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A BIFURCATION FOR A GENERALIZED BURGER’S
EQUATION IN DIMENSION ONE

Jean-François Rault

LMPA Joseph Liouville (ULCO) FR 2956 CNRS

Université Lille Nord de France

50 rue F. Buisson, B.P. 699, F-62228 Calais Cedex (France)

Abstract. We consider the generalized Burger’s equation8<:
∂tu = ∂2

xu− u∂xu + up − λu in Ω× (0, T ),

B(u) = 0 on ∂Ω× (0, T ),

u(·, 0) = ϕ ≥ 0 in Ω,

with p > 1, λ ∈ R, T ∈ (0,∞], Ω a subdomain of R, and where B(u) = 0 desig-
nates some boundary conditions. First, using some phase plane arguments, we

study the existence of stationary solutions under Dirichlet or Neumann bound-

ary conditions and prove a bifurcation depending on the parameter λ. Then,
we compare positive solutions of the parabolic equation with appropriate sta-

tionary solutions to prove that global existence can occur when B(u) = 0 stands

for the Dirichlet, the Neumann or the dissipative dynamical boundary condi-
tions σ∂tu + ∂νu = 0. Finally, for many boundary conditions, global existence

and blow up phenomena for solutions of the nonlinear parabolic problem in an

unbounded domain Ω are investigated by using some standard super-solutions
and some weighted L1−norms.

1. Introduction. Let Ω be a domain of the real line R, not necessarily bounded.
Let p be a real number with p > 1, λ ∈ R and ϕ a non-negative continuous function
in Ω. Consider the following nonlinear parabolic problem ∂tu = ∂2

xu− u∂xu + up − λu in Ω× (0,∞),
B(u) = 0 on ∂Ω× (0,∞),
u(·, 0) = ϕ in Ω,

(1)

where B(u) = 0 stands for the Dirichlet boundary conditions (u = 0), the Neumann
boundary conditions (∂νu = 0) or the dynamical boundary conditions (σ∂tu +
∂νu = 0 with σ a non-negative smooth function). In the first section, we study the
stationary equation

u′′ − uu′ + u|u|p−1 − λu = 0 (2)
stemming from Problem 1. We aim to prove the existence of positive and sign-
changing solutions using phase plane arguments and dealing with the first order
system (

u′

v′

)
=
(

v
uv − u|u|p−1 + λu

)
. (3)
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We prove a bifurcation in the phase plane of this system, depending on the param-
eters λ and p, which influences the resolution of Equation 2 under the Dirichlet,
Neumann and mixed boundary conditions. Then in a second section, using the com-
parison method from [2], we deduce from the solutions of the stationary Equation 2
some regular super-solutions for the Problem 1. Dealing with these super-solutions
and with the blow-up results from [4], we investigate global existence and blow-up
phenomena for the Problem 1 for different values of λ and p, and for the Dirich-
let, the Neumann and the dynamical boundary conditions. We also examine both
phenomena in unbounded domains: we obtain global existence results with the
comparison method and using some well-known super-solutions (we mean explicit
functions) for the Dirichlet, the Neumann and the dynamical boundary conditions.
The blowing-up concerns the regular solutions of Problem 1 satisfying some growth
order at infinity and some boundary conditions such that

• ∂νu = 0 (Neumann b.c.),
• ∂νu = g(u) with g a polynomial of degree 2 (nonlinear b.c.).

We use some weighted L1−norms: our technique is to prove the blowing-up of the
solution by proving the blowing-up of appropriate L1−norms.

Before starting, let us define the kind of solution we look for:

Definition 1.1. A function u is called a solution (or regular solution) of Equation
2 in Ω if u is of class C2(Ω) and satisfies the equation in the classical sense.
A function u is called a solution (or regular solution) of Problem 1 in Ω if u is of
class C(Ω× [0, T )) ∩ C2,1(Ω× (0, T )), where denotes T its maximal existence time,
and satisfies the equations in the classical sense.

2. Stationary equation. In this section, we study the existence of positive and
sign-changing solutions of Equation 2 using a phase plane method. For the theory
of phase planes (nature of equilibrium, regularity, behaviour and uniqueness of
trajectory), we refer to H.Amann’s book [1]. Unless otherwise stated, we suppose
p ∈ (1,∞). First, we can note that System 3 has three equilibrium points if λ > 0:
(0, 0), (λ

1
p−1 , 0) and (−λ

1
p−1 , 0). Using Hartman-Grobman’s linearization theorem

(see Reference [1]), we can state that (0, 0) is a saddle point, (λ
1

p−1 , 0) is an unstable
and repulsive vortex (if 1−4(p−1)λ

p−3
p−1 < 0), a node (if 1−4(p−1)λ

p−3
p−1 ≥ 0, which

degenerates when 1− 4(p− 1)λ
p−3
p−1 = 0 ). And (−λ

1
p−1 , 0) is a stable and attractive

vortex (for 1− 4(p− 1)λ
p−3
p−1 < 0), a node (for 1− 4(p− 1)λ

p−3
p−1 ≥ 0 with degeneracy

when equality occurs). If λ ≤ 0, then (0, 0) is the only equilibrium point of System
3. We will prove later that (0, 0) is a center.

2.1. Case λ > 0. Let λ be a positive real number and p > 1. We want to study
the phase plane of the System 3. First we prove a lemma on the symmetry of the
trajectories:

Lemma 2.1. The support of the trajectories of the System 3 are symmetric with
respect to the ordinates axis.

Proof. Let (u, v) denote a solution of the System 3 in (−a, a) for some a ∈ (0,∞],
and define {

w(x) = −u(−x)
z(x) = v(−x) for all x ∈ (−a, a).
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A simple calculus of the derivatives implies

w′(x) = u′(−x) = v(−x) = z(x),

and

z′(x) = −u(−x)
= −v′(−x)

= −
[
u(−x)v(−x)− u(−x)|u(−x)|p−1 + λu(−x)

]
= w(x)z(x)− w(x)|w(x)|p−1 + λw(x).

Then (w, z) is also a trajectory of the System 3, and it is symmetric to (u, v) with
respect to the ordinates axis.

Thus, we can reduce our phase plane analysis to the half plane R+×R. In order
to draw the phase plane of the System 3, we write the ordinate v as a function
depending on the abscissa u: v = f(u). We do not know the function f , but we
can deduce its variations and convexity using the equations 3. For the variations,
we have

dv

du
=

uv − u|u|p−1 + λu

v
=

u

v

(
v − |u|p−1 + λ

)
, (4)

in particular, it vanishes along the axis {u = 0} and along the curve {v = |u|p−1−λ}.
For u < λ

1
p−1 , we have

dv

du

∣∣∣∣∣
v=0

= ∞

whereas for u > λ
1

p−1

dv

du

∣∣∣∣∣
v=0

= −∞.

Then we have dv
du > 0 in the sets {u > 0, v > 0, v > |u|p−1−λ} and {u > 0, v < 0, v <

|u|p−1 − λ}. On the other hand, dv
du < 0 in the sets {u > 0, v < 0, v > |u|p−1 − λ}

and {u > 0, v > 0, v < |u|p−1−λ}. Next, we compute the convexity of the function
f and we obtain

d2v

du2
= 1 +

1
v2

[
(λ− pup−1)v − u(λ− up−1)

dv

du

]
. (5)

We have d2v
du2 < 0 in {u > 0, v > 0, v < |u|p−1−λ} and d2v

du2 > 0 in {u > 0, v < 0, v <

|u|p−1 − λ}. Since

d2v

du2

∣∣∣∣∣
u=0

= 1 +
λ

v
and

d2v

du2

∣∣∣∣∣
v=|u|p−1−λ

= (1− p)
|u|p−1

v
,

the convexity is sign-changing in {u > 0, v > |u|p−1 − λ}. These arguments are
sufficient to know the profile of the trajectories in the half plane {v < |u|p−1−λ}. We
do not need to know how the trajectories behave in {u > 0, v < 0, v > |u|p−1−λ} to
solve Equation 2. In {u > 0, v > 0, v > |u|p−1−λ}, things are different: unbounded
trajectories can appear (see §2.3). To ensure the occurrence of bounded trajectories,
we need an additional hypothesis:

p ≥ 3. (6)
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Lemma 2.2. Under hypothesis 6, all the trajectories of the System 3 are bounded
in A = {u > 0, v > 0, v > |u|p−1 − λ}.

Proof. Let v0 > 0 and consider (u, v) the solution of the System 3 with initial data
(u(0), v(0)) = (0, v0). The calculus of the variations (see Equation 4) ensures that
(u(t), v(t)) ∈ A for small t > 0. We prove that there exist 0 < τ < ∞ such that
v(τ) = |u(τ)|p−1 − λ. It means that (u, v) is bounded in A. Since (u, v) belongs to
A, we have

dv

du
= u +

λu

v
− u|u|p−1

v
≤ u +

λu

v
.

Then dv
du ≥ 0 in A implies v > v0 as long as (u, v) ∈ A, and we obtain

dv

du
≤ u

(
1 +

λ

v0

)
.

Integration gives

v ≤ 1
2

(
1 +

λ

v0

)
u2 + v0.

If p > 3, the intersection {v = |u|p−1 − λ} ∩ {v = 1
2

(
1 + λ

v0

)
u2 + v0} is non-empty

for all v0 > 0. If p = 3, we need to choose v0 sufficiently big such that
1
2

(
1 +

λ

v0

)
< 1.

Then, the trajectory (u, v) belongs to the compact

{u ≥ 0, v ≥ |u|p−1 − λ, v ≤ 1
2

(
1 +

λ

v0

)
u2 + v0},

and, using dv
du ≥ 0, we know that there exist 0 < τ < ∞ such that v(τ) = |u(τ)|p−1−

λ. This argument proves that each solution of the System 3 with initial data
(u(0), v(0)) = (0, v0) is bounded in A if v0 is big enough. Thanks to uniqueness of
solution, it also proves the result for all the solutions initiated in A.

Figure 1. Phase plane for p ≥ 3 and λ > 0.

Then, we complete this phase plane analysis by proving the existence of periodic
trajectories.

Lemma 2.3. Assume that hypothesis 6 is fulfilled. Then, there exists periodic
trajectories of the System 3.
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Proof. Thanks to the symmetry (see Lemma 2.1), we just need to prove that for
some initial data belonging to {0} × (0,∞), there exists a trajectory which attains
a point belonging to {0} × (−∞, 0). First, consider a trajectory (u, v) initiated at
(0, v1) with v1 > 0. According to hypothesis 6, we know that (u, v) is bounded,
and using its variations and its convexity (Equations 4 and 5), we can deduce that
(u, v) attains the x−axis at a point (u1, 0) with u1 > λ

1
p−1 (see Figure 1). Then,

using the reverse system(
u′

v′

)
=
(

−v
−uv + u|u|p−1 − λu

)
,

and one of its trajectories initiated at (0, v2) with v2 < −λ) (trajectories of reverse
system and of System 3 have same support) , one can note that for u0 > λ

1
p−1 , there

exist a trajectory (w, z) with w(0) = u0 and z(0) = 0 (see Figure 1). Finally, let
us consider the trajectory (a, b) of System 3 containing the point (u2, 0). Thanks
to the uniqueness of the solutions, and using the information on the variations
and the convexity, we deduce that there exist two real numbers s < t such that
a(s) = a(t) = 0, b(s) = v0 and b(t) = v3 (see Figure 1). Thus, the trajectory (a, b)
is the periodic trajectory we look for.

Now, analysing the phase plane of the System 3, we deduce the following results
concerning the equation 1.

Theorem 2.4. Assume hypothesis 6 and λ > 0. For some α > 0 and for each
boundary conditions

• u(−α) = u(α) = 0 (Dirichlet b.c.) ,
• u′(−α) = u′(α) = 0 (Neumann b.c.) ,
• u(−α) = u′(α) = 0 (mixed−1 b.c.),
• u′(−α) = u(α) = 0 (mixed−2 b.c.),

there exists a unique positive solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α).

Proof. We use the phase plane of System 3, see Figure 1. Consider the trajectory
(a, b) between the points

• (0, v0) and (0, v3): we obtain the Dirichlet solution,
• (0, v0) and (u2, 0): we obtain the mixed−1 solution,
• (u2, 0) and (0, v3): we obtain the mixed−2 solution.

For the Neumann solution, consider 0 < µ0 < λ
1

p−1 and the trajectory (µ, ν) of
System 3 initiated at (µ0, 0). Since (µ, ν) can not cross the trajectory (u, v) ( see
Figure 1), it must cross the x−axis at (µ1, 0) with λ

1
p−1 < µ1 < u1. Thus, the

abscissa of this trajectory is the Neumann solution we look for. Uniqueness of
solution comes from standard ODE’s theorems applied to the System 3. Finally,
the length (2α) of the existence interval is governed by the time needed by the
trajectory to go from its initial data to its “final data”.

Theorem 2.5. Assume hypothesis 6 and λ > 0. For some α > 0, there exists a
periodic sign-changing solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in R.

Proof. We just need to choose one the periodic trajectories of the System 3 built in
Lemma 2.3.
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Remark 1. Using the periodic solutions in the previous theorem, we can build four
sign-changing solutions satisfying the four boundary conditions: Dirichlet, Neu-
mann, mixed−1 and mixed−2 (see Theorem 2.4).

Now, suppose that hypothesis 6 is not achieved. Then, we do not know if the
solutions are bounded in {v > |u|p−1 − λ}: we will see in §2.3 that unbounded
solutions appear. But in {v < |u|p−1 − λ}, the behaviour of the trajectories do not
change.

Theorem 2.6. Let λ > 0. For some α > 0, there exists a unique positive solution
of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α)

with the mixed boundary conditions u′(−α) = u(α) = 0. In addition, if

1− 4(p− 1)λ
p−3
p−1 < 0, (7)

then there exists a unique positive solution of the equation 1 under the Neumann
boundary conditions.

Proof. The first part of the statement comes from Theorem 2.4, the solution with
mixed−2 boundary conditions is located in {v < |u|p−1−λ}. The other part stems
from Equation 7: in this case, the equilibrium (λ

1
p−1 , 0) is an unstable vortex. If

we consider u0 > 0 such that |λ
1

p−1 − u0| is sufficiently small, the trajectory (u, v)
of the System 3, with u(0) = u0 and v(0) = 0, whirls around (λ

1
p−1 , 0). Thus, there

exists τ > 0 such that v(τ) = 0 and u(t) > 0 for all t ∈ [0, τ ].

Without hypothesis 6, we can not construct positive solutions anymore for the
Dirichlet, Neumann or mixed−1 boundary conditions. If we do not impose the
positivity, we obtain this result:

Theorem 2.7. Let λ > 0. For some α > 0 and for each boundary conditions
• u′(−α) = u′(α) = 0 (Neumann b.c.) ,
• u(−α) = u′(α) = 0 (mixed−1 b.c.),

there exists a solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α).

Proof. As we mentioned before, we consider the part {v < |u|p−1 − λ} of the phase
plane of the System 3 (see Figure 1). For the Neumann solution, we consider the
trajectory (a, b) between (u2, 0) and (−u2, 0). For the mixed−1 solution, we can
also consider the trajectory (a, b), but only between (0, v3) and (−u2, 0).

Remark 2. The Neumann solution built above is sign changing, whereas the
mixed−1 solution is negative.

Remark 3. In the general case, we can not build any solution with the Dirichlet
boundary conditions using our phase plane method. Indeed, we will give a criterion
in Theorem 2.18 concerning nonexistence of the Dirichlet solution.

Concerning the solutions in infinite interval, we can state:

Theorem 2.8. Let λ > 0. Then the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0

admits
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• a positive solution u in (−∞, 0] satisfying u′(−∞) = u′(0) = 0 (Neumann).
• a positive solution v in (−∞, 0] satisfying v′(−∞) = v(0) = 0 (mixed−2).
• a sign-changing solution w in R satisfying w′(−∞) = w′(∞) = 0 (Neumann).
• a negative solution u in [0,∞) satisfying z(0) = z′(∞) = 0 (mixed−1).

Proof. Consider µ0 > 0 with µ0 > λ
1

p−1 and with |λ
1

p−1 − u0| small enough such
that there exists a trajectory (µ, ν) of the System 3 satisfying

µ(−∞) = λ
1

p−1 , ν(−∞) = 0 and µ(0) = µ0, ν(0) = 0

Hence, u = µ in (−∞, 0] is suitable for the first statement. Then, the trajectory
(µ, ν) can be continued in the part {u > 0, v < 0} using the information on its
behaviour (see Equations 4 and 5) until (µ, ν) attains the ordinate axis. Denote
t1 > 0 the time such that µ(t1) = 0 and ν(t1) < 0. We obtain the second statement
setting v(t) = µ(t + t1) for all t ∈ (−∞, 0]. Finally, these results and the symmetry
of the trajectories (see Lemma 2.1) imply the third and the fourth statements with
the following definitions:

w(t) =
{

v(t) ∀ t ≤ 0
−v(−t) ∀ t > 0 and z(t) = −v(−t) for all t ≥ 0.

2.2. Case λ ≤ 0. First note that the System 3 has only one equilibrium point (0, 0).
As in the previous case, we can reduce our phase plane analysis to the half-plane
R+ × R since of Lemma 2.1. Again, we obtain some information on the variations
of the trajectories of the System 3 using Equation 4. We have dv

du = 0 along the
curves {u = 0} and {v = |u|p−1 − λ}. For u > 0

dv

du

∣∣∣∣∣
v=0

= −∞

whereas for u < 0
dv

du

∣∣∣∣∣
v=0

= +∞.

Then, we have dv
du ≥ 0 in {u > 0, v < 0} ∪ {v ≥ |u|p−1 − λ} and dv

du ≤ 0 in
{u > 0, v > 0, v ≤ |u|p−1 − λ}. In addition, thanks to Equation 5, we know that
d2v
du2 ≤ 0 in {u > 0, v > 0, v ≤ |u|p−1 − λ}, dv

du ≥ 0 in {u > 0, v < 0} while it is
sign-changing in {u > 0, v ≥ |u|p−1 − λ}. In this last part of the plane, we use the
following lemma, similar to Lemma 2.2:

Lemma 2.9. Let λ ≤ 0 and (u, v) be a trajectory of the System 3 with initial data
(0, v0). If v0 > −λ satisfies{

v0 > −λ if p ≥ 3 ,

v0 ≤ −λ + (p− 1)
p−1
3−p − 1

2 (p− 1)
2

3−p if p < 3 ,
(8)

then the trajectory (u, v) is bounded in A = {u > 0, v ≥ |u|p−1 − λ}.

Proof. The calculus of the variations (see Equation 4) ensures that (u(t), v(t)) ∈ A
for small t > 0. We prove that there exist 0 < τ < ∞ such that v(τ) = |u(τ)|p−1−λ.
It means that (u, v) is bounded in A. Since (u, v) belongs to A and thanks to λ ≤ 0,
we have

0 ≤ dv

du
= u +

λu

v
− u|u|p−1

v
≤ u.
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Then, integration between 0 and u gives

v ≤ 1
2
u2 + v0.

Hypothesis 8 implies that {u > 0, v = |u|p−1 − λ} ∩ {u > 0, v = 1
2u2 + v0} is not

empty. Thus, the trajectory (u, v) belongs to the compact

{u ≥ 0, v ≥ |u|p−1 − λ, v ≤ 1
2
u2 + v0}.

Using dv
du ≥ 0, we know that there exist τ > 0 such that v(τ) = |u(τ)|p−1 − λ.

Now, the phase plane of the System 3 can be drawn, see Figure 2.

Figure 2. Phase plane for λ ≤ 0.

Corollary 1. The equilibrium point (0, 0) is a center for the System 3.

Now, we use these information on the trajectories of the System 3 to obtain some
results concerning the solutions of Equation 1.

Theorem 2.10. Let λ ≤ 0. For some α > 0 and for each boundary conditions
• u(−α) = u(α) = 0 (Dirichlet b.c.) ,
• u(−α) = u′(α) = 0 (mixed−1 b.c.),
• u′(−α) = u(α) = 0 (mixed−2 b.c.),

there exists a unique positive solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α).

Proof. We use the phase plane of System 3, see Figure 2. Consider the trajectory
(a, b) between the points

• (0, b0) and (0, b1): we obtain the Dirichlet solution,
• (0, b0) and (a0, 0): we obtain the mixed−1 solution,
• (a0, 0) and (0, b1): we obtain the mixed−2 solution.

Theorem 2.11. Let λ ≤ 0. For all α > 0, the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α)

admits no positive solution under the Neumann boundary conditions.



A BIFURCATION FOR A GENERALIZED BURGER’S EQUATION 9

Proof. Ab absurbo, suppose that there exists u a positive solution of 1 under the
Neumann boundary conditions, and denote v = u′. Then the curve (u, v) is a
trajectory of the System 3 located in R+ ×R with initial data on the axis {v = 0}.
Then Equations 4 and 5 prove that (u, v) can not cross the axis {v = 0} once again
without going into R− × R. A contradiction with the positivity of u.

Theorem 2.12. Let λ ≤ 0. For some α > 0, the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α)

admits a sign changing solution under the Neumann boundary conditions.

Proof. Using the phase plane of System 3 (see Figure 2), consider the trajectory
(a, b) between the points (a0, 0) and (−a0, 0).

To conclude this section, let us give this result concerning the periodic solutions:

Theorem 2.13. Let λ ≤ 0. For some α > 0, there exists a sign-changing periodic
solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in R.

Proof. As in Lemma 2.3, we can build periodic trajectories of 3 using the symmetry
(Lemma 2.1).

2.3. Unbounded solutions. In the above paragraphs, we proved that all the tra-
jectories of the System 3 are bounded for p ≥ 3, but if 1 < p < 3 we do not have a
general answer: for example, we obtain some bounded trajectories when λ ≤ 0 (see
Lemma 2.9), but with our method, we do not have (yet) any result when λ > 0. In
this paragraph, we show that there exists unbounded trajectories for every λ ∈ R
and for all p ∈ (1, 3). We start with a trajectory (u, v) with an initial data (0, v0).

Lemma 2.14. Let p ∈ (1, 3) and λ ∈ R. Suppose that

v0 > 2 max{−λ, 0}+ 2 · (8)
p−1
3−p . (9)

Then the trajectory (u, v) is not bounded.

Proof. We will show that under hypothesis 9, the trajectory (u, v) always lies above
the curve

{
v = 2up−1 + 2 max{−λ, 0}

}
. Thus, using dv

du ≥ 0 (Equation 4), we
obtain that (u, v) is not bounded. Ab absurdo, suppose that there exists x∗ > 0
such that u(x∗) = u1 > 0 and v(x∗) = v1 > 0 satisfy

v1 = 2up−1
1 + 2 max{−λ, 0}, (10)

and
v(x) > 2u(x)p−1 + 2 max{−λ, 0} ∀ x ∈ [0, x∗).

Thus in [0, x∗), we have
λ− up−1

v
> −1

2
. (11)

On the other hand, Equation 4 gives

dv

du
= u + u

λ− up−1

v
,

and thanks to condition 11, we obtain
dv

du
≥ 1

2
u ≥ 0. (12)
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Then v(u) ≥ u2

4 + v0. Hence, for u = u1, we have:

v1 = v(u1) ≥
u2

1

4
+ v0,

and by definition 10 of u1, we have

2up−1
1 + 2 max{−λ, 0} ≥ u2

1

4
+ v0.

Hypothesis 9 implies

−2 · (8)
p−1
3−p >

u2
1

4
− 2up−1

1 . (13)

Meanwhile, if we study both cases u1 < 8
1

3−p and u1 > 8
1

3−p , we remark that

u2
1

4
− 2up−1

1 =
up−1

1

4

(
u3−p

1 − 8
)
≥ −2 · (8)

p−1
3−p . (14)

Equations 13 and 14 are not compatible. Thus, the trajectory (u, v) can not attain
the curve

{
v = 2up−1 + 2 max{−λ, 0}

}
.

Concerning Equation 1, we obtain the following results:

Theorem 2.15. Let p ∈ (2, 3) and λ ∈ R. For some α > 0, there exists a positive
and unbounded solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (−α, α).

satisfying
u(−a) = 0 and lim

x→a
u(x) = ∞.

Proof. The existence comes from the previous lemma. We just need to prove that
the length of the existence interval is finite. Ab absurdo, suppose that there exists
a positive and unbounded solution u of the Equation 1 in [0,∞). Let b > 0 such
that u > 2|λ|

1
p−1 in [b,∞), and define w(x, t) = u(x + t) for all x ∈ [b, b + 1] and for

all t ∈ [0,∞). Thanks to the choice of b, we have

∂2
xu− u∂xu + up − λu ≥ ∂2

xu− u∂xu +
up

2

in [b, b + 1] × [0,∞). Because the solution u corresponds to a trajectory of the
System 3 located in R × R+, we have ∂tw > 0. Thus, w is super-solution of the
following problem

∂tv = ∂2
xu− u∂xu + 1

2up − λu in [b, b + 1]× (0,∞),
∂tv + ∂νv = 0 on {±b} × (0,∞),
v(·, 0) = 2|λ|

1
p−1 in [b, b + 1].

By the comparison principle from [2], w ≥ v where v is the solution of the previous
problem. But, according to [4], the solution v blows up in finite time. A contra-
diction between w ≥ v and the global existence of w. Thus, w can not exist on
[b, b + 1]× (0,∞), and the solution u exists only in a finite interval.

For 1 < p ≤ 2, we do not have the blowing-up argument and we are not sure
that the existence interval of the solution is finite.
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Theorem 2.16. Let p ∈ (1, 2] and λ ∈ R. For some α ∈ (0,∞], there exists a
positive and unbounded solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (0, α).

satisfying
u(−a) = 0 and lim

x→a
u(x) = ∞.

With some assumption on the parameter λ, we can also build a trajectory (u, v)
with an initial data (u0, 0) belonging to the abscissa axis.

Lemma 2.17. Let p ∈ (1, 3) and λ ∈ R. Suppose that there exists β > 1 such that

λ > max

{
β − 1
2β

(
2β2

β − 1

) 1
3−p

, β

(
2β2

β − 1

) p−1
3−p
}

(15)

If

u0 =

(
2β2

β − 1

) 1
3−p

, (16)

then the trajectory (u, v) is not bounded.

Proof. We use the same method as in Lemma 2.14: we prove that, under hypotheses
15 and 16, the trajectory (u, v) always lies above the curve {v = βup−1 − λ}. Ab
absurdo, suppose that there exist x∗ > 0 such that u(x∗) = u1 and v1 = v(x∗)
verify

v1 = βup−1
1 − λ, (17)

and
v(x∗) > βu(x∗)p−1 − λ ∀ 0 < x < x∗.

Thus, in [0, x∗), we have
λ− up−1

v
≥ −1

β
. (18)

Equation 4 gives
dv

du
= u + u

λ− up−1

v
,

and condition 18 implies
dv

du
≥ β − 1

β
u ≥ 0.

Integration between u0 and u1 leads to

v(u1) ≥
β − 1
2β

(u1 − u0),

definition 17 gives

βup−1
1 − λ ≥ β − 1

2β
(u1 − u0),

and we obtain
up−1

1

(
1− β − 1

2β2
u3−p

1

)
≥ 1

β

(
λ− u0

β − 1
2β

)
. (19)

Since of u0 < u1, Equations 15 and 16 imply

λ− u0
β − 1
2β

> 0 and 1− β − 1
2β2

u3−p
1 < 0.

Hence, Equation 19 is a contradiction.
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Concerning Equation 1, and reasoning as in Theorem 2.15, we obtain the follow-
ing result.

Theorem 2.18. Let p ∈ (1, 3) and λ ∈ R verifying Equation 15. For some α ∈
(0,∞], there exists a positive and unbounded solution of the Equation 1

u′′ − uu′ + u|u|p−1 − λu = 0 in (0, α).

satisfying
u′(0) = 0 and lim

x→α
u(x) = ∞.

In addition, if p ∈ (2, 3), then α is finite.

2.4. Limiting case p = 1. In this paragraph, we study the case where the exponent
p attains the limit 1. Then, Equation 1 becomes

u′′ − uu′ + (1− λ)u = 0 in R,

and the System 3 is written(
u′

v′

)
=
(

v
u(v + λ− 1)

)
. (20)

For λ 6= 1, (0, 0) is the only equilibrium point, while for λ = 1 the axis {v = 0} is a
continuum of equilibria. We begin with the case λ = 1. Here, we have dv

du = u, then

v(u) =
1
2
u2 + c,

where c depends on the initial data. Thus, the phase plane is easily drawn, see
Figure 3. Now, suppose λ 6= 1. One can compute the explicit trajectory{

ue(x) = (1− λ)x
ve(x) = (1− λ) ∀ x ∈ R

Then, using the following equations

dv

du
= u +

u

v
(λ− 1) and

d2v

du2
= 1 + +

λ− 1
v2

(
v − u

dv

du

)
we can draw the phase plane of the System 20, see Figure 3.

Figure 3. Phase planes for p = 1.
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2.5. Bifurcation. According to the previous paragraphs, we can state that there
exists a bifurcation of the phase plane of the System 3. First, we note that, for
a fixed exponent p, the value of λ influences the phase plane of the System 3: for
λ > 0, the System 3 admits three equilibrium points (a saddle point, an attractive
equilibrium and a repulsive equilibrium). The distance between these equilibria
goes to 0 when λ → 0, and for λ = 0, they collapse and generate a unique center,
which persists for all negative λ (see Figure 4).

Figure 4. Bifurcation of the phase plane of the System 3 with
different parameters.

Now, for a fixed λ, the value of the exponent p has an important role. With
λ, the value of p governs the type of the equilibrium points (node, improper node,
vortex). The exponent p also establishes if all the trajectories of the System 3 are
bounded (p ≥ 3) or if there exists unbounded trajectories (1 ≤ p < 3). Moreover,
when p attains the limit 1, the critical value of λ changes from 0 (if p > 1) to 1 (for
p = 1). The case λ = 1 is special because when p → 1, the three equilibria of the
System 3 (a saddle point, an attractive vortex and a repulsive vortex) generate a
continuum of equilibria when p attains the limit 1 (see Figure 5).

3. Parabolic problem. In this section, we study the parabolic Problem 1 for many
boundary conditions. First, we use the results concerning the stationary Equation
1 when the domain Ω is bounded. Then, we consider the case of unbounded do-
mains: we investigate global existence using the comparison method, and blow-up
phenomenon thanks to a L1−norm technique.

3.1. Comparison. We begin with the Dirichlet problem ∂tu = ∂2
xu− u∂xu + up − λu in [−α, α]× (0,∞),

u = 0 on {±α} × (0,∞),
u(·, 0) = ϕ in [−α, α],

(21)

where α > 0, p > 1, λ ∈ R and ϕ ∈ C0([−α, α]) is non-negative. Thanks to the
comparison principle [2] and with the results of the previous sections, we have:

Theorem 3.1. Let p > 1 and λ ∈ R. For some α > 0, there exists a global positive
solution

u ∈ C([−α, α]× [0,∞)) ∩ C2,1([−α, α]× (0,∞))
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Figure 5. Phase planes of the System 3 with different parameters.

of Problem 21 if the initial data ϕ ∈ C0([−α, α]) is sufficiently small.

Proof. If p ≥ 3 and λ > 0, consider β ∈ C2([−α, α]) a solution of 1 with the Dirichlet
boundary conditions (see Theorem 2.4). Suppose that ϕ is small enough: ϕ ≤ β in
[−α, α]. Then, we obtain ∂tβ = 0 = ∂2

xβ − β∂xβ + βp − λu in [−α, α]× (0,∞),
β = 0 on {±α} × (0,∞),
β(·, 0) ≥ ϕ in [−α, α].
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Using the comparison principle from [2], we prove that there exists a solution u of
21 satisfying 0 ≤ u ≤ β for all (x, t) ∈ [−α, α]× (0,∞). Thus, u is a global positive
solution. If 1 < p < 3 and λ > 0, then we just need to choose a positive solution
β given in Theorem 2.6 (even if β(±α) > 0). For λ ≤ 0, we consider the Dirichlet
solution given in Theorem 2.10.

Now, we replace the Dirichlet boundary conditions by the dynamical boundary
conditions. Consider the following problem ∂tu = ∂2

xu− u∂xu + up − λu in [−α, α]× (0,∞),
σ∂tu + ∂νu = 0 on {±α} × (0,∞),
u(·, 0) = ϕ in [−α, α],

(22)

with α > 0, p > 1, λ ∈ R and where ϕ ∈ C([−α, α]) and σ ∈ C1({±α}[0,∞)) are
non-negative. We obtain two results, depending on the sign of λ.

Theorem 3.2. Let p > 1 and λ > 0. There exists a global positive solution

u ∈ C([−α, α]× [0,∞)) ∩ C2,1([−α, α]× (0,∞))

of Problem 22

• for all α > 0 if ϕ ≤ λ
1

p−1 .
• for some α > 0 if ϕ−λ

1
p−1 is sign changing and max{ϕ−λ

1
p−1 , 0} is sufficiently

close to 0.
• for no α > 0 if ϕ > λ

1
p−1 and p > 2.

Proof. For the first statement, we just need to note that the constant function λ
1

p−1

is a super-solution of 22 when 0 ≤ ϕ ≤ λ
1

p−1 . For the second statement, we consider
two cases: when p ≥ 3, we consider a positive solution w of 1 under the Neumann
boundary conditions, see Theorem 2.4. Choosing 0 ≤ ϕ ≤ w, we obtain a super-
solution of 22. If 1 < p < 3, we consider a trajectory (µ, γ) of 3 with 0 < µ(0) < λ

1
p−1

and γ(0) = 0. According to Equation 4, for a small x∗ > 0, we have γ(−x) < 0
and γ(x) > 0 for all x ∈ (0, x∗). Thus, µ satisfies ∂νµ(−x∗) = −γ(−x∗) > 0 and
∂νµ(x∗) = γ(x∗) > 0, and it is a super-solution of 22 when 0 ≤ ϕ ≤ µ in [−x∗, x∗].
Then, using these super-solutions and the comparison principle from [2], we prove
first and second assertions. For the third statement, consider c > 0 such that

ϕ > c > λ
1

p−1 .

The comparison principle from [2] implies that u > c, where u denote the solution
of 22 with the initial data ϕ. Hence, there exists d > 0 such that

up − λu ≥ dup for all x ∈ [−α, α] and for all t > 0.

Thus, u verifies ∂tu ≥ ∂2
xu− u∂xu + dup in [−α, α] for t > 0,

σ∂tu + ∂νu = 0 on {−α, α} for t > 0,
u(·, 0) > c > 0 in [−α, α].

Then, blow-up results from [4] imply the blowing-up in finite time of u.

Theorem 3.3. Let p > 2 and λ ≤ 0. For all α > 0, the positive solution u of
Problem 22 blows up in finite time if the initial data ϕ ∈ C([−α, α]) satisfies

∀ x ∈ [−α, α], ϕ(x) > 0.
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Proof. Since of λ ≤ 0, the function u verifies ∂tu ≥ ∂2
xu− u∂xu + up in [−α, α] for t > 0,

σ∂tu + ∂νu = 0 on {−α, α} for t > 0,
u(·, 0) > 0 in [−α, α].

Thanks to the blow-up results from [4], we know that u blows up in finite time.

Remark 4. The Neumann boundary conditions are included here, with the special
case σ ≡ 0.

3.2. Global existence in unbounded domains. We study the Problem 1 under
the Dirichlet, the Neumann and the dynamical boundary conditions when Ω is
an unbounded domain. Using some explicit super-solutions, we look for global
existence in the three types of unbounded domains: (−∞, 0), (0,∞) and R. We
begin with the case λ > 0:

Theorem 3.4. Let p > 1, λ > 0 , ϕ ∈ C(Ω) a non-negative function, and let Ω
be any unbounded domain. Then, the Problem 1 admits a global positive solution if
the initial data satisfies

0 ≤ ϕ ≤ λ
1

p−1 ,

and when B(u) = 0 stands for the Dirichlet, the Neumann, the Robin (∂νu+au = 0
with a ≥ 0) or the dynamical boundary conditions.

Proof. As in the proof of Theorem 3.2, we consider the constant function v(x, t) =
λ

1
p−1 for all (x, t) ∈ Ω × (0,∞). Then, v satisfies Burger’s Equation, the choice of

ϕ implies ϕ ≤ v(·, 0) in Ω. On the boundary, we have:

v ≥ 0 (Dirichlet).
∂νv = 0 (Neumann).
∂νv + av ≥ 0 (Robin).
σ∂tv + ∂νv = 0 (Dynamical).

Thus, v is super-solution of 1 for the four boundary conditions above, and we
conclude with the comparison principle [2].

If λ ≤ 0, we must add some restrictions, and we obtain the following results.

Theorem 3.5. Assume Ω = (0,∞) and let p ∈ (1, 2], λ ≤ 0 and ϕ ∈ C(Ω) a non-
negative function. Then, the Problem 1 admits a global positive solution if the initial
data is bounded and when B(u) = 0 stands for the Dirichlet boundary conditions or
the dynamical boundary conditions with σ > 0 constant.

Proof. We deal with the comparison principle [2] and the explicit function v(x, t) =
Aeαx+(t+t0)

2
defined in R+ × R+. Computing the partial derivatives, we have

∂tv(x, t) = 2(t + t0)v.
∂xv(x, t) = αv.
∂2

xv(x, t) = α2v.

Choosing t0 ≥ 1
2

(
α2 − λ

)
, we obtain

∂tv − ∂2
xv + v∂xv − vp + λv ≥ v2

(
α− vp−2

)
.

Thanks to p ≤ 2 and with αx + (t + t0)2 ≥ 0 in R+ × R+, we have vp−2 ≤ Ap−2.
Choosing Ap−2 ≤ α, we obtain ∂tv − ∂2

xv + v∂xv − vp + λv ≥ 0. Since v ≥ 0, the
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case of the Dirichlet boundary conditions is trivial. Choosing t0 ≥ α
2σ , the case of

the dynamical boundary conditions is verified thanks to

σ∂tv + ∂nuv = v
(
2σ(t + t0)− α

)
≥ 0.

Finally, we have a super-solution choosing A ≥ supϕ.

Remark 5. In the previous proof, one can see that the dynamical boundary con-
ditions are satisfied for a more general coefficient σ verifying

σ(x, t) ≥ α

2(t + t0)
.

And replacing the function v by w(x, t) = Aeαx+(t+t0)
n

, we can consider smaller
coefficients σ > 0 with σ(x, t) ∼

t→∞
t−n+1.

Corollary 2. Suppose Ω = (−∞, 0) or Ω = R. Let p = 2, λ ≤ 0 and ϕ ∈ C(Ω).
Then the Problem 1 admits a global positive solution if there exists C > 0 and α > 0
such that

0 ≤ ϕ(x) ≤ Ceax in Ω
and when B(u) = 0 stands for the Dirichlet, the Neumann or the dynamical bound-
ary conditions with σ > 0.

Proof. As in the previous theorem, we consider v(x, t) = Aeαx+(t+t0)
2
. Thanks to

p = 2 and with some appropriate constants A and α, we have{
∂tv − ∂2

xv + v∂xv − vp + λv ≥ 0 in Ω× [0,∞).
v(·, 0) ≥ ϕ in Ω.

The case Ω = R (no boundary) and the case of Dirichlet boundary conditions are
trivial. For Ω = (−∞, 0), we have ∂νv = ∂xv = αv > 0 on the boundary. Thus, the
Neumann boundary conditions and the dynamical boundary conditions with σ ≥ 0
are verified.

When λ = 0, Ω = (−∞, 0) and p > 3, the Green’s function of the heat equation
is a suitable super-solution for the Problem 1.

Theorem 3.6. Assume Ω = (−∞, 0), p > 3 and ϕ ∈ C(Ω). Then the Problem
1 admits a global positive solution if the initial data ϕ is sufficiently small and
when B(u) = 0 stands for the Dirichlet, the Neumann or the dynamical boundary
conditions with σ > 0 constant.

Proof. Consider the function v(x, t) = A(t + 1)−γe
−(x+y)2

4t+4 defined in R−×R+ with
A > 0, γ = 1

p−1 and y = −2σγ. A simple calculus leads to

∂tv − ∂2
xv + v∂xv − vp + λv =

v

2(t + 1)

(
− 2γ + 1− (x + y)v − vp−1

)
.

By definition of γ and p > 3, we have −2γ + 1 > 0. Since vp−1 ≤ Ap−1, and
because −(x + y) > 0 for all x ∈ Ω, we obtain ∂tv − ∂2

xv + v∂xv − vp + λv ≥ 0 by
choosing A small enough. The case of the Dirichlet boundary conditions is clear
because v ≥ 0. For the dynamical boundary conditions and the Neumann boundary
conditions (σ ≡ 0), we use the definition of y and we have

σ∂tv + ∂νv ≥ v

2(t + 1)

(
− 2σγ − y

)
≥ 0.

Thus, v is a super-solution of the Problem 1 as soon as ϕ ≤ v(·, 0) in Ω.
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3.3. Blow up in unbounded domains. Here, using some weighted L1−norms,
we examine blow-up phenomena for some solutions of Problem 1 in unbounded do-
mains satisfying the Neumann, the Robin, and some nonlinear boundary conditions
and this growth order at infinity: for all a > 0 and for all t > 0

lim
|x|→∞

u(x, t)e−a|x| = 0 and lim
|x|→∞

|∂xu(x, t)|e−a|x| = 0. (23)

Unless otherwise stated, we always suppose Ω = (0,∞). We begin with a lemma
which gives a criterion for the blowing-up of the solution.

Lemma 3.7. Let u be a solution of Problem 1 satisfying the condition 23. If there
exists α > 0 such that

Nα(t) :=
∫ ∞

0

u(x, t)e−αx dx

blows-up in finite time, then u also blows-up in finite time.

Proof. Consider α > 0 such that Nα blows-up in finite time. Using the following
inequality

Nα(t) ≤
∫ ∞

0

e−αx/2 dx · sup
Ω

u(x, t)e−
α
2 x =

2
α

sup
Ω

u(x, t)e−
α
2 x,

and because Nα blows up, we can deduce the blowing up in finite time of the
function u(x, t)e−

α
2 x. Then, thanks to the growth order condition 23, the solution

u must blow up too.

We also need this technical lemma.

Lemma 3.8. Let u be a solution of Problem 1. Then, for all τ > 0 there exists
c > 0 such that

u(0, t) ≥ c for all t ≥ τ .

Proof. Let v be the positive solution of the following problem
∂tv = ∂2

xv − v∂xv + vp − λv in [0, 1]× [0,∞),
B(v) = 0 on {0} × [0,∞),
v = 0 on {1} × [0,∞),
v(·, 0) = ϕ1 in [0, 1],

where B(v) = 0 is the same boundary condition as in Problem 1, where ϕ1 ∈
C2([0, 1]) satisfies ϕ1(1) = 0, ∂2

xϕ1 − ϕ1∂xϕ1 + ϕp
1 − λϕ1 ≥ 0 and 0 ≤ ϕ1 ≤ ϕ in

[0, 1]. Thanks to u(·, 0) ≥ v(·, 0) in [0, 1] and u(1, t) ≥ 0 = v(1, t) for all t > 0, the
comparison principle from [2] implies

u(x, t) ≥ v(x, t) for all x ∈ [0, 1] and t > 0.

Then, the comparison principle and the maximum principle from [2] imply

∂tv(x, t) ≥ 0 and v(x, t) > 0.

for all x ∈ [0, 1] and t > 0, see Lemma 2.1 in [3]. Thus, for all τ > 0, we obtain

u(0, t) ≥ v(0, t) ≥ v(0, τ) > 0 for all t ≥ τ.

Theorem 3.9. Let λ < 0 and p ≥ 2. Then the Problem 1 admits no global positive
solution when B(u) = 0 stands for the Neumann boundary conditions.
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Proof. We aim to prove the existence of α > 0 and β > 0 such that N ′
α ≥ βNp

α

where

Nα(t) :=
∫ ∞

0

u(x, t)e−αx dx

Derivating the function Nα, we obtain

N ′
α(t) =

∫ ∞

0

∂tu(x, t)e−αx dx

=
∫ ∞

0

(
∂2

xu(x, t)
)
e−αx dx−

∫ ∞

0

(
u(x, t)∂xu(x, t)

)
e−αx dx

+
∫ ∞

0

up(x, t)e−αx dx− λ

∫ ∞

0

u(x, t)e−αx dx.

Using the growth order condition 23 and integrating by parts, we obtain∫ ∞

0

(
∂2

xu(x, t)
)
e−αx dx = α2

∫ ∞

0

u(x, t)e−αx dx + ∂νu(0, t)− αu(0, t)

and ∫ ∞

0

(
u(x, t)∂xu(x, t)

)
e−αx dx =

α

2

∫ ∞

0

u2(x, t)e−αx dx− u2(0, t)
2

.

Thus, we have

N ′
α(t) =

∫ ∞

0

u(x, t)e−αx
(
α2 − α

2
u(x, t)− λ + up−1(x, t)

)
dx

+ ∂νu(0, t)− αu(0, t) +
u2(0, t)

2
.

(24)

Thanks to Lemma 3.8, and considering u from a time τ > 0, we can assume that

c := min
t>0

u(0, t) > 0 .

Then, if α is small enough (α ≤ c/2), we have −αu(0, t) + u2(0,t)
2 ≥ 0. Then, the

Neumann boundary conditions imply

N ′
α(t) ≥

∫ ∞

0

u(x, t)e−αx
(
α2 − α

2
u(x, t)− λ + up−1(x, t)

)
dx. (25)

Shrinking α, we can suppose α ≤ −2λ and α ≤ 1. When u(x, t) ≤ 1, we have
−λ − αu(x, t)/2 > 0. On the other hand, if u(x, t) ≥ 1, we have up−1(x, t) −
αu(x, t)/2 ≥ up−1(x, t)/2. Hence, we obtain:

N ′
α(t) ≥ 1

2

∫ ∞

0

up(x, t)e−αx dx.

Hölder inequality∫ ∞

0

u(x, t)e−αx dx ≤

(∫ ∞

0

up(x, t)e−αx dx

) 1
p
(∫ ∞

0

e−αx dx

) p−1
p

leads to N ′
α(t) ≥ βNp

α(t) with

β =
1
2

(∫ ∞

0

e−αx dx

)1−p

.
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Finally, we prove the blowing-up of Nα in finite time. Integrating the differential
inequality N ′

α(t) ≥ βNp
α(t) between 0 and t > 0, we obtain

1
1− p

(
N1−p

α (t)−N1−p
α (0)

)
=
∫ Nα(t)

Nα(0)

s−p ds =
∫ t

0

N ′
α(t)

Np
α(t)

dt ≥ βt,

and

Nα(t) ≥
(
N1−p

α (0)− (p− 1)βt
) −1

p−1
.

Since of −1
p−1 < 0, the right hand side term blows up at t = N1−p

α (0)
(p−1)β > 0. We

conclude with Lemma 3.7.

Corollary 3. Let λ < 0 and p ≥ 2. Then the Problem 1 admits no global positive
solution when B(u) = 0 stands for the nonlinear boundary conditions ∂νu = g(u),
where g is a function such that there exists δ > 0 and ε ≤ 1/2 satisfying

g(η) ≥ δη − εη2.

Proof. We follow the proof of Theorem 3.9. We just change the choice of α: let
α > 0 such that α ≤ δ, and use the following minoration in Equation 24:

∂νu(0, t)− αu(0, t) +
1
2
u2(0, t) =g(u)− αu(0, t) +

1
2
u2(0, t)

≥(δ − α)u(0, t) + (
1
2
− ε)u2(0, t) ≥ 0.

Then, we return to Equation 25.

When λ = 0, the choice of α is too strict. Meanwhile, we obtain some blow-up
results imposing some restrictions on the exponent p and on the initial data.

Theorem 3.10. Let λ = 0 and 1 < p ≤ 3. Then the Problem 1 admits no global
positive solution when B(u) = 0 stands for the Neumann boundary conditions.

Proof. Return to the proof of Theorem 3.9. Under the Neumann boundary condi-
tions and with λ = 0, Equation 24 becomes

N ′
α(t) =

∫ ∞

0

u(x, t)e−αx
(
α2 − α

2
u(x, t) + up−1(x, t)

)
dx− αu(0, t) +

u2(0, t)
2

.

Let β ∈ (0, 1) and put it into the previous equation:

N ′
α(t) =

∫ ∞

0

u(x, t)e−αx
(
α2 − α

2
u(x, t) + βup−1(x, t)

)
dx

− αu(0, t) +
u2(0, t)

2
+ (1− β)

∫ ∞

0

up(x, t)e−αx dx.

If u ≤ 2α, we have α2 − αu/2 ≥ 0, whereas u > 2α implies

−α

2
u + βup−1 ≥ u

(
− α

2
+ β(2α)p−2)

)
.

It is non negative if
βαp−3 ≥ 21−p. (26)

Thanks to 1 < p ≤ 3, Equation 26 is achievied by choosing α > 0 sufficiently small
and β ∈ (0, 1) depending on p. Thus, we obtain

N ′
α(t) ≥ −αu(0, t) +

u2(0, t)
2

+ (1− β)
∫ ∞

0

up(x, t)e−αx dx.
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Then, we can suppose that u(0, t) > c > 0 for all t > 0 (see Lemma 3.8), and with
α < c/2 we have −αu(0, t) + u2(0,t)

2 > 0. Hence

N ′
α(t) ≥ (1− β)

∫ ∞

0

up(x, t)e−αx dx.

As in the proof of Theorem 3.9, we use Hölder inequality and we are led to N ′
α ≥ δNp

α

with δ > 0 depending on α, β and p. Hence, Nα blows-up in finite time, so does
the solution u, see Lemma 3.7.

Theorem 3.11. Let λ = 0 and p > 3. Then the Problem 1 admits no global
positive solution when B(u) = 0 stands for the Neumann boundary conditions and
if the initial data satisfies ϕ(0) > 2

1−p
p−3 .

Proof. The proof is similar to the previous one. Go back to Equation 26: since
p > 3, we must choose α such that

α ≥ 2
1−p
p−3 β

−1
p−3 .

Under this condition, Nα satisfies the differential inequality

N ′
α(t) ≥ −αu(0, t) +

u2(0, t)
2

+ (1− β)
∫ ∞

0

up(x, t)e−αx dx.

Because α can not be too small, we must use the assumption ϕ(0) > 2
1−p
p−3 . Using

Lemma 3.8, we have

u(0, t) ≥ ϕ(0) > 2
1−p
p−3 , for all t > 0.

Thus, with β very close to 1 and with α = 2
1−p
p−3 β

−1
p−3 , we obtain −αu(0, t)+ u2(0,t)

2 ≥
0. Hence, we have

N ′
α(t) ≥ (1− β)

∫ ∞

0

up(x, t)e−αx dx.

We conclude with Hölder inequality and the blowing up of Nα.

Corollary 4. Let λ = 0 and p > 3. Then the Problem 1 admits no global positive
solution when B(u) = 0 stands for the Neumann boundary conditions and if the
initial data satisfies∫ ∞

0

ϕ(x)e−x dx >
3p− 7
p− 3

· 2
5−3p
p−3 ·

(
2p− 4
3p− 7

) 4−2p
p−3

. (27)

Proof. Return to the proof of Theorem 3.9. Under the Neumann boundary condi-
tions and introducing β and δ ∈ (0, 1) in Equation 24, we obtain

N ′
α(t) =

∫ ∞

0

u(x, t)e−αx
(
δα2 − α

2
u(x, t) + βup−1(x, t)

)
dx

− αu(0, t) +
u2(0, t)

2
+ (1− δ)Nα(t) + (1− β)

∫ ∞

0

up(x, t)e−αx dx.

Studying both cases u ≥ 2αδ and u ≤ 2αδ, we obtain δα2 − αu/2 + βup−1 ≥ 0 if

α = 2
1−p
p−3 β

−1
p−3 δ

2−p
p−3 .

Since of u2/2− αu ≥ −α2/2 and using Hölder inequality we have

N ′
α(t) ≥ (1− δ)Nα(t) + γNp

α(t)− α2

2
, (28)
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where γ = (1− β)
( ∫∞

0
e−αx dx

)1−p

> 0. First, consider this minoration

N ′
α(t) ≥ (1− δ)Nα(t)− α2

2
.

Thus, Nα satisfies

Nα(t) ≥ α2

2(1− δ)
+ Ae(1−δ)t, A ∈ R.

In particular, Nα(0) ≥ α2(2 − 2δ)−1 + A. With the optimal choice of δ = (2p −
4)/(3p − 7) and with β ∈ (0, 1) close to 1, Hypothesis 27 implies Nα(0) > α2(2 −
2δ)−1. Thus, A is positive and we obtain

(1− δ)Nα(t)− α2

2
≥ 0.

From Equation 28, we deduce

N ′
α(t) ≥ γNp

α(t).

Hence Nα blows-up, and the solution u blows up too, see Lemma 3.7.

Finally, if Ω = (−∞, 0), we must change the weight in Nα and we obtain this
results concerning the nonlinear boundary conditions.

Theorem 3.12. Let λ ≤ 0 and p ≥ 2. Then the Problem 1 admits no global positive
solution when B(u) = 0 stands for the nonlinear boundary conditions ∂νu = g(u),
where g is a function such that there exists c > 0 and d > 0 satisfying

g(η) ≥ cη2 + dη.

Proof. As in the case of Ω = (0,∞), we use a weighted L1−norm:

Nα(t) =
∫ 0

−∞
u(x, t)eαx dx , with α > 0.

We compute N ′
α(t) =

∫ 0

−∞ ∂tu(x, t)eαx dx, and using the equations of Problem 1,
integration by parts leads to

N ′
α(t) =

∫ 0

−∞
(α2u + αu2 + up)eαx dx + ∂xu(0, t)− αu(0, t)− α

2
u2(0, t).

Thanks to ∂νu(0, t) = ∂xu(0, t) in (−∞, 0), choosing α = min{2c, d}, we obtain

N ′
α(t) ≥

∫ 0

−∞
(α2u + αu2 + up)eαx dx ≥

∫ 0

−∞
upeαx dx.

Hölder inequality leads to the differential equation N ′
α(t) ≥ γNp

α(t) with γ > 0.
Hence Nα and the solution u blow up in finite time.
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