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Abstract

The Fujita phenomenon for nonlinear parabolic problems ∂tu = ∆u+ up

in an exterior domain of RN under dissipative dynamical boundary condi-

tions σ∂tu+∂νu = 0 is investigated in the superlinear case. As in the case

of Dirichlet boundary conditions (see Refs. [2] and [9]), it turns out that

there exists a critical exponent p = 1 + 2

N
such that blow-up of positive

solutions always occurs for subcritical exponents, whereas in the super-

critical case global existence can occur for small non-negative initial data.
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1 Introduction

Let Ω be an exterior domain of RN , that is to say a connected open set Ω such

that Ω
c
is a bounded domain when N ≥ 2, and in dimension one, Ω is the

complement of a real closed interval. We always suppose that the boundary ∂Ω

is of class C2. The outer normal unit vector field is denoted by ν : ∂Ω → R
N

and the outer normal derivative by ∂ν . Let p be a real number with p > 1 and

ϕ be a continuous function in Ω. Consider the following nonlinear parabolic

problem






















∂tu = ∆u + up in Ω× (0,∞),

Bσ(u) := σ∂tu+ ∂νu = 0 on ∂Ω× (0,∞),

u(·, 0) = ϕ in Ω .

(1)

The aim of this paper is to show that the well-known Fujita phenomenon in the

case of Ω = R
N (see Ref. [6]) and in the case of Dirichlet boundary conditions

(see Refs. [2] and [9]) still holds for the dynamical boundary conditions. One can

notice that dynamical boundary conditions Bσ(u) = 0 with σ ≡ 0 correspond

to the Neumann boundary conditions, which case has been discussed by Levine

and Zhang [8]. It is already known, by Bandle, von Below and Reichel in [1],

that for p ∈ (1, 1+ 2
N
), also for p = 1+ 2

N
if N ≥ 3, and for constant coefficient

σ ∈ [0,∞), all positive solutions of (1) blow up in finite time. In addition, if

the complement is star-shaped there exist global positive solutions of class C1

for p > 1 + 2
N

by [1]. Our purpose is to show the existence of global positive

solutions of Problem (1) for sufficiently small initial data in the supercritical

case (p > 1+ 2
N
) for any exterior domain. Moreover our condition on σ is more

general. Throughout, we shall assume the dissipativity condition

σ ≥ 0 on ∂Ω× (0,∞) (2)

and dealing with classical solutions

σ ∈ C1(∂Ω× (0,∞)). (3)
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The initial data is always supposed to be continuous, non-trivial, bounded, non-

negative in Ω, and vanishing at infinity:

ϕ ∈ C(Ω), 0 <‖ ϕ ‖∞<∞, ϕ ≥ 0, lim
‖x‖2→∞

ϕ(x) = 0. (4)

In the case Ω = R
N , the boundary condition is dropped and the result is well

known by the classical paper of Fujita [6]. Thus, we will suppose Ω 6= R
N .

2 Preliminaries

First, we give the definition of positive solution which is understood along this

paper.

Definition 2.1 A positive solution of Problem (1) is a positive function u :

(x, t) 7→ u(x, t) of class C(Ω× [0, T )) ∩ C2,1(Ω× (0, T )), satisfying























∂tu = ∆u+ up in Ω× (0, T ),

Bσ(u) := σ∂tu+ ∂νu = 0 on ∂Ω× (0, T ),

u(·, 0) = ϕ in Ω ,

where ϕ is a function, given in C(Ω). The time T ∈ [0,∞] is the maximal

existence time of the solution u. If T = ∞, the solution u is called global.

From [2], if T <∞, u blows up in finite time, that is to say:

lim
tրT

sup
x∈Ω

u(x, t) = ∞.

Note that for initial data ϕ of class C2(Ω), the solution u is C2,1(Ω × [0, T )),

whereas u ∈ C(Ω× [0, T ))∩ C2,1(Ω× (0, T )) if ϕ is only continuous in Ω. Then,

let us recall a standard procedure to construct solutions of Problem (1) in outer

domains for uniformly bounded and continuous initial data ϕ. Let B(0, R) be

the ball centered at the origin of radius R > 0 such that Ω
c
⊂ B(0, R). For any

n ∈ N, we set Bn := B(0, R + n) and Ωn := Ω ∩ Bn. The boundary of Ωn is
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decomposed into two disjoint open sets:

∂Ωn = ∂Ω∪̇∂Bn.

Define also an increasing sequence of initial data (ϕn)n∈N∗ such that

0 ≤ ϕn ≤ ϕ in Ωn,

ϕn ≡ 0 on ∂Bn, (5)

ϕn = ϕ in Ωn−1,

and consider the following problem with mixed boundary conditions



































∂tu = ∆u + up in Ωn × (0,∞),

Bσ(u) := σ∂tu+ ∂νu = 0 on ∂Ω× (0,∞),

u = 0 on ∂Bn × (0,∞),

u(·, 0) = ϕn in Ωn .

(P (n))

Let z be the maximal solution of











ż = zp,

z(0) =‖ ϕ ‖∞,

with maximal existence time t0 = 1

(p−1)‖ϕ‖p−1

∞

. It is known from [4] that, for each

n ∈ N
∗, Problem (P (n)) has a solution un ∈ C(Ωn× [0, Tn))∩C2,1(Ωn× (0, Tn)),

where Tn is the maximal existence time of un. Moreover by comparison principle

from [3], we have, for any n ∈ N
∗, 0 ≤ un ≤ un+1 and un(·, t) ≤ z(t) in Ωn,

so we have also t0 ≤ Tn. Hence we obtain a sequence (un)n∈N∗ of functions in

C(Ωn × [0, t0))∩C2,1(Ωn × (0, t0)). Then, standard arguments based on a priori

estimates for the heat equation imply un → u in the sense of C2,1
loc (Ω × (0, t0))

as n → ∞, where u is a positive solution of Problem (1), see Refs. [1] and [7].

Moreover, since un vanishes on ∂Bn for each n ∈ N
∗, the solution u vanishes at

4



infinity:

lim
‖x‖2→∞

u(x, t) = 0 , ∀ t ∈ (0, T ) .

Note that t0 is only a lower bound for the maximal existence time of solutions

un and u, and it is possible that the times Tn and T are infinite. Indeed, results

on blow-up for problems under dynamical boundary conditions from [5] can not

be applied to the problems (P (n)) with mixed boundary conditions because

their solutions un vanish on a part of the boundary.

3 Global existence in dimension N ≥ 3

Throughout this section, we consider supercritical exponent p:

p > 1 +
2

N
.

Our technique will be to construct a function that bounds from above each

solution un of Problem (P (n)). This will give us a sequence (un)n∈N∗ of global

solutions in C(Ωn × [0,∞)) ∩ C2,1(Ωn × (0,∞)), thus the solution u of (1) must

be global too. We will proceed by using the solution of the Neumann Problem























∂tv = ∆v + vp in Ω× (0,∞),

∂νv = 0 on ∂Ω× (0,∞),

v(·, 0) = ψ in Ω ,

(6)

with ψ verifying (4). In [8], Levine and Zhang proved that Problem (6) admits

global positive solutions for sufficiently small initial data. We show that the

solution v of Problem (6) bounds from above the solution u of Problem (1)

if the initial data are well ordered (ϕ ≤ ψ) and if ψ satisfies the following

hypotheses:

ψ ∈ C2(Ω) , (7)
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and for every n ∈ N
∗

∆ψn + ψp
n ≥ 0 in Ωn , (8)

where (ψn)n∈N∗ is the sequence of truncated initial data introduced in (5). We

need a technical lemma, similar to Lemma 2.1 of [4].

Lemma 3.1 Let ψ be a function satisfying (4), (7) and (8). For every n ∈ N
∗,

the solution vn of Problem (P (n)) under the Neumann boundary conditions and

with the truncated initial data ψn verifies:

∂tvn ≥ 0 in Ωn × (0, Tvn),

where Tvn is the maximal existence time of vn.

Proof : The function vn is solution of the following problem



































∂tvn = ∆vn + vpn in Ωn × (0, Tvn),

∂νvn = 0 on ∂Ω× (0, Tvn),

vn = 0 on ∂Bn × (0, Tvn),

vn(·, 0) = ψn in Ωn ,

in the bounded domain Ωn. From (4) and from the strong maximum principle

in [3], we claim

vn > 0 on (Ωn ∪ ∂Ω)× (0, Tvn).

Then, by regularity results from [7], we obtain vn ∈ C2,2(Ωn × (0, Tvn), and for

y = ∂tvn ∈ C2,1(Ωn × (0, Tvn) we have























∂ty = ∆y + pvp−1
n y in Ωn × (0, Tvn),

∂νy = 0 on ∂Ω× (0, Tvn),

y = 0 on ∂Bn × (0, Tvn),

and y(·, 0) ≥ 0 in Ωn thanks to (8). By the comparison principle in [3], we

conclude: y ≥ 0 in Ωn × (0, Tvn).
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Lemma 3.2 Let a coefficient σ verifying (2) and (3), two functions ϕ and ψ

satisfying (4) and ψ with (7) and (8). If

ϕ ≤ ψ in Ω, (9)

then Problem (1) with initial data ϕ admits a solution u verifying

u ≤ v in Ω× (0, Tv),

and

0 < Tv ≤ T ≤ ∞,

where v is solution of Problem (6) with initial data ψ, of maximal existence time

Tv.

Proof : We consider the sequences of truncated solutions (un)n∈N∗ and

(vn)n∈N∗ respectively associated to the solutions u and v. Let n ∈ N
∗. First,

we show that vn ≤ v in Ωn × [0, Tv). By construction (5), we have ψn ≤ ψ in

Ωn. Since v is a positive solution of Problem (6), it satisfies



































∂tv ≥ ∆v + vp in Ωn × (0, Tv),

∂νv ≥ 0 on ∂Ω× (0, Tv),

v ≥ 0 on ∂Bn × (0, Tv),

v(·, 0) ≥ ψn in Ωn .

As vn is a positive solution of (P (n)) under Neumann boundary conditions, we

obtain from the comparison principle in [3]

vn ≤ v in Ωn × [0, τ), (10)
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for all 0 < τ < min{ Tvn , Tv }. We deduce Tv ≤ Tvn . Then, we show that

un ≤ vn in Ωn× [0, Tvn). The previous lemma ensures that ∂tvn ≥ 0. From (2),

we obtain

σ∂tvn + ∂νvn ≥ 0 on ∂Ω× (0, Tvn).

Next, vn is a positive solution of (P (n)), and thanks to (9), vn verifies



































∂tvn ≥ ∆vn + vpn in Ωn × (0, Tvn),

σ∂tvn + ∂νvn ≥ 0 on ∂Ω× (0, Tvn),

vn ≥ 0 on ∂Bn × (0, Tvn),

vn(·, 0) ≥ ϕn in Ωn .

Again, by the comparison principle in [3] and by definition of un, we obtain

un ≤ vn in Ωn × [0, τ), (11)

for all 0 < τ < min{ Tn, Tvn }, and hence Tvn ≤ Tn. From equations (10)

and (11), we have Tv ≤ Tn and un ≤ v in Ωn × [0, Tv). Thus the solution u of

Problem (1), obtained as the limit of the sequence (un)n∈N∗ with the procedure

described in section 2, verifies u ≤ v in Ω× [0, Tv) and Tv ≤ T .

Now, we just have to choose an initial data ψ∗ sufficiently small such that

Problem (6) admits a global positive solution (see Ref. [8]), and satisfying (7)

and (8).

Theorem 3.3 Under conditions (2), (3) and (4), Problem (1) admits global

positive solutions for sufficiently small initial data. Moreover, some of these

solutions vanish at infinity.

Proof : An initial data ϕ verifying (4) and with ϕ ≤ ψ∗ in Ω allows us to

conclude thanks to Lemma 3.2.
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Remark 3.4 One can notice that only the dissipativity and the regularity of

the coefficient σ are needed. We are not obliged to impose any restriction like

σ bounded or ∂tσ ≡ 0. Moreover, the hypotheses (7) and (8) on the initial data

ψ of Problem (6) are strictly technical and do not concern the initial data ϕ of

Problem (1).

4 Global existence in lower dimension

In this case, we can not use Levine and Zhang’s result because it is proved only

for dimension N ≥ 3: they used some estimates for Green’s functions, specific

to dimension N ≥ 3. We need an additional hypothesis on the coefficient σ.

There exists a constant ς ∈ [0,∞) such that

∀(x, t) ∈ ∂Ω× [0,∞) : σ(x, t) ≤ ς . (12)

We begin with the case of dimension 2. Until now, Bandle - von Below - Reichel’s

lemma, concerning star-shaped domains, is the best result:

Lemma 4.1 [1], Lemma 28. Suppose σ is a positive constant. If ΩC is star-

shaped with respect to the origin and if min
∂Ω

|x · ν(x)| ≥ σN , then there exist

positive global solutions of Problem (1), which vanish at infinity, for sufficiently

small initial data.

This allows us to deduce the following result for problems with mixed boundary

conditions.

Corollary 4.2 Suppose conditions (2), (3) and (12). Let y ∈ ∂Ω. There exists

a neighborhood Ny of y relatively open in ∂Ω such that the following parabolic
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problem with mixed boundary conditions



































∂tu = ∆u+ up in Ω× (0,∞),

Bσ(u) = 0 on Ny × (0,∞),

u = 0 on ∂Ω \Ny × (0,∞),

u(·, 0) = ϕ in Ω .

admits global positive solutions which vanish at infinity, for sufficiently small

initial data ϕ satisfying (4).

Proof : Let µ be a vector in R
N such that the scalar product between the

vector (y + µ) and the outer normal unit vector at y satisfies

(y + µ) · ν(y) < −ςN. (13)

Then, as the mapping (∂Ω ∋ z 7→ (z + µ) · ν(z) ∈ R) is continuous, the above

inequality remains true on an open neighborhood Ny ⊆ ∂Ω of y. We obtain the

statement of the corollary by using the comparison principle from [3] and the

function U defined on Ω× [0,∞) by

U(x, t) = A(t+ 1)−γ exp
− ‖ x+ µ ‖22

4(t+ 1)
,

with A =
1

2

(N

2
−

1

p− 1

)
1

p−1

and γ = 1
p−1 . It is clear that U ≥ 0, belongs to

C2,1(Ω× [0,∞)) and satisfies:

∂tU =
( −γ

t+ 1
+

‖ x+ µ ‖22
4(t+ 1)2

)

U,

∆U =
( −N

2(t+ 1)
+

‖ x+ µ ‖22
4(t+ 1)2

)

U,

∂νU =
(−(x+ µ) · ν(x)

2(t+ 1)

)

U.
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We have:

∂tU −∆U =
( −γ

t+ 1
+

N

2(t+ 1)

)

U =
(−2γ +N

2(t+ 1)

)

U ,

and by definition of the constants A and γ, we obtain

∂tU −∆U − Up ≥ 0 in Ω× [0,∞) .

Then, on ∂Ω, we have

σ∂tU + ∂νU =
(−2σγ − (x+ µ) · ν(x)

2(t+ 1)
+
σ ‖ x+ µ ‖22
4(t+ 1)2

)

U.

Since p > 1 + 2
N
, using (12) and ignoring the non-negative term

σ‖x+µ‖2

2

4(t+1)2 , we

can reduce the last equation to:

σ∂tU + ∂νU ≥
(−ςN − (x+ µ) · ν(x)

2(t+ 1)

)

U.

Thanks to (13) we obtain Bσ(U) ≥ 0 in Ny × [0,∞). And we have U ≥ 0 on

∂Ω \Ny × (0,∞). An initial data ϕ with ϕ ≤ U(·, 0) in Ω permits to conclude.

In the case of dimension one, we use the fact that Ω is not connected. Let

us write Ω = R \ [a, b] with a < b in R, and let V be the function defined in

Ω× [0,∞) by:

V (x, t) =











A(t+ 1)−γ exp
−‖x+µ1‖

2

2

4(t+1) if x ≤ a

A(t+ 1)−γ exp
−‖x+µ2‖

2

2

4(t+1) if x ≥ b ,

with A and γ like in Corollary 4.2, µ1 and µ2 in R such that

−(a+ µ1)− ς ≥ 0 ,
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and

(b+ µ2)− ς ≥ 0 .

As ν(a) = 1 and ν(b) = −1, we obtain with (12)

σ∂tV + ∂νV ≥ 0 on ({a} ∪ {b})× [0,∞) .

Following the proof of Corollary 4.2, we obtain this result:

Theorem 4.3 Under conditions (2), (3), (4), (12), N = 1 and p > 3, Problem

(1) admits global positive solutions vanishing at infinity, for sufficiently small

initial data ϕ.
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