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LIPSCHITZ FUNCTIONS ON TOPOMETRIC SPACES

ITAÏ BEN YAACOV

Abstract. We study functions on topometric spaces which are both (metrically) Lipschitz and (topo-
logically) continuous, using them in contexts where, in classical topology, ordinary continuous functions
are used.

(i) We define normal topometric spaces and characterise them by analogues of Urysohn’s Lemma
and Tietze’s Extension Theorem.

(ii) We define completely regular topometric spaces and characterise them by the existence of a
topometric Stone-Čech compactification.

(iii) For a compact topological space X, we characterise the subsets of C(X) which can arise as the
set of continuous 1-Lipschitz functions with respect to a topometric structure on X.

Introduction

Topometric spaces are spaces equipped both with a metric and a topology, which need not agree. To
be precise,

Definition 0.1. A topometric space is a triplet (X,T , d), where T is a topology and d a metric on X ,
satisfying:

(i) The distance function d : X2 → [0,∞] is lower semi-continuous in the topology.
(ii) The metric refines the topology.

We follow the convention that unless explicitly qualified, the vocabulary of general topology (compact,
continuous, etc.) refers to the topological structure, while the vocabulary of metric spaces (Lipschitz
function, etc.) refers to the metric structure. Excluded from this convention are separation axioms:
we assimilate the lower semi-continuity of the distance function to the Hausdorff separation axiom, and
stronger axioms, such as normality and complete regularity, will be defined for topometric spaces below.

Compact topometric spaces were first defined in [BU10] as a formalism for various global and local type
spaces arising in the context of continuous first order logic. General topometric spaces (i.e., non compact)
were defined studied further from an abstract point of view in [Ben08b]. Further examples include types
spaces for unbounded logic (merely locally compact), perturbation structures on type spaces. A very
different class of examples, very far from being compact or even locally compact in general, is formed by
automorphism groups of (metric) structures, as well as Polish groups or (completely) metrisable ones.

In addition, there are two classes of examples which recur throughout the paper, arising from the
embedding of the categories of (Hausdorff) topological spaces and of metric spaces in the category of
topometric spaces. By a maximal topometric space we mean one equipped with the discrete 0/1 distance,
which can be identified, for all (or most) intents and purposes, with its underlying pure topological
structure. Similarly, a minimal topometric space is one in which the metric and topology agree, which
may be identified with its underlying metric structure. These sometimes serve as first sanity checks (e.g.,
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2 ITAÏ BEN YAACOV

when we define a normal topometric space we must check that a maximal one is normal if and only if it
is normal as a pure topological space, and that minimal ones are always normal).

The aim of this paper is to study some basic properties of the class of (topologically) continuous
and (metrically) Lipschitz functions on a topometric space. These are naturally linked with separation
axioms. For example, existence results such as Urysohn’s Lemma and Tietze’s Extension Theorem are
tied with normality, discussed in Section 1, while the Stone-Čech compactification (defined in terms of
a universal property with respect to continuous Lipschitz functions) is related to complete regularity, as
discussed in Section 2. To conclude, Section 3 characterises the bare minimum that the set of Lipschitz
functions needs to satisfy.

Lipschitz functions on an ordinary metric spaces, and algebras thereof, are extensively studied in
Weaver [Wea99]. This is some natural resemblance between our object of study here and that of Weaver,
with the increased complexity due to the additional topological structure. Th reader may wish to com-
pare, for example, our version of Tietze’s Extension Theorem (Theorem 1.9) with [Wea99, Theorem 1.5.6]
(as well as with the classical version of Tietze’s Theorem, see Munkres [Mun75]).

1. Normal topometric spaces and Urysohn–Tietze results

For two topometric spaces X and Y we define CL(1)(X,Y ) to be the set of all continuous 1-Lipschitz
functions from X to Y . An important special case is CL(1)(X) = CL(1)(X,C), where C is equipped with
the standard metric and topology (i.e., with the standard minimal topometric structure), which codes
information both about the topology and about the metric structure of X . In the present paper we seek
conditions under which CL(1)(X) codes the entire topometric structure, as well as analogues of classical
results related to separation axioms, in which C(X) would be replaced with CL(1)(X). As discussed in
[Ben08b], we consider the lower semi-continuity of the distance function to be a topometric version of
the Hausdorff separation axiom, so we may expect other classical separation axioms to take a different
form in the topometric setting. We start with normality.

Definition 1.1. Let X be a topometric space. We say that a closed set F ⊆ X has closed metric
neighbourhoods if for every r > 0 the set B(F, r) = {x ∈ X : d(x, F ) ≤ r} is closed in X .

We say that X admits closed metric neighbourhoods if all closed subsets of X do.

It was shown in [Ben08b] that compact sets always have closed metric neighbourhoods, so a compact
topometric space admits closed metric neighbourhoods. Indeed, the first definition of a compact topo-
metric space in [BU10] was given in terms of closed metric neighbourhoods. While this property seems
too strong to be part of the definition of a non compact topometric space, it will play a crucial role in
this section.

Definition 1.2. A normal topometric space is a topometric space X satisfying:

(i) Every two closed subset F,G ⊆ X with positive distance d(F,G) > 0 can be separated by
disjoint open sets.

(ii) The space X admits closed metric neighbourhoods.

One checks that a maximal topometric space X (i.e., equipped with the discrete 0/1 distance) is
normal if and only if it is so as a topological space. Similarly, a minimal topometric space (i.e., equipped
with the metric topology) is always normal. Also, every compact topometric space is normal (since it
admits closed metric neighbourhoods and the underlying topological space is normal).

We contend that our definition of a normal topometric space is the correct topometric analogue of the
classical notion of a normal topological space. This will be supported by analogues of Urysohn’s Lemma
and of Tietze’s Extension Theorem. The technical core of the proofs (and indeed, the only place where
the definition of a normal topometric space is used) lies in the following Definition and Lemma.
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Definition 1.3. Let X be a topometric space, c > 0 a constant, S ⊆ R and ΞS = {(Fα, Gα) : α ∈ S} a
sequence of pairs of closed sets Fα, Gα ⊆ X .

(i) We say that ΞS is an approximation of a strictly c-Lipschitz partial continuous function on X ,
or simply a partial c-Lipschitz approximation, if d(Fα, Gβ)c > β − α for α < β in S.

(ii) It is a (total) approximation if in addition Fα ∪Gα = X for all α ∈ S (so particular Gc
α ⊆ Fα ⊆

Gc
β ⊆ Fβ for α < β).

(iii) We say that ΞS is an approximation of a function f : X → R if f↾Fα
≤ α and f↾Gα

≥ α for
α ∈ S.

If f : X → R is c-Lipschitz and S ⊆ R then the sequence {(Fα, Gα) : α ∈ S} defined by Fα =
{x : f(x) ≤ α}, Gα = {x : f(x) ≥ α} is a c′-Lipschitz approximation f for all c′ > c.

Lemma 1.4. Let {(Fα, Gα) : α ∈ S} be a finite partial c-Lipschitz approximation in a normal topometric
space, and let β ∈ S. Then there are F ′

β , G
′
β ⊆ X such that

• F ′
β ⊇ Fβ, G′

β ⊇ Gβ.
• F ′

β ∪G′
β = X.

• Letting F ′
α = Fα and G′

α = Gα for α 6= β then {(F ′
α, G

′
α) : α ∈ S} is a partial c-Lipschitz

approximation.

Proof. Since the partial approximation is finite it is also c′-Lipschitz for some c′ < c. Define:

K =
⋃

α∈S,α<β

B(Fα, (β − α)/c′), L =
⋃

α∈S,α>β

B(Gα, (α− β)/c′).

By construction d(K,L) > 0 and both are closed as finite unions of closed sets. Since X is normal we
can find disjoint open sets U ⊇ K and V ⊇ L.

We claim that F ′
β = Fβ ∪ V c and G′

β = Gβ ∪ U c will do. The first two items are trivially verified,
so we only need to check the last one. So assume that α < β. We already know by hypothesis that
d(Fα, Gβ)c > β − α. We also know by construction that U ⊇ B(Fα, (β − α)/c′), whereby d(Fα, U

c)c >
d(Fα, U

c)c′ ≥ β−α. Thus d(Fα, G
′
β)c > β−α. We show similarly that if β < α then d(F ′

β , Gα)c > α−β,
and we are done. �1.4

Lemma 1.5. Let X be a normal topometric space, ΞS = {(Fα, Gα) : α ∈ S} a finite c-Lipschitz approx-
imation. Then for every β ∈ R there is a c-Lipschitz approximation Ξ′

S∪{β} ⊇ ΞS.

Proof. We may assume that β /∈ S, and let Fβ = Gβ = ∅. Then
{

(Fα, Gα) : α ∈ S ∪ {β}
}

is a partial
c-Lipschitz approximation and Lemma 1.4 (with the same β) we obtain the required approximation
Ξ′
S∪{β} =

{

(F ′
α, G

′
α)
}

α∈S∪{β}
. �1.5

Proposition 1.6. In a normal topometric space every finite approximation of a c-Lipschitz continuous
function approximates such a function.

Proof. Let X be a normal topometric space, {(Fα, Gα) : α ∈ S} a finite c-Lipschitz approximation. Since
S is finite its convex hull is a compact interval I ⊆ R. Let T ⊆ I be a countable dense subset containing
S. By repeated applications of Lemma 1.5 one can extend the given approximation into a c-Lipschitz
approximation {(Fα, Gα) : α ∈ T }. Letting f(x) = sup{α ∈ I : x ∈ Gα} = inf{α ∈ I : x ∈ Fα} (here
inf ∅ = sup I and sup∅ = inf I) one obtains a continuous, c-Lipschitz function f : X → I which is
approximated by {(Fα, Gα) : α ∈ S}. �1.6

The topometric analogue of Urysohn’s Lemma is obtained as an easy corollary.
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Corollary 1.7 (Urysohn’s Lemma for topometric spaces). Let X be a normal topometric space, F,G ⊆
X closed sets, 0 < r < d(F,G). Then there exists a 1-Lipschitz continuous function f : X → [0, r] equal
to 0 on F and to r on G.

Conversely, every topometric space in which this property holds is normal.

Proof. Apply Proposition 1.6 to S = {0, r}, F0 = F , Gr = G, G0 = Fr = X .
Assume now that the first property holds in X . Then closed sets of positive distance can be separated

by a 1-Lipschitz continuous function, and therefore by open sets. Also, if F ⊆ X is closed and d(x, F ) > r
then we may separate F and x by a 1-Lipschitz continuous function such that f↾F = 0 and f(x) > r.
Then {y : f(y) ≤ r} is a closed set containing B(F, r) but not x. If follows that B(F, r) is closed. �1.7

Lemma 1.8. Let X be a normal topometric space, Y ⊆ X closed. Then for every finite c-Lipschitz
approximation {(Fα, Gα) : α ∈ S} in Y there is one {(F ′

α, G
′
α) : α ∈ S} in X such that F ′

α ⊇ Fα,
G′

β ⊇ Gβ.

Proof. Observe that {(Fα, Gα) : α ∈ S} is a partial c-Lipschitz approximation on X , so we may apply
Lemma 1.4 to each α ∈ S and obtain the required approximation. �1.8

Observe that the forced limit operator F lim: [0, 1]N → [0, 1] defined in [BU10] is 1-Lipschitz where
[0, 1]N is equipped with the supremum metric.

Theorem 1.9 (Tietze’s Extension Theorem for topometric spaces). Let X be a normal topometric space.
Then for every c < c′ every continuous c-Lipschitz function f : Y → [0, 1] on a closed subset Y ⊆ X
extends to a continuous c′-Lipschitz function g : X → [0, 1].

Moreover, for an arbitrary topometric space the following are equivalent:
(i) X is a normal topometric space.
(ii) Tietze’s Extension Theorem for topometric spaces (i.e., the statement above) holds in X.
(iii) The statement of Proposition 1.6 holds in X.
(iv) Urysohn’s Lemma (the main assertion of Corollary 1.7) holds in X.

Proof. Let Y ⊆ X be closed, f : Y → [0, 1] be continuous and c-Lipschitz. For α ∈ [0, 1] let Fα =
f−1([0, α]) and Gα = f−1([α, 1]). For n ∈ N let Sn = {k2−n : 0 ≤ k ≤ 2n}, and Ξn = {(Fα, Gα) : α ∈
Sn}. Then Ξn is a c′-Lipschitz approximation on Y for any c′ > 0.

By Lemma 1.8 it admits an extension Ξ′
n = {(F ′

n,α, G
′
n,α) : α ∈ Sn} to X (which may depend on n)

which is c′-Lipschitz as well. By Proposition 1.6 there exists a continuous c′-Lipschitz function gn : X →
[0, 1] approximated by Ξ′

n, and let g = F lim gn. Notice that if y ∈ Y and k2−n ≤ f(y) ≤ (k + 1)2−n

then y ∈ F(k+1)2−n ∩Gk2−n ⊆ F ′
n,(k+1)2−n ∩G′

n,k2−n , whereby k2−n ≤ gn(y) ≤ (k+1)2−n as well. Thus
|gn↾Y − f | ≤ 2−n for all n whereby g↾Y = f . Also, a forced limit of a family of continuous c′-Lipschitz
functions is continuous and c′-Lipschitz.

For the moreover part, we have seen that if X is normal then (ii)-(iv) hold. Conversely, each of (ii)
and (iii) clearly implies (iv), and by Corollary 1.7 (iv) implies that X is normal. �1.9

This proof of Tiezte’s theorem is fairly different from other the author managed to find in the literature.
Indeed none of the more common proofs seems to be capable of preserving the Lipschitz condition.

2. Completely regular topometric spaces and Stone-Čech compactification

Let {Xi : i ∈ I} be a family of topometric spaces. We equip the set
∏

i∈I Xi with the product
topology and the supremum metric d(x̄, ȳ) = sup{d(xi, yi) : i ∈ I}. One verifies easily the result is
indeed a topometric space which we call the product topometric structure.

In particular we obtain large compact topometric spaces of the form [0,∞]I , and we claim that these
are in some sense universal, meaning that every compact topometric space embeds in one of those.
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Similarly, every bounded compact topometric (i.e., of finite diameter) can be embedded in [0,M ]I , and
up to re-scaling in [0, 1]I . In fact we shall show that every completely regular topometric space embeds
in such a space, obtaining a Stone-Čech compactification.

Say that a family of functions F ⊆ C
X separates points from closed sets if for every closed set F ⊆ X

and x ∈ X r F , there is a function f ∈ F which is constant on F and takes some different value at x.

Fact 2.1. Let X be a Hausdorff topological space, F ⊆ C(X) a family separating points from closed sets.
Then the map θ : X → C

F defined by x 7→ (f 7→ f(x)) is a topological embedding.

Proof. This is fairly standard. First of all F separates points so θ is injective. To see that θ is continuous,
it is enough to consider a sub-basic open set U = π−1

f (V ) ⊆ C
F , where V ⊆ C is open and πf is the

projection on the fth coördinate. Then θ−1(U) = f−1(V ) is open. In order to show that θ is a
homeomorphism with its image it will be enough to show that for F ⊆ X closed and x /∈ F there is a
closed set F ′ ⊆ C

F such that θ(F ) ⊆ F ′ and θ(x) /∈ F ′. Since F separates points from closed sets there
is f ∈ F such that f↾F = t and f(x) 6= t. Then F ′ = {ȳ ∈ C

F : yf = t} will do. �2.1

Definition 2.2. Let X be a topometric space. Say that a family of functions F ⊆ CL(1)(X) is sufficient
if

(i) It separates points and closed sets.
(ii) For x, y ∈ X we have

d(x, y) = sup
{

|f(x)− f(y)| : f ∈ F
}

.

(Clearly, ≥ always holds.)
A topometric space X is completely regular if CL(1)(X) is sufficient. This is clearly equivalent to
CL(1)(X,R+) being sufficient.

In view of Fact 2.1 we may say that a topometric space X is completely regular if CL(1)(X) captures
both the topological structure and the metric structure of X .

Proposition 2.3. (i) Every normal topometric space is completely regular.
(ii) Every subspace of a completely regular space is completely regular.
(iii) Let X be a maximal topometric space. Then it is topologically completely regular if and only if

it is topometrically completely regular.

Proof. The first item follows from Corollary 1.7, keeping in mind that since the metric of a topometric
space X refines its topology, if F ⊆ X is closed and x /∈ F then d(x, F ) > 0.

For the second item, assume that X is completely regular, Y ⊆ X . If F ⊆ Y is closed then F = Y ∩F ,
where F is the closure in X . Thus if x ∈ Y r F then x ∈ X r F , so there is a 1-Lipschitz continuous
function separating F from x, and its restriction to Y is continuous and 1-Lipschitz as well. The same
argument works for witnessing distances.

The last item follows from the fact that every function from a maximal topometric space to [0, 1] is
1-Lipschitz. �2.3

Proposition 2.4. Let X be a completely regular topometric space and let F = CL(1)(X,R+). Then
the map θ : X → (R+)F from Fact 2.1 is a topometric embedding, i.e., an isometric homeomorphic
embedding.

Proof. Immediate from the definitions. �2.4

Corollary 2.5. Every completely regular topometric space X (and thus in particular every normal or
compact one) embeds in some power of [0,∞]. If in addition X is bounded, say of diameter 1, then it
embeds in a power of [0, 1].
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Proof. We just have to show the last part. Indeed let θ : X → [0,∞]I be any embedding. Define
θ′ : X → [0,∞]I by θ′(x)(i) = θ(x)(i) − inf{θ(y)(i) : y ∈ X} (here ∞−∞ = d(∞,∞) = 0). Then θ′ is
an embedding as well, and 0̄ ∈ θ(X). If X is bounded of diameter 1 then θ(X) ⊆ [0, 1]I . �2.5

Theorem 2.6. A topometric space admits a compactification if and only if it is completely regular.

Proof. If X is completely regular then we can identify it with a subspace of [0,∞]I , and then its closure
there is a compactification. Conversely, assume X admits a compactification X̄. Then X̄ is completely
regular, whereby so is X . �2.6

Theorem 2.7. Let X be completely regular. Then it admits a compactification βX satisfying the fol-
lowing universal property: Every 1-Lipschitz continuous function f : X → [0,∞] can be extended to such
a function on βX (and the extension is unique).

Moreover, βX is unique up to a unique isomorphism (i.e., isometric homeomorphism) and satisfies
the same universal property with any compact topometric space Y instead of [0,∞].

Proof. Let F = CL(1)(X,R+) and let θ : X → (R+)F ⊆ [0,∞]F be as in Proposition 2.4. Identify X

with θ(X) and let βX be its closure in [0,∞]F .
For f ∈ F , let πf : [0,∞]F → [0,∞] be the projection on the fth coordinate. Then πf ◦ θ = f , so

πf : βX → [0,∞] is as required. Given f ∈ CL(1)(X, [0,∞]) and n ∈ N, the truncation f ∧n : X → [0, n]
belongs to F and the sequence πf∧n is increasing, converging point-wise to some g : βX → [0,∞]. The
collection of open subsets of [0,∞] which are either bounded or contain ∞ forms a base. For such an
open set U there is n such that either [n,∞] ⊆ U or U ⊆ [0, n], and in either case g−1(U) = (f ∧n)−1(U)
is open. Thus g is continuous. (Of course we could have also let F = CL(1)(X, [0,∞]) to begin with.)

Now let Y be any compact topometric space. Then Y embeds in [0,∞]J for some J . If f ∈ CL(1)(X,Y )
then πj ◦ f ∈ CL(1)(X, [0,∞]) for j ∈ J and thus extends to gj ∈ CL(1)(βX, [0,∞]). Let g = (gj) : βX →

[0,∞]J , so g↾X = f . Then g(X) ⊆ Y , X is dense in βX and Y is closed in [0,∞]J , so g(βX) ⊆ Y as
required.

The uniqueness of an object satisfying this universal property is now standard. �2.7

In other words, for every compact Y the restriction CL(1)(βX, Y ) → CL(1)(X,Y ) is bijective.

Definition 2.8. The compactification βX , if it exists (i.e., if X is complete regular) is called the
Stone-Čech compactification of X .

Automorphism groups of metric structures probably form the most natural class of examples of non
(locally) compact topometric spaces. They are easily checked to be completely regular.

Proposition 2.9. Let M be a metric structure and let G = Aut(M), equipped with the topology T of
point-wise convergence and with the distance du of uniform convergence. Then (G,T , du) is a completely
regular topometric space.

Similarly, if (G,T ) is any metrisable topological group, with left-invariant compatible distance dL,
and du(f, g) = suph dL(fh, gh), then (GT , du) is a completely regular topometric space.

Proof. Since du(f, g) = supa∈M d(fa, ga), and for each a the function (f, g) 7→ d(fa, ga) is continuous,
du is lower semi-continuous. Assume that du(f, g) > r. Then there exists a ∈ M such that d(fa, ga) > r,
and we may define θ(x) = d(fa, xa). Then θ is continuous and 1-Lipschitz (by definition of point-wise and
uniform convergence). In addition, θ(f) = 0 and θ(g) > r. Thus continuous 1-Lipschitz functions witness
distances, and it follows that du is lower semi-continuous. Now let U be a topological neighbourhood of
f . Then there is a finite tuple ā ∈ Mn and ε > 0 such that U contains the set

Uā,f ā,ε = {h : d(hā, f ā) < ε}.

Then the function ρ(x) = d(f ā, xā) separates f from Gr U .
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A similar reasoning applies to the case of an abstract group (acting on itself on the left). In fact,
when G is completely metrisable then this case can be shown to be a special case of the first, and every
metrisable group can be embedded in a completely metrisable one. �2.9

Question 2.10. Are automorphism groups of metric structures topometrically normal? In other words,
do continuous 1-Lipschitz functions witness distance between closed sets?

Most topometric spaces one would encounter, such as compact ones (e.g., type spaces) or automorph-
ism groups, are (metrically) complete. If X is an incomplete topometric space then the metric structure
carries obviously over to the completion X̂, and it is legitimate to ask whether, or how, the topological
structure carries there as well. Let us concentrate on the case where X is completely regular.

Definition 2.11. Let X be a completely regular topometric space. We equip its completion X̂ with the
least topology such that for every f ∈ CL(1)(X), the unique 1-Lipschitz extension of f to f̂ : X̂ → C is
continuous. In other words, we define it so that the restriction map CL(1)(X̂) → CL(1)(X) is a bijection.

Lemma 2.12. Let X be a completely regular topometric space. Then so is X̂.

Proof. The Stone-Čech compactification βX is compact and therefore complete, and the canonical iden-
tification of X̂ with a subset of βX is homeomorphic. �2.12

The topometric structure we put on X̂ is clearly the strongest possible regular one, and it is natural
to ask whether it is unique. For a positive result in this direction, let us consider the following two
conditions on a topometric space X :

(∗) For every open set U ⊆ X and r > 0, the open metric neighbourhood B(U, r) is (topologically)
open.

(∗∗) For every open set U ⊆ X and r > 0 we have U
d
⊆ B(U, r)◦.

Clearly (∗) implies (∗∗).

Proposition 2.13. Let X be a completely regular topometric space in which condition (∗∗) holds, and
let X0 ⊆ X be a metrically dense subspace. Then every f ∈ CL(1)(X0) extends to f̂ ∈ CL(1)(X).

Proof. Let f ∈ CL(1)(X0). Then it extends uniquely to a 1-Lipschitz function f̂ : X → C, and all
we need to show is that f̂ is continuous at every x ∈ X . Assuming, as we may, that f̂(x) = 0, let
U = {y ∈ X0 : |f(y)| < ε} for some ε > 0. Then U ⊆ X0 is open, so of the form V ∩X0 for some open
V ⊆ X . Since x ∈ V

d
, by (∗∗) we have x ∈ B(V, ε)◦. Now let w ∈ B(V, ε). Then there is z ∈ V ∩B(w, ε),

and for some 0 < δ < ε we have B(z, δ) ⊆ V . Since X is dense, there is y ∈ B(z, δ) ∩ X0 ⊆ U . Thus
|f̂(y)| = |f(y)| < ε, so |f̂(w)| < 3ε, which is enough. �2.13

Lemma 2.14. Condition (∗) holds in every topometric space of the form
∏

[si, ri]. More generally, it
holds in every minimal or maximal topometric space, and if it holds in each Xi then it holds in

∏

Xi.
Similarly, if condition (∗∗) holds in each Xi then it also holds in

∏

Xi.

Proof. Easy. �2.14

Lemma 2.15. Condition (∗) holds in every topometric group. In fact, while we usually require that the
distance in a topometric group be biïnvariant, here it is enough that it be invariant on one side.

Proof. Assume that the distance is left-invariant. Then one checks that B(U, r) =
⋃

d(h,1)<r Uh. �2.15

On the other hands, it is not difficult to construct even compact topometric spaces where the properties
discussed in this section fail.
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Example 2.16. In [Ben08a, Example 3.11 & Theorem 3.15] an example was given somewhat indirectly
of a compact topometric space in which condition (∗) fails (in the terminology used there, in which the
perturbation distance was not open or even weakly so).

Example 2.17. We give a more explicit example in which Proposition 2.13 fails (so in particular, so do
(∗∗) and (∗)). Let X be the disjoint union of [0, 1] with N, where [0, 1] is equipped with the usual
minimal structure (i.e., usual topology and distance), N is equipped with the discrete topology and 0/1
distance (which is curiously both maximal and minimal). The distance between any point of [0, 1] and
of N is one, and 0 (hereafter always referring to 0 ∈ [0, 1] and not to 0 ∈ N) is the limit of N. Thus
X is a compact topometric space, which can be naturally viewed as a subspace of [0, 1]N by sending
t ∈ [0, 1] to (t, 0, 0, . . .), and sending n ∈ N to the sequence (0, 0, . . . , 0, 1, 1, . . .) consisting of n initial
zeroes. Let U = (0, 1) ⊆ X and 0 < r < 1. Then U

d
= [0, 1] = B(U, r), while every neighbourhood of 0

must contains members of N, so (∗∗) fails. Now let X0 = (0, 1)∪N. Then X0 is metrically dense in X ,
and the function 1(0,1) is continuous and 1-Lipschitz on X0, but its 1-Lipschitz extension to X fails to
be continuous at 0, failing Proposition 2.13. The topometric structure defined earlier on X̂0 differs from
that on X only in that 0 is no longer an accumulation point of N.

3. An abstract characterisation of the set of (continuous) 1-Lipschitz functions

It is a classical fact that for a compact space X , C(X) is a commutative unital C∗-algebra, and
that conversely, every such algebra is of the form C(X) for a compact X which is moreover unique up
to a unique homeomorphism. Since a compact topometric space is completely regular, the distance is
captured by the subset CL(1)(X) ⊆ C(X). Here we ask the opposite question, namely, given commutative
unital C∗-algebra, which we may already consider to be of the form C(X) for some compact space X ,
which subsets of the algebra can be of the form CL(1)(X) for some topometric structure on X .

Definition 3.1. Let X be a compact topological space. We say that a set A ⊆ C(X) is an L(1)-set if
(i) It is convex, closed under multiplication by scalars α ∈ C, |α| ≤ 1 and under taking the absolute

value.
(ii) It separates points in X .
(iii) C ⊆ A.
(iv) If f /∈ A then there are two points x, y ∈ X and some ε > 0 such that for all g ∈ C(X), if

|f(x)− g(x)|, |f(y)− g(y)| < ε then g /∈ A as well.

Lemma 3.2. Let X be a compact topological space and A ⊆ C(X) an L(1)-set. Then A is closed in the
topology of point-wise convergence, separates points from closed sets and A+C = A.

Proof. That A is closed in point-wise convergence follows directly from the last condition of Definition 3.1.
Now let f ∈ A and α ∈ C. For 0 < λ < 1 we have λf + (1 − λ) α

1−λ
∈ A, and since this converges

uniformly to f + α when λ → 1 we have f + α ∈ C. Now let x ∈ X disjoint from a closed set F . For
y ∈ F there is fy ∈ A such that fy(x) 6= fy(y). Translating by a constant and taking the absolute value
we may assume that fy ≥ 0, fy(x) = 0 and fy(y) > 0. By compactness there is a finite family {yi}i<k

such that for all y ∈ F there is i < k for which fyi
(y) > 1

2fyi
(yi). Letting f = 1

k

∑

fyi
∈ A we have

f(x) = 0 and f(y) ≥ r > 0 for all y ∈ F . �3.2

Remark 3.3. Modulo conditions (i)–(iii), condition (iv) of Definition 3.1 is equivalent to
(iv′) If f /∈ A then there are two points x, y ∈ X and some ε > 0 such that for all g ∈ C(X), if

|f(x)− g(x)− f(y) + g(y)| < ε then g /∈ A as well.
Indeed, (iv′) clearly implies (vi). For the other direction we already know that A is translation invariant,
so we may always assume that f(x) = g(x), in which case (iv) and (iv′) are the same.
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In pure C∗-algebraic terms, we can express C(X ×X) as the C∗ tensor product C(X) ⊗ C(X), and
define δ : C(X) → C(X) ⊗ C(X) by δf = f ⊗ 1 − 1 ⊗ f , i.e., δf(x, y) = f(x) − f(y). Since a point in
X ×X corresponds to a maximal ideal in C(X)⊗ C(X), we obtain that (vi) is further equivalent to

(iv′′) If f /∈ A then there exists ε > 0 such that the family of all ε−. |δf−δg|, in the sense of continuous
functional calculus, as g varies over A, generates a proper ideal in C(X)⊗ C(X).

Theorem 3.4. Let X be a compact topological space, A ⊆ C(X). Then the following are equivalent:
(i) The set A is an L(1)-set.
(ii) There is a topometric structure (X, d) on X such that A = LL(1)(X).

In this case the metric d is unique and can be recovered by

d(x, y) = sup
f∈A

|f(x)− f(y)|.(1)

Proof. Bottom to top is easy, and (1) follows from Urysohn’s Lemma for normal topometric spaces and
the fact that a compact topometric space is normal. Assume therefore that A is an L(1)-set, and let us
define d by (1).

Clearly d is a pseudo-distance, and is lower semi-continuous being the supremum of continuous func-
tions. Since A separates points from closed sets, d refines the topology, and in particular is a distance
(rather than a pseudo-distance). Thus (X, d) is a topometric space, and we view it henceforth as such.
It is then immediate from the construction that A ⊆ CL(1)(X). Finally, assume that f /∈ A, and let
x, y ∈ X and ε > 0 be such that if |f(x)−g(x)−f(y)+g(y)| < ε then g /∈ A. Since A is closed under mul-
tiplication by complex scalar of absolute value ≤ 1, this is only possible if |f(x)−f(y)| ≥ |g(x)−g(y)|+ε
for all g ∈ A. It follows that |f(x)− f(y)| ≥ d(x, y) + ε, so f /∈ CL(1)(X), as desired. �3.4

This is quite different from [Wea99, Theorem 4.3.2], which still seems to be the most closely analogous
result therein.
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