
HAL Id: hal-00524322
https://hal.science/hal-00524322

Submitted on 7 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vehicular networks emulation
Anthony Buisset, Bertrand Ducourthial, Farah El Ali, Sofiane Khalfallah

To cite this version:
Anthony Buisset, Bertrand Ducourthial, Farah El Ali, Sofiane Khalfallah. Vehicular networks emu-
lation. International Conference on Computer Communication Networks - ICCCN 2010, Aug 2010,
Switzerland. �hal-00524322�

https://hal.science/hal-00524322
https://hal.archives-ouvertes.fr

Vehicular networks emulation

A. Buisset, B. Ducourthial, F. El Ali, S. Khalfallah

(1) Université de Technologie de Compiègne (2) CNRS Heudiasyc UMR6599,
Centre de Recherche de Royallieu, B.P. 20529, Compiègne, France (corresponding author: ducourth@utc.fr)

Abstract—Many applications and protocols are planned for
the so-called Intelligent Transportation Systems (ITS). Most of
them are supposed to work in dynamic networks, such as the
vehicular ad hoc networks (VANET). However, designing and
studying distributed applications and protocols in such networks
is not easy. Analytical studies suffer from the lack of pertinent
models. Simulations are often far from reality. Road experiments
are generally limited, due to their complexity.

In this paper, we present an environment that emulates the
vehicular networks. It allows to reproduce road experiments
without further developments of the studied prototypes. These
protocols can be tested with more complex road traffic. The
impact of the communication range and the dynamics of the
network can be studied. Some comparisons with road tests and
simulations show the advantage of such an emulation framework.

I. INTRODUCTION

Nowadays, Intelligent Transport Systems (ITS) attract much

attention. ITS applications do indeed increase road safety

and transport efficiency, limit the impact of vehicles on the

environment, improve the overall productivity... A lot of inter-

vehicle applications are considered; most of them rely entirely

or partially on the vehicular network: emergency facilities,

crash prevention, collision avoidance, traffic jam management,

Internet access, infotainments (travel and tourist information,

chats, distributed games...).

However the Vehicular Ad hoc Network (VANET) ex-

hibits characteristics that are dramatically different from many

generic MANET (Mobile Ad hoc networks) [1]. The topology

varies very frequently due to vehicle movement or connection

losses. The loss rate is often high. The speed, the density and

the type of movement depends on the kind of roads. New

and specific protocols are often required to reach acceptable

performances, and important open issues remain to be solved.

It is worth noting that the design and the study of new

protocols or distributed applications is not easy. Analytical

studies require accurate models to take into account the dy-

namics of the network. However it is not easy to model all the

variations (speed, density, topology, loss rates...). Analytical

studies are generally used for highway scenarios, where the

network dynamics are low or at least predictable.

Simulations can take into account complex road traffic,

generated by specific traffic generators. However simulation

requires some simplifications regarding the propagation model,

or the studied protocols, which are generally far from those

used on the road. The performances obtained by simulation

are then often different from real measures. Simulations are

generally used for scalability studies and comparisons.

Road experiments give accurate performance measures in

realistic situations. However they generally involve few ve-

hicles and remain quite rare. Indeed such experiments are

tedious; they require many people, vehicles and equipment.

Moreover, they are generally not reproducible because the

scenario depends on the other vehicles. Also, the inter-vehicle

distances are difficult to control, and wireless communications

are subject to environmental factors, including weather and

trucks... Road experiments are generally used for punctual

measures and proof of concepts.

As we can see, there is a lack of tools facilitating the

design and the study of protocols and applications dedicated

to vehicular networks. Analytical studies, simulations and real

experiments all have their limitations, which are enforced by

the dynamics of vehicular networks.

In this paper, we show that emulation is a convenient way

to study such networks. During an emulation, some parts are

real, while some others are artificially reproduced by several

means. We present a powerful framework, named airplug-emu,

which is very close to real road experiments while still easy

to use. It allows fast prototyping and accurate performance

measures.

The Airplug-emu framework is based on the Airplug soft-

ware suite dedicated to the study of dynamic networks and

road experiments [2]. We summarize this software architecture

in Section III. We show how such an architecture can be

used to emulate the vehicular network in Section IV. In

Section V, we explain how realistic mobility scenarios can

be built, thanks to the GPS application. The emulation tool,

called EMU, is detailed in Section VI. Comparisons with road

tests and simulations are analyzed in Section VII. Concluding

remarks end the paper. We shall now begin by summarizing

related work.

II. RELATED WORK

Overview. An emulator is a tool that combines real and

artificial implementation (simulated or emulated). A lot of

studies show that emulation is interesting both for wireless

and wired network emulation. This paper deals with wireless

emulation. Wireless network emulators allow quick indoor

deployment and protocol testing without requiring physically

moving the nodes. According to [3], emulators can be sorted

in two categories: physical layer emulators and MAC layer

emulators. We will now follow up by summarizing related

work in both categories, to target the differences and position

our work.

Physical layer emulators. In physical layer emulators, all

the network layers, except the physical one, are real. The

physical layer can be emulated by attenuating the signal using

programmable Radio Frequency (RF) attenuators [4]. Other

emulators use RF wires to connect two pairs of nodes [5],

[6], [7]. This type of connectivity does not allow to take into

account the impact of outside factors, such as interferences

due to multipath. Moreover, these emulators do not implement

mobility simulation. The physical layer emulator EWANT [5]

can attenuate the sent signal of the sender using RF wires

while emulating the node mobility thanks to different antennas.

The emulator MiNT [7] takes into account interferences using

non programmable radio signal attenuators and handles the

mobility by positioning nodes on remote controlled robots.

The emulator ORBIT [8] attenuates the sent signal by

injecting white Gaussian noise in the environment. It relies

on a grid of 400 nodes in a 20 m2 area. The nodes mobility

is simulated by a server that activates different nodes at

different times. The activated node corresponds approximately

to the geographical location the node would have at the same

moment in time.

In [9], another technique is used for emulating the physical

layer: the radio signal is digitized, modified to add radio

propagation effects and re-injected into the network interfaces.

MAC layer emulators. Concerning the MAC layer emula-

tors, all the network layers are real, except the physical and

the MAC ones. MAC layer emulation permits to determine

whether a node should receive a packet or not. In other terms,

if in the emulator, a node is in the neighborhood of other

nodes, then it should receive the packets coming from these

nodes. In the other cases, all the received packets are deleted.

This emulation is performed by using a filter tool, either

centralized [10], [11], [12] or distributed into each node of

the network, using iptables [13], [14] or specific filter

tools [15], [16].

In addition to the unique admission control of a packet,

other features can be added to the filter tool, such as accep-

tance or suppression, modification or delay of the received

packets [17], [18]. In this type of emulator, the real system

behavior is measured and used as input of the filter tool.

Hybrid emulators. Lastly, hybrids emulators are proposed

in [19], [20], [21], [7]. These emulators combine emulation,

real equipment and/or simulation. For instance, higher network

layers can be simulated using a network simulator while low

layers operate on real wireless devices.

Airplug-emu, the emulation framework presented in this

paper, is mainly a MAC layer emulator, designed for vehicular

ad hoc network studies. It can also be hybrid, by allowing the

integration of real wireless links in the emulation.

III. ARCHITECTURE FOR ROAD EXPERIMENTS: AIRPLUG

The airplug-emu emulation framework is part of the Airplug

software suite [22], designed for experimentation in dynamic

ad hoc networks [23], [2]. It relies on a core program and a set

of applications. We summarize here its main characteristics.

The core program named Airplug manages the inter-

applications communications, either local-to-the-host or inter-

vehicle. The applications (GPS and PRO in Figure 1) are

plugged on top of the core program; they reach the network

through Airplug. The core program and the applications run

in independent user-space processes for robustness and porta-

bility reasons.

GPS

NETWORK

1

2

Airplug

PRO

Operating System

Network interfaces

PRO

Airplug

GPS

Operating System

Network interfaces

process

stdin

pipe
stdout

Fig. 1. Airplug architecture, intra- (1) and inter- (2) vehicle communications.

The communications are handled in the easiest and most

robust way, by using standard input and output for receiving

and sending messages respectively. This guarantees complete

independence from the programming language used to develop

the applications. For each process launched by Airplug, the

standard input and output are redirected from and to Airplug

by pipes (Figure 1). Thus, each time a process writes in

its standard output, Airplug receives the data, and each time

Airplug writes in the pipe, the process can read the data from

its standard input. Since the network interfaces are handled by

Airplug, the applications access the network in the same way

they would to communicate with other local applications, by

writing in their standard output. Airplug forwards the data to

the network interface, preventing any network resources abuse

by bugged applications.

Messages use a specific addressing format, well adapted to

dynamic networks. The destination of a message is specified

with an area and the name of the destination application. This

addressing scheme is closed to the one in the WAVE Short

Messages Protocol (WSMP) [24].

The area can be local (keyword LCH for localhost) or

external (in other words composed by cars in the neighbor-

hood; keyword AIR), or both (keyword ALL). But it can also

be more specific (name or address of a nearby vehicle). A

message coming from a given application can be sent to many

other applications by filling in the destination application field

with the keyword ALL. However, by default an application A

receives only messages addressed to it and sent by a local

application B. To receive messages sent by B addressed to

ALL applications, A must first subscribe to the messages of B

by contacting Airplug. Similarly, to receive messages sent by

a remote application C, the application must first subscribe to

them, even if they where sent directly to it. This registering

system (relative confidence locally, and limited confidence

remotely) allows an application to control its receptions. It also

increases the architecture’s robustness by avoiding chained

problems in case of bugged applications.

It is worth noting that the design of new protocols as well

as cross-layering architectures is facilitated, by programing in

user-space. Airplug can bypass the operating system protocol

stack using raw sockets.

IV. FROM ROAD TO EMULATION: AIRPLUG FACILITIES

The Airplug architecture has been designed to offer a

simple, portable and robust framework for experimenting in

vehicular networks (and in any other dynamic network). In

this section, we explain that such an architecture is also very

convenient for network emulation.

Since applications run in independent processes and com-

munications rely on standard input/output, the network can be

emulated using shell facilities. For example, communications

(1) and (2) in Figure 1 can simply be reproduced in a shell

by the command:

./gps | ./pro | ./pro

A bidirectional link between two applications such as PRO ↔

PRO can be emulated with named pipes:

mkfifo link1 link2 creates 2 named pipes

./pro < link1 > link2 launches first app. PRO

./pro < link2 > link1 launches second app. PRO

Mobility is emulated by changing pipe redirects, by deletion or

by creation. In order to avoid packet loss, a gateway is inserted,

using the cat command: by temporarily freezing this process,

messages are stored in its input pipe while its output pipes are

modified. The following script creates a loop of two vehicles

running the protocol PRO, and then inserts a third vehicle.

To create a network connecting two vehicles in a loop:

mkfifo in1 in2 out1 out2 gtw1 gtw2 Pipes

./pro < in1 > out1 & Creates the vehicles

./pro < in2 > out2 &

cat out1 > gtw1 & Connectes the gateway

pid_cat1=$! ($! = process id. of the last process)

cat out2 > gtw2 & ; pid_cat2=$!

tee in1 < gtw2 & ; pid_tee1=$! Creates the loop

tee in2 < gtw1 & ; pid_tee2=$!

tee in1 & Starts the communications

To create a third vehicle to be inserted in the loop:

mkfifo in3 out3 gtw3

./pro < in3 > out3 &

cat out3 > gtw3 & ; pid_cat3=$!

To freeze the gateways and new connections:

old_pidtee1=$pid_tee1 ; old_pidtee2=$pid_tee2

kill -STOP $pid_gtw1 $pid_gtw2 $pid_gtw3

tee in2 in3 < gtw1 & ; pid_tee1=$!

tee in1 in3 < gtw2 & ; pid_tee2=$!

tee in1 in2 < gtw3 & ; pid_tee3=$!

To unfreeze the gateways and to remove old connections:

kill -CONT $pid_gtw1 $pid_gtw2 $pid_gtw3

kill -KILL $old_pidtee1 $old_pidtee2

As we can see, simple shell scripts can easily reproduce

dynamic network topologies. No modification is required for

the applications and protocols, providing they have been

developed with the Airplug rules (independent processes and

communications using standard input and output). Such scripts

are very convenient, robust and powerful for prototyping.

Nevertheless, their writing has to be automated when scenarios

become complex and when real vehicle locations have to be

used. This is the aim of the EMU program, presented below.

V. GENERATING REALISTIC TRAJECTORIES: THE GPS APP.

In order to populate the emulated vehicular network with

realistic vehicle locations, we developed the GPS application.

The GPS application is above all an acquisition tool, able

to retrieve geographic locations when receiving NMEA frames

from a GPS device connected to the computer. As an Airplug

compatible application, it allows in real time to send the

current vehicle location to local applications that subscribed

to it.

In order to reproduce road tests in a lab, the GPS application

can save the locations in a file during the road tests. Then,

when using the GPS application in a shell script that emulates

the vehicular network, it can read the file of locations at a

given frequency, and write them in its standard output to send

them to connected applications.

However, a road test relies on fewer vehicles than the

number desired during the emulation. To circumvent this

problem, the GPS application can generate new realistic tra-

jectories starting from a file of locations obtained on the

road. Generated locations are calculated using a weighted

barycenter from each successive pair of positions read in the

file. This barycenter is modified by a random factor, truncated

if necessary to prevent the new position from leaving the

interval between the two original positions. This avoids sudden

reverses while adding some irregularity in the node movement.

The generated locations can be saved in a file and/or written

in the standard output to be sent to connected applications.

Thanks to this feature, a single log obtained on the road can

lead to long realistic convoys of vehicles in the emulation.

VI. EMULATION TOOL: THE EMU APPLICATION

In this section, we describe the EMU application. It auto-

mates the emulation and offers powerful features.

Overview. The EMU application aims to perform realistic

experiments of protocols and applications designed for vehic-

ular networks. With EMU, the applications and protocols to

be studied run on independent processes as they do during

road experiments, without any modification. EMU handles all

the communications, either intra- or inter-vehicle, by using the

shell facilities, as explained in Section IV. This application is

written in Tcl/Tk and runs on a Linux PC. Several computers

can be used in order to introduce real links instead of emulated

ones (hybrid emulation).

Scenario. The scenario of the test is described in an XML

file, that indicates the number of vehicles, the size of the

geographic area, the applications and protocols running in

each vehicle, the trajectory of each vehicle, and so on. The

trajectories are produced with the GPS applications, by using

real positions as explained in the previous section. However,

EMU accepts other input for node mobility, produced by

traffic generators such as VanetMobiSim [25]. The Network

Simulator format is also accepted. This allows to compare

road experiments and simulations with the emulation, as we

shall do in the next section.

Link. EMU reads the position of each node in the network

with a user-defined frequency. The communication links are

determined by the wireless communications range (user-

defined) and a random factor hazard. If the distance between

two vehicles is less than range × hazard, then there is a

link. The hazard permits to add (or not) a variation in the

antenna scope (to avoid perfect discs). It is also possible to

use node-specific ranges, which is useful for some VANET

security studies. The links affected by the movement of a node

v are determined by checking each node position located in the

range of v. Node locations are stored in lists sorted by x and y

axis; the algorithm complexity is generally lower than O(n2)
because neighbors of v are searched in a square centered on

v with a side equal to 2×range. This avoids checking each

pair of nodes at each move.

Network emulation. The emulation of the dynamic network

generalizes the scheme explained in Section IV. For each

vehicle, EMU launches the applications and protocols specified

in the XML file with the related command line, so that they

run in independent processes (TST and HOP in Figure 2).

The standard input of these processes are connected to a

reception process RCP and their standard output are connected

to a directional process DIR. The first one receives all the

inter- and intra-communications. The second one forwards the

messages either for local applications or for neighbor vehicles

through the gateway process GTW.

pipe

RCP

TST

HOP

DIR GTW

f
r
o
m

n
e
i
g
h
b
o
r
s

t
o

n
e
i
g
h
b
o
r
s

process
stdin

stdout

Fig. 2. Two applications (TST and HOP) in an emulated vehicle.

The RCP process is a Tcl shell script that forwards intra-

vehicle messages. The GTW process is implemented with the

cat command. As previously explained, it is used to change

the inter-vehicle connections without packet losses (if a perfect

network is desired): first GTW is frozen, next the inter-vehicle

links are changed, and then GTW is unfrozen and the messages

waiting in its input are sent without losses. The DIR process

is a Tcl shell script that analyzes the header of the messages

sent by the local applications in order to determine whether

they should be sent locally (keyword LCH) or to neighbor cars

(keyword AIR) or both (keyword ALL).

Realistic emulation. All inter-process links including inter-

vehicle links (from a GTW process on vehicle A to a RCP

process on vehicle B) rely on shell named pipes. In order to

reproduce the conditions of communication observed on the

road, the RCP process can delay or lose inter-vehicle messages.

It then accepts two parameters (delay and lossrate); such

values can be measured during road experiments.

It is also possible to run an emulated vehicle on another

computer, thanks to the remote mode. In this mode, the

messages generated by a remote application reach the others

through a socket. This socket can be established on any real

network (Ethernet, 802.11a/b/g/p and so one) in order to

include real links in the emulation (hybrid emulation).

Fig. 3. Emulation of the DDS application on a convoy of 9 vehicles generated
by the GPS application from a real GPS trajectory obtained on road N131,
Compiègne, France. We can see the DDS applications running on vehicles 1
and 10, as well as parameters of EMU. Maps by OpenStreetMap.org.

Output. The EMU application offers several outputs, which

can be used simultaneously. First, it provides a graphical

representation of the moving vehicles as well as the links

between them. When the positions are read from GPS co-

ordinates, EMU downloads OpenStreetMap tiles [26] in order

to geographically locate mobile nodes (see Figure 3). This

display is useful to validate generated mobility scenarios and

to study the network topology depending on the range and

the reliability criteria (which can be changed on-line).

Second, EMU is able to launch the applications of all

vehicles. An option allows to iconify some of them in order to

focus on the most interesting for the current study. This is the

main use of EMU (Figure 3). It allows to test applications in

an environment similar to the road. Communication links are

modified as the emulation progresses and the vehicle positions

change. The messages that are exchanged between applications

and protocols circulate through named pipes, either inside

emulated vehicles, or between emulated vehicles. Each vehicle

can be set to delay or loose messages in order to reproduce

wireless communication links. The dynamics of the network

can vary on-line thanks to a dynamic parameter in order to

study the robustness of protocols in function of different levels

of network dynamics. This parameter increases or decreases

the vehicle locations updates whereas messages always take

the same time to reach their destination.

Third, EMU can generate a shell script similar to the one

described in Section IV. It contains the commands required

to reproduce the vehicular network emulation by means of

shell facilities. This allows to reproduce the emulation with-

out requiring the emulator to reuse the scenario with other

applications or parameters, simply by changing the first lines

of the script.

Finally, logs can be generated by the applications and by

EMU for further analysis.

VII. VALIDATION: COMPARISONS WITH ROAD AND NS-2

In this section, we evaluate the accuracy of the emulation

framework, by comparing results between simulations and real

tests, either in lab or on the road.

Scenarios. Three real tests were used for this validation:

a 7-car stopped convoy, a 5-car moving convoy and a 4-hop

in-lab test. Each time, the first vehicle sends some packets

and the others forward them until the end of the convoy. The

in-lab test was done using 4 PC’s forming a loop, in order

to obtain very precise measures of the time delays (departure

and arrival of messages on the same computer).

We measured the delays, the loss and the throughput using

the TST application that generates packets with given sizes

and inter-packet gaps (for the first vehicle), and performs many

measures at reception (for other vehicles). The measures were

done at the application level. At the routing level, the HOP

protocol ensures that the packets progress from vehicle to

vehicle in the convoy and from PC to PC for the in-lab test

[27], [2]. At the low layers, packets are simply broadcast in

the vicinity of each sender (802.11 broadcast at 2 Mbit/sec).

These experiments were reproduced with Airplug-emu, us-

ing the same applications (Figure 2). As explained in the

previous section, EMU is able to delay or lose messages

depending on the given input (measured on the road), in order

to mimic the real wireless communication. We evaluated the

impact of using either accurate input or average input. The

first case is expected to give better results than the second

even though the second remains more convenient for the user.

Accurate inputs means that, for each emulation, the loss rates

and delays measured during the corresponding real test are

given to EMU. Average input means that a single delay and a

single loss rate have been given to EMU for all the emulations;

these are the average values observed during all the real tests.

The tests have also been reproduced with a simulator in

the aim of evaluating the advantages of emulation to those of

simulation, from the point of view of performance measures.

We used Network Simulator (ns version 2.33), a well known

and largely used simulator. To generate the packets, a Constant

Bit Rate source was used. Packet forwarding was done with

an implementation of the HOP forwarding application. The

standard two rays ground propagation model was used. Other

ns-2 parameters were chosen to reproduce real conditions

(Table I).

Parameters Values

Antenna height 1.5 m

Inter-Packet Gap (IPG) 100 ms

Packet size 1000 bytes

Data rate 1 Mb/s

Communication range 520 m

Propagation model Two-Ray ground reflexion

TABLE I
GENERAL PARAMETERS FOR SIMULATIONS

Reproducing in-lab tests. We compared real in-lab tests,

ns-2 simulations and emulations performed with Airplug-emu.

In order to study the impact of accurate versus average inputs

for EMU, two sets of emulations were done. We varied the

inter-packet gap (IPG) from 20 ms to 100 ms with a step of

10 ms and from 100 ms to 1000 ms with a step of 100 ms in

order to check the ability of EMU to handle many simultaneous

packets and to reproduce conditions close to loaded networks.

The packet size is fixed to 1000 bytes and the experience

duration is 200 seconds.

Figure 4-left displays the results for accurate inputs, while

Figure 4-right displays the results for average inputs (in-lab

and ns-2 results are the same on the left and on the right).

We observe that EMU is very close to real tests with accurate

inputs. This validates the Airplug-emu framework: it is able to

faithfully reproduce real experiments, providing that average

inputs regarding loss and delays are given.

Nevertheless, using accurate inputs requires that we perform

the related real tests to measure the loss rate and the delays

on each node. This is interesting when an experiment needs

to be replayed several times by emulation to fit specific

parameters for instance. When the emulation framework is

used for performance studies on scenarios larger than those

realized on the road, this is no more practical. In this case,

it is much more convenient to set EMU with average values

observed during representative real tests.

We observe that, with average values, EMU is close to real

tests for inter-packet gaps larger than 100 ms (Figure 4-right).

Note that this value is sufficient for many protocols relying on

beaconing packets as well as for many VANET applications,

including safety related applications [28].

We also observe that EMU gives better results than ns-2,

whose results remain far from real test results, especially for

delays (close to 0) and loss-rates. This can be explained by

the fact that ns-2 does not take into account the collision

probability due to node proximity. The throughput given by

ns-2 is close to those of real tests for large inter-packet gaps.

We conclude that the Airplug-emu framework is an inter-

esting tool for measuring performances: with accurate inputs,

it is very precise and with average inputs, it is precise for

inter-packet gaps larger than 100 ms.

Reproducing road tests. We compared real road tests, ns-

2 simulations and emulations performed with Airplug-emu. In

order to study the impact of varying environments on EMU,

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

kb
ps

)

IPG (ms)

Lab EMU NS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

kb
ps

)

IPG (ms)

Lab EMU NS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

IPG (ms)

Lab EMU NS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

IPG (ms)

Lab EMU NS

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ss

ra
te

 (
%

)

IPG (ms)

Lab EMU NS

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ss

ra
te

 (
%

)

IPG (ms)

Lab EMU NS

Fig. 4. Comparisons of in-lab tests, EMU and ns-2 depending on the inter-
packet gap (IPG) in milliseconds. On the left, accurate inputs for EMU. On
the right, average inputs. From top to bottom: throughput, delay, loss-rate.

two sets of comparisons were done. Both concern a convoy

of vehicles, allowing to study the impact of the number of

hops on the results. The first set consists of a stopped convoy

of 7 vehicles, leading to a stable environment in regards to

wireless communication. The second set consists of a moving

convoy of 5 vehicles offering a varying environment for

communication. The speed was approximately stable during

all the tests (around 70 km/h). Only the average delay and

loss-rate measured on the road has been used as input for EMU

(average input). Following conclusions of the in-lab study, the

inter-packet gap was fixed to 100 ms. The packet size was

equal to 1000 bytes.

Figure 5 displays results for the fixed convoy (on the left)

and the moving convoy (on the right). We observe that EMU

gives results which are closer and closer to real tests. Even

though mean values for delay and loss-rate were used, EMU is

able to give the trend.

We can notice that the delays and the loss-rates measured

during road tests are larger in the moving convoy than in the

fixed one. The throughput is then better in stopped convoy

(almost twice the throughput of the moving convoy). This is

due to the varying communication environment and the many

connection losses (due to trucks for instance). Nevertheless,

we can see that EMU is not really sensitive to such a varying

communication environment: results are not far from reality

even in the moving convoy, even though mean input were used.

To the contrary, ns-2 gives results far from those measured

on the road. The delay is badly estimated and the loss-rate

is close to 0. As a consequence, the throughput is maximal

(1000 bytes per packet with an inter-packet gap of 100 ms leads

to a throughput of 80 kbits/sec). This may be explained by the

fact that ns-2 does not take into account the environment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7

T
hr

ou
gh

pu
t (

kb
ps

)

Car

Road EMU NS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5

T
hr

ou
gh

pu
t (

kb
ps

)

Car

Road EMU NS

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7

D
el

ay
 (

m
s)

Car

Road EMU NS

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5

D
el

ay
 (

m
s)

Car

Road EMU NS

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7

Lo
ss

ra
te

 (
%

)

Car

Road EMU NS

 0

 20

 40

 60

 80

 100

1 2 3 4 5

Lo
ss

ra
te

 (
%

)

Car

Road EMU NS

Fig. 5. Comparisons of road tests, EMU and ns-2 with average inputs for
EMU. On the left, a stopped convoy of 7 vehicles. On the right, a moving
convoy of 5 vehicles. From top to bottom: throughput, delay, loss-rate.

VIII. CONCLUSION

In this paper, we proposed an environment for vehicular

networks emulation. It allows to prototype, to test and to tune

protocols. It can faithfully reproduce road experiments. It can

also be used to study application scaling.

This environment accepts any applications and protocols

that use the very simple Airplug software suite conventions:

run in independent processes, receive the messages by reading

standard input, send the messages by writing in standard

output. Realistic traffic scenarios can be generated using the

GPS application, traffic generators or ns-2. The emulation

relies on the shell facilities, which makes it powerful, robust

and portable. The emulator EMU offers a good graphical

representation of the vehicular network; it allows to study the

impact of the network dynamic and the wireless communica-

tion range on the protocols. Hybrid emulation is possible by

including real wireless links, thanks to the remote mode.

We believe that emulation is promising for vehicular net-

works studies. The Airplug-emu framework is available on

demand for research and teaching. This tool has been used

successfully by several research teams (academic and indus-

trial) as well as for teaching (distributed algorithms, vehicular

networks).

REFERENCES

[1] J. Blum, A. Eskandarian, and L. Hoffman, “Challenges of intervehicle ad
hoc networks,” IEEE Transaction on Intelligent Transportation Systems,
vol. 5, pp. 347–351, 2004.

[2] B. Ducourthial and S. Khalfallah, “A platform for road experiments,”
Proc. of the 69th IEEE Vehicular Technology Conference (VTC2009-
Spring), April 2009.

[3] W. Kiess and M. Mauve, “A survey on real-world implementations of
mobile ad-hoc networks,” Ad Hoc Netw., vol. 5, no. 3, pp. 324–339,
2007.

[4] D. Beyer, “Accomplishments of the DARPA SURAN program,” in
Proceedings of the IEEE MILCOM 90 Conference, California, October
1990.

[5] S. Sanghani, T. Brown, S. Bhandare, and S. Doshi, “Ewant: The
emulated wireless ad hoc network testbed,” in Proceedings of the IEEE
WCNC, 2003, pp. 1844–1849.

[6] C. Kwan-Wu, J. John, W. Aidan, and K. Roger, “Implementation ex-
perience with manet routing protocols,” SIGCOMM Comput. Commun.
Rev., vol. 32, no. 5, pp. 49–59, 2002.

[7] P. De, A. Raniwala, S. Sharma, and T. Chiueh, “Mint: A miniaturized
network testbed for mobile wireless research,” in Proceedings of the
IEEE INFOCOM, 2005, pp. 2731–2742.

[8] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network pro-
tocols,” in Proc. of the IEEE Wireless Communications and Networking
Conference (WCNC), March 2005, pp. 2731–2742.

[9] J. Glenn and S. Peter, “Repeatable and realistic wireless experimenta-
tion through physical emulation,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 1, pp. 63–68, 2004.

[10] Q. Ke, I. David, D. Maltz, and D. B. Johnson, “Emulation of multi-hop
wireless ad hoc networks,” in Proc. of the 7th International Workshop
on Mobile Multimedia Communications (MoMuC), 2000.

[11] T. Lin, S. F. Midkiff, and J. S. Park, “A dynamic topology switch for
the emulation of wireless mobile ad hoc networks,” in Proc. of the
27th Annual IEEE Conference on Local Computer Networks (LCN).
Washington, USA: IEEE Computer Society, 2002, p. 0791.

[12] J. Flynn, H. Tewari, and D. O’Mahony, “Jemu: A real time emulation
system for mobile ad hoc networks,” in Proc. of the First Joint IEI/IEE
Symposium on Telecommunications Systems Research, November 2001.

[13] Z. Yongguang and L. Wei, “An integrated environment for testing mobile
ad-hoc networks,” in Proc. of the 3rd ACM international symposium on
Mobile ad hoc networking & computing (MobiHoc). New York, USA:
ACM, 2002, pp. 104–111.

[14] M. Matthes, H. Biehl, M. Lauer, and O. Drobnik, “Massive: An
emulation environment for mobile ad-hoc networks,” Proc. of the
Second Annual Conference on Wireless On-demand Network Systems
and Services (WONS), vol. 0, pp. 54–59, 2005.

[15] D. A. Maltz, J. Broch, and D. B. Johnson, “Experiences designing
and building a multi-hop wireless ad hoc network testbed,” School
of Computer Science, rapport de recherche CMU-CS-99-116, Carnegie
Mellon University, 1999.

[16] M. Heissenbuttel, T. Braun, T. Roth, and T. Bernoulli, “Gnu/linux
implementation of a position-based routing protocol,” in Proc. of the
IEEE ICPS Workshop on Multi-hop Ad hoc Networks: from theory to
reality (REALMAN), July, 2005.

[17] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz, “Trace-based
mobile network emulation,” SIGCOMM Comput. Commun. Rev., vol. 27,
no. 4, pp. 51–61, 1997.

[18] J. Liu, Y. Yuan, D. Nicol, R. Gray, C. Newport, D. Kotz, and L. Per-
rone, “Simulation validation using direct execution of wireless ad-hoc
routing protocols,” in Proc. of the eighteenth workshop on Parallel and
distributed simulation (PADS). New York, USA: ACM, 2004, pp. 7–16.

[19] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable
simulation of entire tinyos applications,” in Proc. of the 1st international
conference on Embedded networked sensor systems (SenSys). New
York, USA: ACM, 2003, pp. 126–137.

[20] L. Girod, N. Ramanathan, J. Elson, T. Stathopoulos, M. Lukac, and
D. Estrin, “Emstar: A software environment for developing and deploy-
ing heterogeneous sensor-actuator networks,” ACM Trans. Sen. Netw.,
vol. 3, no. 3, p. 13, 2007.

[21] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Os-
terweil, and T. Schoellhammer, “A system for simulation, emulation,
and deployment of heterogeneous sensor networks,” in Proc. of the
2nd international conference on Embedded networked sensor systems
(SenSys). New York, USA: ACM, 2004, pp. 201–213.

[22] “Airplug software suite,” http://www.hds.utc.fr/∼ducourth/airplug.
[23] B. Ducourthial, “About efficiency in wireless communication frame-

works on vehicular networks,” in Proceeding of the ACM WIN-ITS
workshop (with IEEE ACM QShine’07), 2007.

[24] “Trial use standard for wireless access in vehicular environments
(WAVE) – architecture,” IEEE, 2007.

[25] “Vanetmobisim,” http://vanet.eurecom.fr/.
[26] “Open street map,” http://openstreetmap.org.
[27] B. Ducourthial, Y. Khaled, and M. Shawky, “Conditional transmissions:

performances study of a new communication strategy in VANET,”
IEEE Transactions on Vehicular Technology, special issue on vehicular
communication networks, vol. 56, no. 6, pp. 3348 – 3357, November
2007.

[28] S. Olariu and M.-C. Weigle, Eds., Vehicular Networks: From Theory to
Practice, ser. CRC Computer & Information Science Series. Chapman
& Hall, 2009.

