the augmented system (7), (8) and (10) and every signals u, (v2, ..., vmf

) = vi,
the Frechet derivative of the functional map vi → r(x(0), z(0), u, vi, vi) is equal
to zero. This means that the residual r doesn’t depend on v1. using the structure
of system (10), it follows that ȳ doesn’t depend on v1. This implies that the
output ȳ of system (7), (8), (9) in which v2 = ... = vmf

= 0 doesn’t depend
on v1. Set E1(ξ) = [E1T

1 (ξ), E2T
1 (ξ)]T and applying proposition 4.14 (cf pp

136-137 [28]), it follows that for every τ ∈ OH , LE1
(τ) = 0 (where OH is the

observability space of system (7), (8), (9)), or equivalently, e1 ∈ ker dOϕ◦h. This
contradicts condition i) of theorem 3. Consequently, C1 is true.

To end this section, we will extend this result to more general systems.
Consider the following control affine system:

ẋ = f(x) +

m
∑

i=1

uigi(x) + f̃(x) +

m
∑

i=1

uig̃i(x) +

m
∑

i=1

viei(x) (11)

y = h(x) (12)

Using the above procedure and consider ∆∗ and Oϕ◦h obtained from {f, g1, . . . , gm}
and {e2, . . . , emf}. Let (dΨ1, . . . , dΨd) be a basis of dOϕ◦h, (ξ1, . . . , ξn) be a
system of coordinates s.t. (ξ1, . . . , ξd) = (Ψ1(x), . . . ,Ψd(x)) and assume the
following hypothesis:
H1) For 1 ≤ i ≤ d, Lf̃ (ψi), Lg̃j

(ψi) depend only on (ξ1, . . . , ξd) and y = h(x).
It means that:

Lf̃ (ξi) = F̃i(ξ
1, y), Lg̃j

(ξi) = G̃ij(ξ
1, y)

for 1 ≤ i ≤ d

As above (see lemma 2), system (11) with output ȳ = ϕ◦h takes the following
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form:

ξ̇1 = F 1(ξ1) +

m
∑

i=1

uiG
1
i (ξ

1) + F̃ 1(ξ1, y) +

m
∑

i=1

uiG̃
1
i (ξ

1, y) + v1E
1
1(ξ)(13)

ξ̇2 = F 2(ξ) +

m
∑

i=1

uiG
2
i (ξ) + F̃ 2(ξ) +

m
∑

i=1

uiG̃
2
i (ξ) +

mf
∑

i=1

viE
2
i (ξ) (14)

ȳ = H(ξ1) (15)

Now, we can state the following extension of theorem 3

Theorem 4 Under hypothesis H1), the FDI w.r.t. v1 has a solution if the
following conditions hold:

i) e1 /∈ ker dOϕ◦h

ii) For v1 = 0, system (13), (15) admits an asymptotic observer

The proof of this theorem is similar to that of theorem 3.

3 Observer Synthesis

In this section, we give some observer algorithms that can be used in the con-
struction of residual filters. Several contributions to nonlinear observer synthesis
can be found in the literature:

• A Luenberger observer can be extended to a linear system up to output
injection. Nonlinear systems which can be steered by a change of coordi-
nates to such systems are characterized in [24], [25] and [32].

• The Kalman observer approach has been extended to state affine systems
up to output injection by the authors in [5] and [14]. The characterization
of nonlinear systems which are equivalent (using a change of coordinates)
to such systems has been stated in [15], [16] and [17].

• The High gain observer is a general nonlinear extension of a Luenberger
observer. Systems which are concerned by this observer design, are those
which are uniformly observable. A nonlinear system is called uniformly
observable if for every two different initial states x, x̄ and every admissible
control, the associated outputs y(x, u, t), y(x̄, u, t) are not identically equal
on their time interval of definition. In [10] (see for a short proof [11]), the
authors showed for the single output case that if a nonlinear system of the
form (1) (in the absence of faults) is uniformly observable, then locally
generically the following map:

(h,Lf (h), ..., Ln−1
f (h))T (16)
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is a local diffeomorphism which transforms system (1) into the following
form:

{

ẋ(t) = Ax(t) + γ(u(t), x(t))
y(t) = Cx(t)

(17)

where γi(x, u) = γi(x1, . . . , xi, u),

A =













0 1 . . . 0
...

. . .
. . .

...

0 0
. . . 1

0 0 . . . 0













and C = [1 0 . . . 0]

Moreover, the authors in [11], showed that an observer for (17) takes the
following form:

˙̂x = Ax̂ + γ(u, x̂) − S−1
θ C⊤(Cx̂ − y)

where Sθ is the symmetric positive definite matrix satisfying:

θSθ + A⊤Sθ + SθA = C⊤C

Several extensions of this observer can be found in [4], [6], [12], ...
In what follows, we will extend the above observer synthesis to a more
general class of nonlinear system.

3.1 Single output case

Consider the class of nonlinear system of the form:

{

ẋ(t) = a(s(t), u(t))Ax(t) + γ(s(t), u(t), x(t))
y(t) = Cx(t)

(18)

where A, C are as above, s(t), u(t) are known signal and input, and γ possesses
the triangular structure: γi(s, u, x) = γi(s, u, x1, . . . , xi).
To design an observer for system (18), we will need the following hypotheses:

H2) We assume that one of the following conditions hold:

i) 0 < α < a(s(t), u(t)) < β

ii) 0 > −α > a(s(t), u(t)) > −β

for every t ≥ 0, where α and β are constants.

H3) γ(s, u, x) is a global Lipschitz function w.r.t. x locally uniformly w.r.t.
(s, u): ∃M1,M2 > 0;∀s, u with ‖s‖ ≤ M1, ‖u‖ ≤ M2; ∃γ0 > 0; ∀x, x̄, we
have ‖γ(s, u, x) − γ(s, u, x̄)‖ ≤ γ0‖x − x̄‖.
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Remark 5 a) If condition H2)− ii) holds, then after a simple change of
coordinates, the obtained system takes the form (18) and satisfies condition
H2) − i) (the change of coordinates can take the form z = δx, where δ is
the n × n diagonal matrix diag(δ1, ..., δi) and δi = (−1)i).

b) Hypothesis H3) can be omitted in the case when trajectories of system
(17) are bounded. Indeed, in this case, we can prolong the nonlinear term
of system (18) to a global Lipschitz function (see for instance [11]).

Theorem 6 Assume that hypotheses H2), H3) hold, then for every con-
stant ρ ≥ β

2 , the following system:

˙̂x = a(s, u)Ax̂ + γ(s, u, x̂) − ρS−1
θ C⊤(Cx̂ − y)

is an exponential observer, for θ sufficiently large where Sθ is as above.

Proof. We proceed as in [11]:
Set e(t) = x̂(t) − x(t), and consider the change of coordinates: ε = ∆θe,

where ∆θ = diag( 1
θ
, .., 1

θn ) we get:

ε̇ = θ[a(s(t), u(t))A − ρS−1
1 CT C]ε + ∆θγ̃

where γ̃ = γ(s(t), u(t), x̂(t)) − γ(s(t), u(t), x(t)) and S1 = Sθ for θ = 1.
Now set V (t) = ε(t)T S1ε(t), a simple calculation gives:

V̇ = −θa(s(t), u(t))V − θ(2ρ − a(s(t), u(t)))(Cε)2 + 2εT S1∆θγ̃

≤ −θa(s(t), u(t))V − θ(2ρ − a(s(t), u(t)))(Cε)2 + 2
√

V
√

(∆θγ̃)T S1(∆θγ̃)

Using the triangular structure of γ̃ and hypothesis H3), it follows that:

√

(∆θγ̃)T S1(∆θγ̃) ≤ κ ‖ε‖ (19)

for θ sufficiently large, where κ is a constant which does not depend on θ.
Thus,

V̇ ≤ −θa(s(t), u(t))V − θ(2ρ − a(s(t), u(t)))(Cε)2 + 2
κ

λmin
V

where λmin is the smallest eigenvalue of S1.
Hence for ρ ≥ β

2 , we obtain:

V̇ ≤ −(θα − 2
κ

λmin
)V (20)

Finally choose θ > 2 κ

λmin

, ‖ε(t)‖ converges exponentially to zero.
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3.2 A multi-output case

In what follows, we will extend the above observer synthesis to the multi-output
cascade system:























































ẋ1(t) = a1(s(t), u(t))A1x(t) + γ1(s(t), u(t), x(t))
.
.
ẋi+1(t) = ai+1(s(t), u(t), x1(t), .., xi(t))Ai+1x

i+1(t) + γi+1(s(t), u(t), x(t))
1 ≤ i ≤ p − 1

y(t) =









C1x
1(t)
.
.

Cpx
p(t)









=









x1
1(t)
.
.

xp
1(t)









(21)

Where, xi =
[

xi
1 . . xi

ni

]T ∈ R
ni , x =









x1

.

.
xp









∈ R
n, γ =









γ1

.

.
γp









and

Ai is the ni × ni matrix:













0 1 . . . 0
...

. . .
. . .

...

0 0
. . . 1

0 0 . . . 0













s(t), u(t) are respectively a known signal and input, and the ai(s, u, x1, .., xi)
are smooth w.r.t. (x1, .., xi).

As above, we assume that the system possesses the following triangular struc-
ture:

The j th components of γi satisfy: γi
j(s, u, x) = γi

j(s, u, .., xi−1, xi
1, .., x

i
j), for

1 ≤ j ≤ ni.
To design a high gain observer, we need the following hypotheses:
H4) We only concerned by a set of bounded admissible controls U and com-

pact sets K ⊂ K′ such that for every input u ∈ U and every initial state x ∈ K,
the associated trajectory xu(t) belongs to K′ for every t ≥ 0.

H5) We assume that one of the following conditions hold:

i) 0 < αi < ai+1(s(t), u(t), x1(t), .., xi(t)) < βi

ii) 0 > −αi > ai+1(s(t), u(t), x1(t), .., xi(t)) > −βi

for every t ≥ 0; for very u ∈ U and 1 ≤ i ≤ q, where αi and βi are constants.
Using hypothesis H4), we can always assume that the nonlinear term γ is

global Lipschitz w.r.t. x. Indeed, if this is not the case, we can prolong γ
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outside K′ to a global Lipschitz function (see for instance the construction
given in section 4 formula (41)).

As above consider the symmetric positive definite matrix Si
θ satisfying θSi

θ +
A⊤

i Si
θ + Si

θAi = C⊤
i Ci, and set

A =













A1 0 . . . 0

0
. . .

. . .
...

... 0
. . . 0

0 . . . 0 Ap













Sθ =













S1
θ 0 . . . 0

0
. . .

. . .
...

... 0
. . . 0

0 . . . 0 Sp
θ













As stated in remark 5 -a), H5) can be reduced to H5 − i).
Now we can state our main result:

Theorem 7 Under hypotheses H4), H5 − i), the following system:

˙̂x = Ω(s, u, x̆)Ax̂ + γ(s, u, x̆) − ΛS−1
θ C⊤(Cx̂ − y)

is an exponential observer, for θ sufficiently large, where,

x̆ =













x̆1

.

.

.
x̆p













and x̆i =













yi

x̂i
2

.

.
x̂i

ni













Λ =













λ1I1 0 ... 0

0 .
. . .

...
...

. . .
. . . 0

0 ... 0 λpIp













,

Ω(s, u, x̆) =













a1(s, u)I1 0 ... 0

0 a1(s, u, x̆1)
. . .

...
...

. . .
. . . 0

0 ... 0 ap(s, u, x̆1, .., x̆p−1)Ip













Ii is the ni × ni identity matrix, and λi ≥ βi

2 .
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Proof. For the sake of simplicity, we only give the proof for p = 2.
As above, set ei(t) = x̂i(t) − xi(t), x̄i = ∆i

θx
i, εi = ∆i

θe
i, where ∆i

θ is the
ni × ni matrix diag( 1

θ
, .., 1

θni
) we get:

ε̇1 = θ[a1(s, u)A1 − λ1(S
1
1)−1CT

1 C1]ε
1 + ∆θγ̃

1

ε̇2 = θ[a2(s, u, x̆1(t))A2 − λ2(S
2
2)−1CT

2 C2]ε
2 + ∆θγ̃

2

+θ[a2(s, u, x̆1) − θa2(s, u, x1(t))]A2x̄
2

where γ̃i = γi(s, u, x̆) − γi(s, u, x) and Si
1 = Si

θ for θ = 1.

Now set Vi = (εi)T Si
1ε

i, and choose λ1 ≥ β1

2 , as in the single output case
(see formula (20)), we obtain:

V̇1 ≤ −(θα1 − 2
κ1

λ1
min

)V1 (22)

where κ1 is a constant which can be obtained in a similar way as in formula
(19) by replacing γ̃ and S by γ̃1 and S1 and λ1

min stands from the smallest
eigenvalue of S1.

Now taking θ > 2 κ1

λ1

min

, it follows that:

∥

∥e1(t)
∥

∥ ≤ c1(θ) exp[−
(θα − 2 κ1

λ1

min

)t

2
] (23)

for some constant c1(θ) > 0.
Similarly, we have:

V̇2 = −θa2(s, u, x̆1)V2 − θ(2λ2 − a(s, u, x̆1)(C2ε
2)2 + 2(ε2)T S2

1∆θγ̃
2

−2θ[a2(s, u, x̆1) − a2(s, u, x1)](ε2)T S2
1A2x̄

2

Using hypothesis H5−i) and formula (23), it follows that there exists t0 > 0,
such that for every t ≥ t0,

α2 < a2(s(t), u(t), x̆1(t)) < β2

As for (20), take λ2 ≥ β2

2 , the following inequality hold for every t ≥ t0:

V̇2 ≤ −(θα2 − 2
κ2

λ2
min

)V2 − 2θ[a2(s, u, x̆1) − a2(s, u, x1)](ε2)T S2
1A2x̄

2

where κ2 is obtained as in formula (19) in which γ̃ and S1 are replaced by
γ̃2 and S2

1 and λ2
min stands from the smallest eigenvalue of S2

1 .
Combining formula (23) and the fact that x1(t) is bounded (H4)) and a2(s, u, x1)

is smooth w.r.t. x1, we obtain:

∥

∥a2(s(t), u(t), x̆1(t)) − a2(s(t), u(t), x1(t))
∥

∥ ≤ σ(θ) exp[−
(θα − 2 κ1

λ1

min

)t

2
]

for some positive constant σ(θ).
To end the proof, it suffices to take θ > 2max{ κ1

λ1

min

, κ2

λ2

min

}.
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4 Failure diagnosis in a hydraulic process

4.1 Process description and modelling

The hydraulic process consists of three cylindrical water tanks T1, T2, T3 (see
Figure 1). The tank T1 contains cold water, and the water in the tank T2 is
heated by means of a resistance. The water from tanks T1 and T2 are mixed
in T3. Pneumatic valves V1, V2, V3, V4 and V5 are used as local regulators of
the water flow rates through the system.

The model of the process can be obtained by combining the material and
energy balances:
Material Balance:

This material balance is a classical one and uses only the relation between flow
rates, levels of water and difference of pressure between the inlet and the outlet
of valves.

We use the following notations:
xi: the level of water in tank Ti, 1 ≤ i ≤ 3
ui : the aperture of valve i, 1 ≤ i ≤ 5
αi: the flow rate coefficient of valve Vi
P : the measured relative pressure at the inlet of valve V1 and V2.
ρ : the water density
g : the acceleration due to gravity
l :the length of water column between the outlet of valves V3 and V4 and the
inlet of tank T3 ( see Figure 1). The cross sectional area of cylindrical tanks
T1, T2, T3 are s1, s2 and s3 respectively.

We obtain:

ẋ1 =
α1

√
P

s1
u1 − α3

√
ρg

√
x1 + l

s1
u3 (24)

ẋ2 =
α2

√
P

s2
u2 − α4

√
ρg

√
x2 + l

s2
u4 (25)

ẋ3 = α3
√

ρg

√
x1 + l

s3
u3 + α4

√
ρg

√
x2 + l

s3
u4 − α5

√
ρg

√
x3

s3
u5 (26)

Energy balance:

For a given tank Ti, we consider two global heat exchange coefficients: the
first one, hi, corresponds to the heat exchange coefficient between the free sur-
face of the liquid in a tank (of area si = πr2

i ) and the surrounding environment,
ri being the radius of the cylinder. The second one h′

i corresponds to heat ex-
change coefficient through the surface Si (Si = πr2

i + 2πrixi) of the jacket of
tank Ti.
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The experimental results showed that the heat exchange between the free
surface T1 and the environment can be neglected. Thus we only consider the
energy balances of tank T2 and T3.
Denote by x4 and x5 the temperatures of water in T2 and T3 which are assumed
to be stirred. τ and τ ′ denote the respective temperatures of water in T1 and
the ambient which are assumed to be constant. Now set u6 the power of the
heating resistance in T2 and denote by Cp the water heat capacity, the energy
balance can be expressed as follows:

ẋ4 = u2
α2

√
P

x2s2
(τ − x4) +

u6

ρCps2x2
+

[

h2

ρCP x2
+ h′

2

2πr2x2 + s2

ρs2CP x2

]

(τ ′ − x4)

= u2
α2

√
P

x2s2
(τ − x4) +

u6

ρCps2x2
+

[

h2 + h′
2

ρCP x2
+

2h′
2

ρCP r2

]

(τ ′ − x4) (27)

ẋ5 =
u3α3

x3s3

√
ρg

√

x1 + l(τ − x5) +
u4α4

x3s3

√
ρg

√

x2 + l(x4 − x5)

+

[

h3

ρCP x3
+ h′3

2πr3x3 + s3

ρs3CP x3

]

(τ ′ − x5)

=
u3α3

x3s3

√
ρg

√

x1 + l(τ − x5) +
u4α4

x3s3

√
ρg

√

x2 + l(x4 − x5) (28)

+

[

h3 + h′
3

ρCP x3
+

2h′
3

ρCP r3

]

(τ ′ − x5)

To illustrate the methodology of section 2, we only consider the three fol-
lowing failure modes:

• The failure mode v1 (resp. v2) on the valve V3 (resp. V4) can be modelled
as an additional unknown signal on the well-known control u3 (resp. u4).

• v3 is the failure mode on the heating resistance. This failure can be con-
sidered as an additional unknown signal on u6.

To achieve our objective, we take three output measurements at our disposal:
y1 = x2, the level of water in T2, y2 = x3 that in T3, and y3 = x5 is the water
temperature in T3.
The constraints on the inputs ui of the process are:

0.33 ≤ ui ≤ 1, i = 1, . . . , 5; 0 ≤ u6 ≤ 4.28

The experimental physical domain V of state variables that we considered is
given by the following constraints:

{

0 < x1 < 0.5; 0.3 < x2 < 0.5; 0.1 < x3 < 0.5
max(τ, τ ′) < x4 < 80; max(τ, τ ′) < x5 < 80

(29)
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4.2 Detection and Isolation of v1

Noticing that the failure mode v1 and v2 occur in the material balance:

ẋ1 =
α1

√
P

s1
u1 − α3

√
ρg

√
x1 + l

s1
u3 − α3

√
ρg

√
x1 + l

s1
v1 (30)

ẋ2 =
α2

√
P

s2
u2 − α4

√
ρg

√
x2 + l

s2
u4 − α4

√
ρg

√
x2 + l

s2
v2 (31)

ẋ3 = α3
√

ρg

√
x1 + l

s3
u3 + α4

√
ρg

√
x2 + l

s3
u4 − α5

√
ρg

√
x3

s3
u5 (32)

+α3
√

ρg

√
x1 + l

s1
v1 + α4

√
ρg

√
x2 + l

s3
v2

The output measurements are y1 = x2 and y2 = x3 (y = h(x) = (x2, x3)).
In order to achieve the FDI w.r.t. v1, we will apply theorem 4 to system

(30), (31), (32) with output y1, y2 :

Set f = 0, g1 = α1

√
P

s1

∂
∂x1

, g2 = α2

√
P

s2

∂
∂x2

, g3 = −α3
√

ρg
√

x1+l
s1

∂
∂x1

+

α3
√

ρg
√

x1+l
s3

∂
∂x3

, g4 = −α4
√

ρg
√

x2+l
s2

∂
∂x2

+ α4
√

ρg
√

x2+l
s3

∂
∂x3

, g5 = 0, f̃ = 0,

g̃1 = g̃2 = g̃3 = g̃4 = 0, g̃5 = −α5
√

ρg
√

x3

s3

∂
∂x3

, e1 = g3 and e2 = g4. Under the
above notations, system (30), (31), (32) takes the form (11), where the domain
of state variables is V = {(x1, x2, x3)

T ; 0 < x1 < 0.5, 0.3 < x2 < 0.5, 0.1 <
x3 < 0.5} and the output (y1, y2) = h(x) = (x2, x3).

In order to apply theorem 4, let us calculate ∆∗ and ker dOϕ◦h.
Calculation of ∆∗ :

∆1 = span{e2} = span{− 1

s2

∂

∂x2
+

1

s3

∂

∂x3
}

[f, e2] = [g1, e2] = [g2, e2] = [g3, e2] = [g4, e2] = [g5, e2] = 0 . Thus, ∆∗ =

∆1 = span{− 1
s2

∂
∂x2

+ 1
s3

∂
∂x3

}.
Consequently, ϕ is given by Le2

(ϕoh) = 0. This leads to: ϕoh(x) = ψ(s2x2+
s3x3) and a particular solution is given by:

ϕoh(x) = s2x2 + s3x3

A simple computation shows that ker dOϕ◦h is spanned by {s2dx2+s3dx3, dx1};
Now, let us check conditions i) and ii) of theorem 4.
Condition i): since Le1

(ϕoh) = Lg3
(s2x2 + s3x3) = α3

√
ρg

√
x1 + l 6= 0, then

e1 /∈ ker dOϕ◦h.
To show condition ii), we transform system (30), (31), (32) with output

(y1, y2) = (x2, x3) into the form (13), (14), (15). To do so, we perform a similar
change of coordinates given by formula (15): ξ1 = ȳ = ϕ ◦ h(x) = s2x2 − s3x3,
ξ2 = Lg3

(ϕ◦h)(x) = α3
√

ρg
√

x1 + l and ξ3 = x2.. Hence system (30), (31), (32)
with output ȳ, takes the following form:
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ξ̇1 = u3Aξ1 + γ(u, y, ξ1) + v1E
1
1(u, ξ1) (33)

ξ̇2 = ω(u, ξ) + v2E
2
2(u, ξ1) (34)

ȳ = Cξ1 (35)

where ξ1 =
[

ξ1 ξ2

]T
, ξ2 = ξ3 and,

A =

[

0 1
0 0

]

C =
[

1 0
]

γ(u, y, ξ1) =
[

α2

√
Pu2 − α5

√
ρg

√
y2u5

α1α2

3
ρg

√
P

2s1

1
ξ2

u1 − α2

3
ρg

2s1

u3

]T

ω(u, ξ) =
α2

√
P

s2
u2 −

α4
√

ρg

s2

√

ξ3 + lu4

E1
1(u, ξ1) =

[

ξ2 −α2

3
ρg

2s1

]T

E2
2(u, ξ1) = −α4

√
ρg

s2

√

ξ3 + l

To verify condition ii) of theorem 4, it suffices to show that subsystem (33),
(35) in which v1 = 0 admits an asymptotic observer. To achieve this objective,
we only need to show that system (33), (35) satisfies hypotheses H2), H3) stated
in subsection 3.1

Hypothesis H2) is obviously satisfied.
To obtain H3), we extend γ(u, y, ξ1) to a global Lipschitz function γ̃ so that

the obtained nonlinear term becomes a global Lipschitz function. According to
the physical domain given by (29), γ̃ can be obtained by replacing 1

ξ2

by the
function:

{

1
ξ2

if ξ2 = α3
s2

s3

√
ρg

√
x1 + l ≥ α3

s2

s3

√
ρg

√
l√

l if ξ2 ≤
√

l

Consequently, the obtained nonlinear term becomes a global Lipschitz func-
tion. Finally, the residual generator takes the form:

{

ζ̇ = u3Aζ + γ̃(u, y, ζ) − ρS−1
θ C⊤(Cζ − ȳ)

r = Cζ − ȳ
(36)

where ζ =
[

ζ1 ζ2

]T
, Sθ =

[

1
θ

− 1
θ2

− 1
θ2

2
θ3

]

.

4.3 Detection and Isolation of v2

The failure model that we will consider takes the form :
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ẋ2 =
α2

√
p

s2
u2 − u4α4

√
ρg

√
x2 + l

s2
+ v2α4

√
ρg

√
x2 + l

s2

and the output measurement is y2 = x2.
Obviously, the following system:

{

˙̂x2 =
α2

√
p

s2

u2 − u4α4
√

ρg
√

y2+l
s2

− k(x̂2 − x2)

r2 = x̂2 − y2

(37)

is a residual filter which detects and isolates v2, where k > 0 is a constant.

4.4 Detection of v3

In this case, we only consider the detection of v3. More precisely, the residual
filter that we will consider only detects v3 in the absence of v1,v2.

The on-line measurements are y1 = x2, y2 = x3 and y3 = x5. Using equa-
tions (24), (26), (27) and (28), we obtain the following reduced model:























ẋ1 = α1

√
P

s1

u1 − α3
√

ρg
√

x1+l
s1

u3

ẋ3 = α3
√

ρg
√

x1+l
s3

u3 + α4
√

ρg
√

y1+l
s3

u4 − α5
√

ρg
√

x3

s3

u5

ẋ4 = α2

√
P

y1s2

(τ − x4)u2 + u6

ρCps2y1

+
[

h2+h′

2

ρCP y1

+
2h′

2

ρCP r2

]

(τ ′ − x4)

ẋ5 = u3α3

x3s3

√
ρg

√
x1 + l(τ − x5) + u4α4

x3s3

√
ρg

√
y1 + l(x4 − x5)

(38)

First, we show that such system admits an exponential observer. Next, we
give a residual filter which detect the failure v3 in the absence of v1 and v2.

To show that system (38) with output ȳ = (y2, y3) = (x3, x5) admits an
exponential observer, we transform this system into the cascade form given in
subsection 3.2 and we apply theorem 7.

To do so, consider the change of coordinates z1 = x3, z2 =
√

x1 + l, z3 = x5,

z4 = x4 and set z1 =

(

z1

z2

)

, z2 =

(

z3

z4

)

, we obtain the following cascade

system:

ż1 = a1(s, u)A1z
1 + γ1(u, s, z1) (39)

ż2 = a2(s, u, z1)A2z
2 + γ2(u, s, z1, z2)

ȳ = (ȳ1, ȳ2) = (z1, z3)
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where, u = (u1, ..., u6) , s = y1 = x2 the known measurement and,

A1 = A2 =

[

0 1
0 0

]

a1(s, u) =
α3

√
ρg

s3
u3

a2(s, u, z1) =
u4α4

z1s3

√
ρg

√

y1 + l

γ1(u, s, z1) =

[

α4
√

ρg
√

y1+l
s3

u4 − α5
√

ρg
√

z1

s3

u5

1
2z2

α1

√
P

s1

u1 − α3

2s1

√
ρgu3

]

γ2(u, s, z1, z2) =

[

u3α3

z1s3

√
ρgz2(τ − z3) − u4α4

z1s3

√
ρg

√
y1 + lz3

α2

√
P

y1s2

(τ − z4)u2 + u6

ρCps2y1

+
[

h2+h′

2

ρCP y1

+
2h′

2

ρCP r2

]

(τ ′ − z4)

]

Clearly, H4) and H5) (see subsection 3.2 are satisfied.
Using similar notations as in section 3 , the observer takes the form:

{ .

ẑ
1

= a1(s, u)A1ẑ
1 + γ̆1(u, s, z̆1) − λ1(S

1
θ )−1(ẑ1 − ȳ1)

.

ẑ
2

= a2(s, u, z̆1)A2ẑ
2 + γ2(u, s, z̆1, z̆2) − λ2(S

2
θ )−1(ẑ3 − ȳ2)

(40)

Here,

z̆i =

(

ȳi

ẑi
2

)

γ̆1(u, s, z̆1) =

[

α4
√

ρg
√

y1+l
s3

u4 − α5
√

ρg
√

ȳ1

s3

u5

1
2α(ẑ2)

α1

√
P

s1

u1 − α3

2s1

√
ρgu3

]

(41)

α(ẑ2) =

{

ẑ2 if ẑ2 >
√

l√
l if ẑ2 <

√
l

(42)

a2(s, u, z̆1) =
u4α4

ȳ1s3

√
ρg

√

y1 + l (43)

γ̆2(u, s, z̆1, z̆2) =

[

u3α3

ȳ1s3

√
ρgẑ2(τ − ȳ2) − u4α4

ȳ1s3

√
ρg

√
y1 + lȳ2

α2

√
P

y1s2

(τ − ẑ4)u2 + u6

ρCps2y1

+
[

h2+h′

2

ρCP y1

+
2h′

2

ρCP r2

]

(τ ′ − ẑ4)

]

Note that if we initialize systems (39) and (40) at the same initial state
belonging to the physical domain corresponding to the physical constraints (29),
then the two trajectories z(t), ẑ(t) coincide. Moreover, we have:

γ1(u(t), s(t), z1(t)) = γ̆1(u(t), s(t), z̆1(t))

γ2(u(t), s(t), z1(t), z2(t)) = γ̆2(u(t), s(t), z̆1(t), z̆2(t))

for every t ≥ 0
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Since γ̆1(u, s, z̆1) and γ̆2(u, s, z̆1, z̆2) are global Lipschitz w.r.t. (ẑ2, ẑ4), it
follows that for an adequate choice of θ, λ1 and λ2(see theorem 9) system (40)
becomes an exponential observer.
Finally, the residual filter of v3 is given by (40) and the following system:

r3 = ẑ3 − y3

4.5 Experimental results

To show the performance of the residual generators proposed above, we did the
following experiment:

From t = 150s until t = 200s (resp. from t = 450s until t = 500s), we varied
the aperture of the valve v3 (resp. v4), see figure (3.a). The corresponding
residual generators are given by the dynamical systems (36) and (37). The gain
parameters are ρ = 10, θ = 0.002, k = 0.04. Clearly, figures (3.b) and (3.c)
show that residuals r1 and r2 detect and isolate their corresponding failures.

From t = 900s until t = 950s we varied the power of the heating resistance
(see figure 4.a), as it was shown in section 4.4 the residual given by (40) is
sensitive to all faults v1,v2 and v3. The parameters of filter (40) are λ1 =
0.2, λ2 = 0.1, θ = 0.4. In this case, the residual generator r3 only detects v3.
However, a logical decision permits to isolate the fault v3.

5 Conclusion

In this paper, we presented a nonlinear approach to solve the problem of failure
detection and isolation. The proposed approach deals with a nonlinear extension
of the linear geometric approach proposed by Massoumnia et al.,[27]. We have
shown that our contribution corresponds to a sufficient condition and provides a
design procedure to solve the problem. We illustrated the methodology through
a hydraulic process. Three kinds of failures are considered and the design of
residual generators is given, these residual generators allows us to detect and
isolate two failure modes, the third one can be detected by the third residual
generator and isolated by a logical decision.

The performance of the residual generators is shown and gives satisfying
results.
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