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Abstract

A mathematical model for recombinant bacteria which includes foreign protein produc-

tion is developed. The experimental system consists of an E. Coli strain and plasmid

PIT34 containing genes for bioluminescence and production of a protein, β galactosidace.

This recombinant strain was constructed to facilitate on-line estimation and control in a

complex bioprocess. Several batch experiments were designed and performed to validate

the developed model. The design of a model structure, the identification of the model

parameters and the estimation problem are three parts of a joint design problem. A

nonlinear observer is designed and an experimental evaluation is performed on a batch

fermentation process to estimate the substrate consumption.
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1 Introduction and motivation

One of the primary goals of genetic engineering is the maximization of desired protein pro-

duction. A model simple enough to use in optimization and control systems, yet sufficiently

complex to capture the dynamics of the induced system, is highly desirable. Thus mathematical

modeling can be a very efficient tool in the study and use of recombinant systems. Considerable

time and money may be saved by examining scenarios mathematically instead of carrying out

expensive, time-consuming experiments. The aim of this work is to use genetic engineering

to design and construct a new recombinant Escherichia Coli strain to facilitate on-line moni-

toring and control. There has been past research to describe the dynamics of foreign protein

production in recombinant bacteria [12, 4, 5, 17, 14] by using a model of the cellular response

to induction.

The success of using recombinant cultures for on-line supervision of fermentation, and the phar-

maceutic fermentation industry in general, is strongly strain dependent. The luciferase enzyme,

which has generated much interest over the past couple of decades, can be used as a biosensor

for intracellular product. It provides many attractive features, such as non invasively reporting

molecular-level activity, high sensitivity, and a fast response in time of the order of seconds to

minutes. These features are conferred by luciferase as a result of its bioluminescent properties.

Genetic coupling of the production of luciferase with an induced intracellular product permits

one to deduce product levels from bioluminescence measurements. Bioluminescence generates

a distinctive ”fingerprint” response indicative of the product in the cell.

In this work we propose to use bioluminescence as a macroscopic indicator for the estima-

tion of a microscopic parameter: the intracellular product formation. A recombinant plasmid
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containing the pBAD promoter inducible by arabinose, which controls the lacZ gene coding

for β-galactosidase as a model protein, and the lux CDABE genes coding for bioluminescence

was constructed. The bioluminescence and the turbidity were measured on-line by specially

designed sensors. The correlations between the bioluminescence and enzyme production were

obtained in a minimal medium with glycerol and in a complex medium with higher cell density

cultures. The objective was to infer at any time the amount of product produced in the reactor

by the cells, using a model that relates the product to the on-line measurements. This initial

model opens up the possibility for optimization and control of the fermentation process.

The objective of this work is to develop a dynamic model that adequately describes the this

recombinant strain and also to develop methods for the on-line estimation of substrate con-

sumption and enzyme production in complex media.

This paper will be organized as follows: In the next section, we describe the fermentation process

and the recombinant strain construction. In section 3, we describe the dynamic model and it’s

experimental validation in batch fermentation. In section 4, we design a simple estimator that

allows us to estimate the substrate consumption.

2 Materials and methods

2.1 Microorganism and recombinant plasmid

The project goal is to monitor a recombinant bacterial product (enzyme, protein) by biolumi-

nescence and turbidity measurements. At the beginning, we use enzymes which are easy to

analyze, to build and allow easy testing of the model. The principle is to build a recombinant

plasmid with the five lux genes necessary for the endogenous light production, and the gene
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coding for the enzyme or the protein, under the control of a unique promoter. Then after the

induction the light and the protein are produced.

In this work, we use a recombinant plasmid with the pBAD promoter inducible with arabinose,

controlling the production of a protein β-galactosidase and of bacterial bioluminescence coded

by 5 lux genes, luxCDABE. This plasmid, named pIT34, was introduced into E. coli MC4100

Dara, which can not metabolize the arabinose used as inducer. The recombinant strain obtained

was called IT342 [15].

2.2 Culture media and bioreactor conditions

Fermentation cultures are inoculated with a 10 hour preculture, stopped in exponential growth

phase and kept at 4C during one night. The minimal medium having the following composition:

0.5 mg/l ferrous sulfate, 0.2 g/l magnesium sulfate , 13.6 g/l Di hydrogenous phosphate of

potassium, 2 g/l Ammonium Sulfate, 2.8 g/l potassium hydroxyde, 2 g/l glycerol and 0.5 mg./l

vitamin B1.

Inoculum was grown in 50 ml of this medium in shake flasks at 37◦C for 12 hours ([15]). The

same medium with 50 mg/ml ampicillin and 100 mg/l streptomycin was used with about 10%

of this inoculum to start the batch culture at an optical density (O.D.) of 0.07-0.08 in the

MMF. The Fermentor contained a final volume of 50 ml . The culture was thermostated at

37◦C through a dry bath. Oxygen was provided by aeration, with air at 2.57 vvm (154 ml/min).

When the O.D. reached 0.7, the culture was induced with 0.2 g/l arabinose, and at the same

time, aeration was changed from air to pure oxygen. Figure 2 shows the time course profiles for

glycerol, enzymes, biomass and bioluminescence from a batch fermentation experiment. The

production of the light and the β-galactosidase began around 5 minutes after the induction.
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2.3 Material description

The process was carried out in a specially designed fermentors named ”Multi Micro Fermen-

tor” (MMF) with complete monitoring and control instrumentation for batch and continuous

experiments. It consists of squared-section glass tubes containing a small culture volume (from

10 to 60 mL), thermostated with a dry bath to keep the optimal temperature. The MMF are

equipped with a miniaturized pH probe, turbidity and bioluminescence online sensors which are

controlled by a commercially available fermentation software (Labview, National Instruments)

running on a microcomputer (see Figure 2).

The turbidity sensor [9] and the light sensor [16] have been designed at the Fermentations

Laboratory (Pasteur Institute, Paris). They allow sensitive on-line measurements of biomass

and bioluminescence.

The whole fermentation system allows several microbial cultures in parallel with on-line mea-

surements.

3 Mathematical model development

The bioprocess used in this work is a pure recombinant microbial culture (IT342) X growing

on two substrates glycerol S and dissolved oxygen Od and yielding a final intracellular product

P . The reaction is catalyzed by the inducer I. The bioprocess is assumed to be continuous with

a scalar dilution rate D and an input substrate concentration Sin.

The classical reaction of bioluminescence is given by:

FMNH2 + O2 + RCHO → FMN2 + H2O + RCOOH + hν (1)
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where the catalyst of the reaction is a luciferase enzyme.

The proposed mathematical model consisting of five equations based on component balances

was created to simulate the induction of bioluminescence in E. Coli strain (PIT34). The

bacterial growth, substrate consumption, the oxygen consumption, the inducer degradation,

protein production and the bioluminescence were represented in the mathematical model.

Generally, the variables of interest are the cell concentration in the aqueous phase X, the

glucose concentration in the aqueous phase S, the intracellular β-galactosidase concentration

P , Od, I as a function of time and bioluminescence.

3.1 General mathematical model

• Cell growth

Bacterial growth was modeled as:

Ẋ = µX − DX − ϕ1(t)X (2)

where µ denote the very known specific growth reaction rate and ϕ1 represents the death

kinetics. This parameter depends on the protein production, which is assumed to be toxic in

important concentration.

• Substrate consumption

By a simple mass balance we get:

Ṡ = −y1µX − y2νX − kmX − D(Sin − S) (3)
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where ν denotes the biosynthesis reaction rate and y1 and y2 are yield coefficients.

The third term includes a maintenance rate km, which indicates the cells’energy requirements

for normal upkeep and repair.

• Inducer degradation

The inducer used to catalyze the bioluminescence reaction can be degraded naturally during

the latency period and by recombinant bacteria during the bioluminescence period. We assume

it to be:

İ = −α(t)I − DI (4)

where the function α(t), which can depend on cell, substrate and product concentrations,

represents the degradation effect.

• Protein production

Different batch experiments with ITP34 strain proved that the time response to induction is

negligible and cell activity is immediate. However, cell activity is modelled with two terms by:

Ṗc = y3νϕ2(t) − µPc (5)

where y3 is the yield coefficient, which is assumed to be constant. The first term corresponds to

the biosynthesis and the second represents the cell division effect. The function ϕ2(t) depends

on I and represents the inducer effect.

This expression will be multiplied by the cell concentration to obtain the overall production

rate of protein in the bioreactor. Then, let us denote by Mc the cell mass in moles and by P

the total protein concentration in the MMF. Consequently, we can write:
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P =
XPc

Mc

It follows:

Ṗ =
1

Mc

(ẊPc + XṖc) (6)

Using equations (2) and (5), we obtain:

Ṗ =
1

Mc

[νϕ2(t)X − ϕ1(t)P − DP ] (7)

where ϕ1(t)P represents the degradation term.

• Dissolved Oxygen

The dissolved oxygen equation was modeled using four terms. The first is analogous to the

first term of the substrate utilization equation, inducing a yield term representing the mass of

cells formed per mass of oxygen consumed which is assumed to be constant. The second term

represents the consumption of oxygen in the light reaction where the oxygen is assumed to be

limiting.

A mass transfer term is included to show that the driving force for oxygen transfer into the

system depends on the difference between the oxygen concentration in the batch and the max-

imum value it can attain, (Od)sat. The last term represents the maintenance for growing cells

analogous to the one used in the nutrient equation.

Ȯd = −y4µX − y5

Od

ko + Od

L + kla((Od)sat − Od) − moX − DOd (8)

where L denotes bioluminescence intensity and y4, y5, kl, ko are positive constants.
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• Light response

In most cases, we observe a linear dependence of the light sensitivity an the concentration of

luciferase over a wide range. Based on this information, the light production in the first step

was taken as directly proportional to the protein concentration variations but depending on

the cell activity and related to oxygen as limiting substrate represented here by ϕ3:

L = ylµϕ3(od)ϕ2(I)XP

where yl is a positive constant.

3.2 Simplified mathematical model

When the above model is applied to our batch culture process, numerous operator conditions

were required to generate a model simple yet effective for a complex biological process,

• The Aldehyde and FMNH2 were considered as non-limiting substrates of luciferase, since

both of these molecules are readily available from the bacteria’s normal metabolic pro-

cesses. Moreover, the lux operon regenerates aldehyde from the carboxylic acid produced

in the light reaction (equation 1).

• The arabinose used as inducer is not degraded by recombinant bacteria.

• Carbon source is considered to be the only limiting substrate.

• The batch experiments have show that the growth and biosyntheses reactions. are re-

duced to a single reaction, i.e. the two specific rates µ and ν are assumed to be identical.
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The above assumptions and our operating conditions, give the explicit expressions for the

different functions in the general model.

First, we chose for the growth rate portion µ a Monod-type relation that depends on the

nutrient concentrations S as follows:

µ =
µmS

(ks + S)

ki

(ki + P )

where µm is the maximum specific growth rate for the cell growth in (h−1), ks is the half satu-

ration constant and ki is an adjustment enzyme inhibition coefficient.

In equation (2), the ϕ1 representing the death kinetics was modeled using an Arrhenius-type

expression which depends on the protein concentration by:

ϕ1(P ) = kd exp(
−kp

P
)

Now, we return to the dynamic protein equation (7). The function ϕ2(t) representing the

limitation by the inducer, is given by a Monod-type expression as :

ϕ2 =
I

I + kI

where kI denotes the saturation constant.

Based on to the assumption three, oxygen is assumed to be a non limiting substrate. Conse-

quently, the function ϕ3 related to oxygen as limiting substrate is neglected.
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Now, combining the differential equations given above and the general model, the global model

can be expressed as follows:















































































Ẋ = µX − kd exp(−kp

P
)X − DX

Ṡ = −ysµX − kmX − D(S − Sin)

Ṗ = ypµ
I

I + kI

X − kd exp(
−kp

P
)P − DP

İ = −DI

L = yl

S

(ks + S)

I

I + kI

XP

(9)

Where ys, yp = yc

µc

Mc

and yl are the yield coefficients that will be identified.

The mathematical equations given above describe the growth, the substrate consumption, the

cell activity and the bioluminescence for our experimental strain in different environmental

conditions. Consequently, such a model can be used to predict the behavior of the system

under different steady-state operating conditions and optimize the reactor conditions.

However, the model parameters identification is an important step in the construction of a

predictive model that is able to estimate the behavior of the studied microorganism. To do

that, several batch experiments were performed in the same operating conditions (temperature,

pH, oxygen rate ...).
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4 Validation results in batch mode

The system parameters were estimated through modeling and using the Levenberg-Marquardt

algorithm. The proposed procedure was implemented in the software package Matlab to exam-

ine the performance of the minimization algorithms in terms of stability and rate of convergence.

The rate of convergence refers to the performance of the algorithm at each iteration and the

total number of iterations necessary for convergence. It depends on the characteristics of the

algorithm itself and/or the objective function.

Parameter estimation has shown fast convergence in this simplest case. The parameters’ esti-

mates were almost exact after nine iterations using 40 measurement points for each component.

The estimated values of system parameters are listed in Table 1.

Figure 3 and Figure 4, presents the experimental model validation results. As we can see, the

mathematical model as outlined by the system (9) represents the behavior of the real process,

so it might be used as a guide for developing the design and the operating strategies.

5 Observer synthesis: Substrate estimation

On-line availability of the substrate measurement is very important for the control and particu-

lary for the growth supervision of the biomass and faults detection. Indeed, the bioprocesses are

confronted, besides to the usual faults as pump faults and aeration problems, to contamination

problems. Furthermore, the plasmid loss is a very common fault in recombinant strain.

As stated before, in the bioprocess studied in this work, the main substrate (Glycose) is not

available on-line. One way to overcome this problem is to use “software sensors” to estimate

missing state variables on-line. Several works have focused on the development of software sen-

sors for the estimation of component concentrations and reaction rates in bioprocess (see e.g.
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[14, 1, 8]). Although these works consist of different approaches, most of them are are based

on the Extended Kalman Filter (EKF) approach which generally leads to complex non-linear

algorithms difficult to implement and calibrate ([1, 7]). Bastin and Dochain in [1] proposed an

asymptotic observer for the estimation of the component concentrations. They introduced a

linear change of coordinates which allows to obtain auxiliary variables with open loop stable

dynamics. Another approach concerns the classical high gain observer (see for instance [2, 6]).

In this case the gain of the observer is obtained through differential equations (Riccati differ-

ential equations or Lyapunov differential equations. Generally, the observer gain depends on

measured state variables [10, 3, 8]. This causes supplementary constraints when the measure-

ments used are relatively noisy for the calibration of the gain.

The aim of this section is to design a constant gain observer which does not require the resolution

of a dynamical systems or any variable change. The calibration is simple and easy to carry out

through the tuning of two parameters. It is synthesized for a large class of nonlinear systems

including the mathematical model of the recombinant culture described above. To do so, the

observer design is based on the system taking the following form:



















ẋ = F (x, u)

y = h(x)

(10)

where F =











F1(x1, x2, u)

F2(x1, x2, u)











, u(t) is an input in U a bonded interval of IR, the output measure-

ment y(t) ∈ IR and x =











x1

x2











∈ IR2 is the state of the system.
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The observer construction requires the following hypotheses:

(H1) F is a global Lipschitz, i.e.:

For every (u, x) ∈ (U × IR2), il exist a fixed constant c > 0 such that ‖F (x, u) − F (z, u)‖ ≤

c‖x − z‖ ∀x, z ∈ IR, ∀u ∈ U

(H2) For every (u, x) ∈ (U × IR2), we have

α1 ≤
∂F1

∂x2

≤ α2 (11)

where α2 > α1 > 0 are two constants.

As in many high gain observer techniques (see for instance [10, 8]), the assumption (H1) can

be emitted in the case where the state x(t) is a bounded one for all bounded input (this is the

case of most physical processes).

Under the above assumptions, we will show that the following system

˙̂x = F (x̂, u) − ρ∆θR
−1CT (Cx̂ − y) (12)

forms an exponential observer for system (10).

Where ρ is a positive constant, ∆θ =











θ 0

0 θ2











and R is a symmetric positive definite matrix.

To assure the exponential convergence of the above observer, the matrix R was chosen sym-

metric positive definite (S.P.D.) and satisfying the following:

R =











R11 R12

R12 R22











such that:























R11 > 0, R12 < 0

|R12| >
R2

11
α2

2

2ρα1

, R22 >
R2

12

R11

,

(13)

where α1, α2 are the two positive constants given by assumption (H2) and ρ ≥ 1 is a positive
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constant chosen to have the best convergence.

The tuning of the observer (12) is obtained by the calibration of the two parameters ρ and θ.

Indeed, choosing R as in (13), ρ ≥ 1 and θ satisfying θ ≥ θ0 =
2
√

2c‖R‖
η

, the convergence of the

estimation error is exponential. Where η = (1 − R11α2
√

2ρα1|R12|
) min{ρ, 2α1|R12|} (see appendix

1) and c is the lipschitz constant given by (H1). (see proof in appendix 2).

In the next section, the performances of the proposed observer are illustrated through the

microbial culture described above by the mathematical model (9).

6 Numerical simulations

6.1 Basic equations

In the following, we will show how we can estimate S using the biomass concentration X as

the only available time measurement. To do so, we will introduce the following reduced model:











































Ẋ =
µm.S

S + ks

X − kdX

Ṡ = −ys

µm.S

S + ks

X − kmX

y(t) = X

(14)

System (14) can be rewritten as:



















ẋ(t) = F (x, u)

y(t) = h(x)
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where x(t) =











X

S











F =























µm.S

S + ks

X − kdX

−ys

µm.S

S + ks

X − kmX























; h(x) = X

Now applying the theoretical result of section 5, an exponential observer for system (14) takes

the form:























˙̂
X =

µm.Ŝ

Ŝ + ks

X̂ − kdX̂ − ρθ
R22

R11R22 − R2
12

(X̂ − X)

˙̂
S = −ys

µm.Ŝ

Ŝ + ks

X̂ − kmX̂ − ρθ2
−R12

R11R22 − R2
12

(X̂ − X)

(15)

where ρ ≥ 1 is a positive constant, and R is chosen such that

R =











250 −0.35

−0.35 5.10−4











6.2 Simulation results

In order to illustrate the performances of estimator (15), we compared the corresponding results

with data issued from batch experiments, where the inhibition term is negligible. The numerical

values of the system parameters are given in the Table 1.

The simulations were carried out under the following initial conditions:

X̂0 = 0.05g/l Ŝ0 = 2.6g/l.

In order to show the effects of the initial estimation of R, the value of Ŝ is initialized with an

error of 30% compared to the initial simulated value. The tuning parameter θ given in equations

(15) can have different values. In our case, θ = 13, ρ = 4 gives a satisfactory estimation.
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The corresponding results are presented in Figure 5 As can be seen from these figures, the

estimator converges after 1h.

7 Conclusions

A new recombinant E. Coli strain was designed and constructed to facilitate control of a

bioprocess. A dynamic model for continuous operation of fermonter was developed. The

model describes growth of cells, substrate consumption, protein production, with particular

focus on the relationship between bioluminescence and enzyme production. The model was

experimentally validated in batch mode and used to estimate substrate concentration.

The main characteristic of the proposed estimators lies in their implementation and calibration.

Indeed, the gain of these estimators does not depend on state variables. Moreover, its tuning

is achieved through the choice of a single constant parameter. Simulation results demonstrate

that the given estimator performs well. These results can also be used for diagnostics and faults

detection.
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Appendix 1

Obviously R is a S.P.D. matrix. Indeed, let x ∈ IRn, x 6= 0, then

xT Rx = R11x
2

1
+ 2R12x1x2 + R22x2

≥ R11x
2

1
− 2|R12||x1x2| + R22x

2

2

≥ (1 − |R12|√
R11R22

)(R11x
2

1
+ R22x

2

2
) (16)

≥ 0 ∀x 6= 0 (from (13))

Now consider a matrix M =











0 a

0 0











, where α1 ≤ a ≤ α2 and set P = MT R + RM − ρCT C.

Using a similar argument as above, we obtain:

xT Px = −ρx2

1
+ 2aR11x1x2 + 2aR12x

2

2

≤ −ρx2

1
+ 2α2R11|x1x2| − 2α1|R12|x2

2

≤ −(1 − α2R11
√

2ρα1|R12|
)(ρx2

1
+ 2α1|R12|x2

2
)

From inequalities (13) that we deduce 1 − α2R11
√

2ρα1|R12|
> 0

Hence



























xT Px ≤ −η‖x‖2

where η = (1 − R11α2
√

2ρα1|R12|
) min{ρ, 2α1|R12|}

(17)
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Appendix 2

We will show that the estimation error e(t) = x̂(t) − x(t) exponentially converges to zero.

Using (12), we obtain:

ė(t) = F (x̂, u) − F (x, u) − ρ∆θR
−1CT (Cx̂ − y) (18)

We will use the following decomposition:

F (x̂, u) − F (x, u) =











F1(x̂1, x̂2, u) − F1(x̂1, x2, u)

0











+











F1(x̂1, x2, u) − F1(x1, x2, u)

F2(x̂1, x̂2, u) − F1(x1, x2, u)











(19)

From the mean value theorem, we get:

F (x̂, u) − F (x, u) = A(x̂, x)e + B(x̂, x)e (20)

where A(x̂, x) =













0
∂F1

∂x2

(x1, x̂2 + τe2, u)

0 0













, and τ ∈ [0, 1] is a number which may depend on

(u, x̂, x).

Similarly, from the mean value theorem we have:

B(x̂, x) =













∂F1

∂x1

(x̂1 + τ1e1, x2, u) 0

∂F2

∂x1

(x̂1 + τ2e1, x̂2, u)
∂F2

∂x2

(x̂1, x̂2 + τ3e2, u)













where τi ∈ [0, 1], 1, 2.

Combining (19) and (20), we deduce:

ė(t) = A(x̂, x)e + B(x̂, x)e − ρ∆θR
−1CT Ce (21)
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Now setting ē = ∆−1

θ e, then, it suffices to show that ‖ē(t)‖ exponentially converges to 0 as
t → +∞. To do so, we can easily check that:

˙̄e = θ[A(x̂, x) − ρR−1CT C]ē + ∆−1

θ B(x̂, x)ē (22)

Now, consider the following positive definite quadratic function: V = ēT Sē. We only need to
show that V̇ ≤ −γV for some constant γ > 0.

Using (22) we obtain:

V̇ = θēT (A(t)T S + RA(t))ē − 2θρ‖Cē‖2 + 2RēT‖∆−1

θ B(x̂, x, u)e‖

Since A(t) is of the form











0 a(t)

0 0











, where α1 ≤ a(t) =
∂F1

∂x2

(x1, x̂2 + τe2, u) ≤ α2, and α1, α2

are fixed constants given by (H2).

From (17), we get:

V̇ ≤ −θ[η‖ē‖2 − ρ‖Cē‖2] − 2θρ‖Cē‖2 + 2‖R‖‖e‖‖∆−1

θ B(x̂, x, u)e‖

≤ −ηθ‖ē‖2 + 2‖R‖‖e‖‖∆−1

θ B(x̂, x, u)e‖

Now, using the triangular structure of B(x̂, x, u) and the fact that F is a global Lipschitz

function (assumption (H1)), we can easily see that for every θ ≥ 1 we have: ‖∆−1

θ B(x̂, x)ē‖ ≤
√

2c‖ē‖, where c is the lipschitz constant given by (H1).

Hence,

V̇ ≤ (−ηθ + 2
√

2c‖R‖)‖ē‖2

≤ −(ηθ − 2
√

2c‖R‖)λmin(R)V

where λmin(R) denotes the smallest eigenvalue of R.
To end the proof, it suffices to chose θ such that θ ≥ θ0 =

2
√

2c‖R‖
η

.



22

List of symbols

X biomass concentration (g/l).

S substrate concentration (g/l).

P protein concentration in the reactor (g/l).

Pc protein concentration in the cell (g/l).

L light intensity (V ).

I inducer concentration (g/l).

Oo oxygen concentration (g/l).

µ specific growth reaction rate (1/h).

ν biosynthesis reaction rate (1/h).

yi yield coefficients.

Mc cell mass in moles (g/mole).

ϕ1 death kinetics (l/h).

ϕ2 inducer effect.

ϕ3 oxygen limitation.

α Inducer degradation effect (1/h).

km maintenance constant associate to the substrate.

mo maintenance constant associated to the oxygen.

ks saturation constant associated to the oxygen.

ko saturation constant associated to the substrate.

Kla oxygen saturation constant (1/h).

(Od)sat dissolved oxygen saturation concentration (g/l).

Sin substrate concentration in the input stream (g/l).

D dilution rate (h−1).
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FIGURES CAPTION

Figure 1. Recombinant plasmid construct PIT34.

Figure 2. Schematic presentation of the Multi-Micro-Fermentor with the deferent sensors.

Figure 3. Comparison between model simulation (solid line) and experimental data (markers)

in Batch process.

Figure 4. Comparison between bioluminescence intensity given by simulation model (line)

and experimental data (markers) in Batch process.

Figure 5. Comparison between measured concentrations (markers) and there estimates with

the nonlinear observer (line).
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kd 0.002 g.l−1

km 0.21 g.l−1

kI 0.03 g.l−1

ys 0.75
yp 0.32
yl 13

 

Figure 1: Recombinant plasmid construct pIT34.
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Figure 2: Schematic presentation of the Multi-Micro-Fermentor with the deferent sensors.
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Figure 3: Comparison between model simulation (solid line) and experimental data (markers)
in Batch process.
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Figure 4: Comparison between bioluminescence intensity given simulation model (line) in Batch
process.
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Figure 5: Comparison between measured concentrations (markers) and there estimates with
the nonlinear observer (line).


