
Technical appendix to “Adaptive estimation of

covariance matrices via Cholesky decomposition”

Nicolas Verzelen∗
INRA, UMR 729 MISTEA,
F-34060 Montpellier, France

SUPAGRO, UMR 729 MISTEA,
F-34060 Montpellier, France

e-mail: nicolas.verzelen@supagro.inra.fr

Abstract

This is a technical appendix to “Adaptive estimation of covariance matrices via Cholesky
decomposition [7].
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1. Additional simulations

We provide here additional simulation results for the complete graph selection problem. We use
the same notations and compute the same estimators as in Section 8.2.

In the third simulation scheme, we consider the case where the ”good” ordering is completely
unknown. We first sample a precision matrix Ωc

1 according to the first simulation scheme. Then,
we sample uniformly a permutation of {1, . . . , p} and reorder the variables according to this
permutation to get the precision matrix Ωc

3. Its Cholesky factor is generally far less sparse than
the Cholesky factor of Ω1, while Ω

c
1 is as sparse as Ωc

3. The purpose of this scheme is to illustrate
the limits of procedures based on the Cholesky factor when no suitable ordering is known. As in
the second scheme, we only perform the simulations for p = 200, Esp= 1, 3, 5, and n = 100.

Method Ledoit GLasso Lasso ChoSelectf

Kullback discrepancy K(Ω; Ω̂)
Esp=1 20.1± 0.2 9.1± 0.2 8.2± 0.1 7.6± 0.1
Esp=3 42.8± 1.8 22.0± 0.2 24.0± 0.4 25.3± 0.5
Esp=5 52.6± 1.0 35.8± 0.3 42.7± 0.4 49.1± 0.5

Operator distance ‖Ω̂−Ω‖
Esp=1 6.3± 0.1 5.6± 0.1 4.7± 0.1 4.5± 0.2
Esp=3 10.0± 0.1 10.1± 0.1 8.8± 0.2 8.0± 0.2
Esp=5 14.3± 0.2 15.3± 0.2 13.0± 0.2 12.6± 0.2

Operator distance ‖Ω̂−1 − Σ‖
Esp=1 2.7± 0.1 1.7± 0.1 2.1± 0.1 1.7± 0.1
Esp=3 8.4± 0.5 6.4± 0.3 11.5± 0.8 10.8± 0.8
Esp=5 16.3± 0.8 14.7± 0.8 26.5± 1.6 25.0± 1.4

Table 1: Comparison between the procedures for the third covariance model Ωc
3 with p = 200.

We observe different results for the Kullback risk depending on the sparsity. When Esp=1,
ChoSelectf still performs better than the other methods. However, the GLasso provides better
results than the two other results for Esp=3 and Esp=5. This is not really surprising since the
Glasso has been introduced to handle the ”unordered” situation. It seems from the case Esp=5,
that the Lasso procedure is more robust to a ”bad” ordering than ChoSelectf. ChoSelectf still
performs better than the other procedures in terms of the operator distance between preci-
sion matrices. Nevertheless, the differences of performance are less obvious than in the previous
schemes. Finally, the Glasso and Ledoit and Wolf’s method exhibit a smaller operator distance
between covariance matrices than the Lasso and ChoSelectf.

2. Proof of the risk upper bounds

Lemma 2.1. Let V be a χ2 random variable with N > 2 degrees of freedom and let k be some

positive integer such that N > 2k, then

E

[
1

V k

]
=

1

(N − 2) . . . (N − 2k)
and E

[
V k
]
= N(N + 2) . . . (N + 2(k − 1)) .

We refer to Lemma 5 in [1] for the proof of slightly more general version of this lemma.
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2.1. Proof of Lemma 10.4

Using expression (31) of K
[
t, s; t̂m, ŝm

]
, we derive

2(1− κ0)K
(
t, s; t̃, s̃

)
= 2K

[
t, s; t̂m, ŝm

]
+ (1− κ0) log

(
s̃

ŝm

)
+ (1− κ0)

s+ l(t̃, t)

s̃

− s+ l(t̂m, t)

ŝm
+ κ0 + κ0 log

(
s

ŝm

)
.

By definition of m̂, log (s̃/ŝm) ≤ pen(m)− pen(m̂). Hence,

2(1− κ0)K
(
t, s; t̃, s̃

)
≤ 2K

(
t, s; t̂m, ŝm

)
+ (1− κ0) [pen(m)− pen(m̂)]

+ κ0
s

ŝm
+ κ0

[
− s

ŝm
+ 1 + log

(
s

ŝm

)]
− s+ l(t̂m, t)− ‖Π⊥

m(ǫ+ ǫm)‖2n
ŝm

+
l(t̃, t)(1− κ0) + s(1− κ0)− ‖Π⊥

m̂(ǫ+ ǫm̂)‖2n
s̃

,

since ŝm = ‖Π⊥
m(ǫ+ǫm)‖2n and s̃ = ‖Π⊥

m̂(ǫ+ǫm̂)‖2n. As the function x− log x−1 is non-negative,
the term [−s/ŝm + 1+ log (s/ŝm)] is non-positive. Since X<it

∗
m is the best predictor of Xi given

Xm, it follows that l(t̂m, t) = l(t̂m, tm) + l(tm, t). Hence,

κ0
s

ŝm
− s+ l(t̂m, t)− ‖Π⊥

m(ǫ+ ǫm)‖2n
ŝm

≤ −(1− κ0)
s

ŝm
+

‖Π⊥
m(ǫ+ ǫm)‖2n − l(tm, t)

ŝm
.

In the proof of Lemma 7.5 in [8], we state that

l(t̂m′ , tm′) ≤ ϕmax

[
nZ∗

m′Zm′)−1
]
‖Πm′(ǫ+ ǫm′)‖2n .

This yields

(1− κ0)
l(t̃, t) + s

s̃
≤ (1 − κ0)

s+ l(tm̂, t) + κ2ϕmax

[
n(Z∗

m̂Zm̂)−1
]
‖Πm̂(ǫ+ ǫm̂)‖2n

s̃

+ (1 − κ0)(1− κ2)
l(t̃, tm̂)

s̃
.

Let us gather all these bounds

2(1− κ0)K
[
t, s; t̃, s̃

]
≤ 2K

[
t, s; t̂m, ŝm

]
+ (1− κ0) [pen(m)− pen(m̂)]

+ (1− κ0)
l(tm̂, t) + (1− κ2)l(t̃, tm̂) + κ2ϕmax

[
n(Z∗

m̂Zm̂)−1
]
‖Πm̂(ǫ+ ǫm̂)‖2n

s̃

− ‖Π⊥
m̂(ǫ+ ǫm̂)‖2n

s̃
+ s(1− κ0)

(
1

s̃
− 1

ŝm

)
+

‖Π⊥
m(ǫ+ ǫm)‖2n − l(tm, t)

ŝm

≤ 2K
[
t, s; t̂m, ŝm

]
+ (1− κ0) [pen(m)− pen(m̂)]

+ (1− κ0)
l(tm̂, t) + (1− κ2)l(t̃, tm̂) + κ2ϕmax

[
n(Z∗

m̂Zm̂)−1
]
‖Πm̂(ǫ+ ǫm̂)‖2n

s̃

+
(
‖ǫ‖2n − s(1− κ0)

)( 1

ŝm
− 1

s̃

)
+

‖Πm̂ǫ‖2n
s̃

+ 2
〈Π⊥

m̂ǫ,Π⊥
m̂ǫm̂〉n

s̃

− ‖Π⊥
m̂ǫm̂‖2n
s̃

+ 2
〈Π⊥

mǫ,Π⊥
mǫm〉n

ŝm
+

‖Π⊥
mǫm‖2n − l(tm, t)

ŝm
.
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We then use Condition (39) on pen(m̂) and we apply the inequality

2
〈Π⊥

m̂ǫ,Π⊥
m̂ǫm̂〉n

s̃
≤ κ1

l(tm̂, t)

s̃
+ κ−1

1

s

s̃

〈Π⊥
m̂ǫ,Π⊥

m̂ǫm̂〉2n
sl(tm̂, t)

.

Hence, we conclude that

2(1− κ0)K
[
t, s; t̃, s̃

]
≤ 2K

[
t, s; t̂m, ŝm

]
+ (1− κ0)pen(m)

+
l(t̃, t)

s̃
[R1(m̂) ∨ (1− κ2)(1− κ0)] +R2(m) +

s

s̃
R3(m̂) +R4(m, m̂) .

2.2. Proof of Lemma 10.5

This proof follows the same sketch as the proof of Lemma 7.10 in [8]. The main difference lies in
the fact that κ0 is zero in [8]. Let x be a positive number that we shall fix later. For any k > 0,
let us define

δk :=

√
π

2k
+ exp(−k/16) .

We shall first control the deviations of the random variables involved in R1(m̂). Applying devi-
ation inequality for χ2 random variables and largest values of Standard Wishart matrices (see
e.g. Lemmas 7.2, 7.3, and 7.4 in [8]) to all models m ∈ M ensures that there exists an event B2

such that P(Bc
2) ≤ 4n exp(−nx) and under B2 it holds that

‖Π⊥
m̂ǫm̂‖2n

l(tm̂, t)
≥ n− |m̂|

n

[(
1− δn−|m̂| −

√
2|m̂|H(|m̂|)
n− |m̂| −

√
2xn

n− |m̂|

)
∨ 0

]2
,

‖Πm̂(ǫ+ ǫm̂)‖2n
s+ l(tm̂, t)

≤ 2|m̂|
n

[
1 +

√
H(|m̂|) +H(|m̂|)

]
+ 3x , (1)

‖Π⊥
m̂(ǫ+ ǫm̂)‖2n
s+ l(tm̂, t)

≥ n− |m̂|
n

[(
1− δn−|m̂| −

√
2|m̂|H(|m̂|)
n− |m̂| −

√
2xn

n− |m̂|

)
∨ 0

]2
,

nϕmax

[
(Z∗

m̂Zm̂)
−1
]

≤
[(

1−
(
1 +

√
2H(|m̂|)

)√ |m̂|
n

−
√
2x

)
∨ 0

]−2

.

By Assumption (Hi
K,η), the expression (1 +

√
2H(m̂))

√
|m̂|/n is bounded by

√
η. Moreover,

(Hi
K,η) also ensures that |m̂| ≤ n/2. Hence δn−|m̂| ≤ δn/2 ≤ ν(K) for n larger than some quantity

n0(K). Since ν(K) ≤ 1−√
η, we derive that

‖Π⊥
m̂ǫm̂‖2n

l(tm̂, t)
≥

(
1− |m̂|

n

)
[1− ν(K)−√

η]
2 − 2

√
2x , (2)

‖Π⊥
m̂(ǫ+ ǫm̂)‖2n
s+ l(tm̂, t)

≥
(
1− |m̂|

n

)
[1− ν(K)−√

η]
2 − 2

√
2x , (3)

ϕmax

[
n (Z∗

m̂Zm̂)−1
]

≤
[(

1−√
η −

√
2x
)
∨ 0
]−2

.

Constraining x to be smaller than
(
1−√

η
)2

/8 ensures that

κ2ϕmax

[
n (Z∗

m̂Zm̂)−1
]
1B1 ≤ (K − 1)(1−√

η − ν(K))2

4
. (4)
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Gathering the definition of R1(.), the inequalities (1), (2), (3), and (4), we get

R1(m̂) ≤ κ1 + 1− [1−√
η − ν(K)]

2
+

|m̂|
n

(1−√
η − ν(K))2U1 +

√
xU2 + xU3 ,

where U1, U2, and U3 are respectively defined by




U1 := −(1− κ0)K
[
1 +

√
2H(|m̂|)

]2
+ 1 + (1− κ0)(K − 1)/2

[
1 +

√
H(|m̂|)

]2
≤ 0

U2 := 2
√
2 [1 +Kη]

U3 := 3
4 (K − 1)

[
1−√

η − ν(K)
]2

.

Since U1 is non-positive, we obtain an upper bound of R1(m̂) that does not depend anymore on
the model m̂. By assumption (Hi

K,η), we know that η < (1 − ν(K) − (3/(K + 2))1/6)2. Hence,

coming back to the definition of κ1 allows to prove that κ1 is strictly smaller than [1−√
η−ν(K)]2.

Setting

x :=

[[
1−√

η − ν(K)
]2 − κ1

4U2

]2
∧
[
1−√

η − ν(K)
]2 − κ1

4U3
∧
(
1−√

η
)2

8
,

we get

R1(m̂) ≤ 1− 1

2

[
(1−√

η − ν(K))
2 − κ1

]
< 1 ,

under the event B2.
This is enough to prove Lemma 10.5 if we take B1 = B2. In fact, we shall define an event

B1 slightly more restrictive in order to simplify the proof of Lemma 10.6. Let B3 be the event
defined by

‖ǫ‖2n/s ≤ κ−1
1 . (5)

Since κ−1
1 is strictly larger than one and since κ1 only depends on K and η, it follows that

P(Bc
3) ≤ exp(−nLK,η) with LK,η > 0. Finally we take, B1 := B2 ∩ B3.

2.3. Proof of Lemma 10.6

The sketch of this proof is similar to the proof of Lemma 7.11 in [8]. First, under the event B1,
it holds that

‖Π⊥
m̂(ǫ+ ǫm̂)‖2n
s+ l(tm̂, t)

≥ [1− ν(K)−√
η]

2
/4 > 0 ,

κ2ϕmax

[
n (Z∗

m̂Zm̂)
−1
]
≤ (K − 1)(1−√

η − ν(K))2

4
.

This is a consequence of (3), of the choice of x in the previous proof, and of the assumption
(Hi

K,η). Since s̃ = |Π⊥
m̂(ǫ + ǫm̂)‖2n, it follows that s/s̃ is upper bounded under the event B1.

Hence, we only have to upper bound the expectation of R3(m̂) on B1.

E
[s
s̃
R3(m̂1B1)

]
≤ LK,ηE [R3(m̂1B1)] . (6)

Let us consider the random variables Em̂ defined by

Em̂ := κ−1
1

〈Π⊥
m̂ǫ,Π⊥

m̂ǫm̂〉2n
sl(tm̂, t)

+
‖Πm̂ǫ‖2n

s
.
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By (5), the random variable Em̂ is upper bounded under B1 by

Em̂ ≤ κ−2
1

〈Π⊥
m̂ǫ/‖Π⊥

m̂ǫ‖n,Π⊥
m̂ǫm̂〉2n

sl(tm̂, t)
+

‖Πm̂ǫ‖2n
s

This upper bound follows the distribution of a linear combinations of χ2 random variables. More
details about this observation are given in the proof of Lemma 7.7 in [8]. We shall simultaneously
control the deviations of the random variables Em̂, ‖Πm̂(ǫ + ǫm̂)‖2n/[l(tm̂, t) + s], and ‖Π⊥

m̂(ǫ +
ǫm̂)‖2n/[s+ l(tm̂, t)] by applying Lemma 1 in [5] and Lemmas 7.2 and 7.3 in [8]. For any x > 0,
we define an event F(x) such that conditionally on F(x) ∩ B1,





Em̂ ≤ |m̂|+κ−2
1

n + 2
n

√[
|m̂|+ κ−4

1

]
[|m̂|(ξ +H(|m̂|)) + x]

+ 2κ−2
1 [ξ(|m̂|+H(|m̂|)) + x]/n ,

‖Πm̂(ǫ+ǫm̂)‖2
n

s+l(tm̂,t) ≤ 1
n

[
|m̂|+ 2

√
|m̂| [|m̂|(1/16 +H(|m̂|)) + x] + 2 [|m̂|(1/16 +H(|m̂|)) + x]

]
,

‖Π⊥
m̂ǫm̂+ǫ‖2

n

s+l(tm̂,t) ≥ n−|m̂|
n

[(
1− δn−|m̂| −

√
|m̂|(1+2H(|m̂|))

n−|m̂| −
√

2x
n−|m̂|

)
∨ 0
]2

,

where δk is defined in the previous proof. Then, the probability of F(x) satisfies

P [F(x)c] ≤ e−x

[ ∑

m∈M
exp [−|m̂|H(|m̂|)]

(
e−ξ|m̂| + e−

|m̂|
16 + e−

|m̂|
2

)]

≤ e−x

(
1

1− e−ξ
+

1

1− e−1/16
+

1

1− e−1/2

)
.

Let us expand the three deviation bounds thanks to the inequality 2ab ≤ τa2 + τ−1b2:

Em̂ ≤ |m̂|
n

[
1 + 2

√
ξ + 2κ−2

1 ξ + τ1ξ + τ2

]
+

x

n

[
2κ−2

1 + τ−1
2 + τ1

]

+
κ−2
1

n

[
1 + τ−1

1 κ−2
1

]
+

|m̂|H(|m̂|)
n

[
2κ−2

1 + τ1
]
+ 2

|m̂|
√
H(|m̂|)
n

≤ |m̂|
n

(
1 +

√
2H(|m̂|)

)2 [
κ−2
1 + 2

√
ξ + 2κ−2

1 ξ + τ1ξ + τ2

]

+
x

n

[
2κ−2

1 + τ−1
2 + τ1

]
+

κ−2
1

n

[
1 + τ−1

1 κ−2
1

]
.

Similarly, we get

‖Πm̂(ǫ+ ǫm̂)‖2n
l(tm̂, t) + s

≤ 2
|m̂|
n

[
1 +

√
2H(|m̂|)

]2
+ 5

x

n
.

We recall that |m| ≤ n/2 by Assumption (Hi
K,η). If n is larger than some quantity n0(K), then

δn−|m| ≤ δn/2 ≤ ν(K). Applying again Assumption (Hi
K,η), we get

−K
|m̂|

n− |m̂|
(
1 +

√
2H(|m̂|)

)2 ‖Π⊥
m̂(ǫ+ ǫm̂)‖2n
l(tm̂, t) + s

≤ −K
|m̂|
n

(
1 +

√
2H(|m̂|)

)2
[(

1−√
η − ν(K)−

√
2x

n− |m̂|

)
∨ 0

]2

≤ −K
|m̂|
n

(
1 +

√
2H(|m̂|)

)2 [
(1−√

η − ν(K))2 − τ3

]
+ 2Kητ−1

3

x

n
.
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Let us combine these three bounds with the definitions of R3(m̂), κ1, and κ2, and the bound (4).
Hence, under the event B1 ∩ F(x), it holds that

R3(m̂) ≤ |m̂|
n

[
1 +

√
2H(|m̂|)

]2
U1 +

x

n
U2 +

LK,η

n
U3 ,

where




U1 := −K−1
10

(
1−√

η − ν(K)
)2

+Kτ3 + 2
√
ξ + 2κ−2

1 ξ + τ1ξ + τ2 ,
U2 := τ−1

2 + τ1 + LK,η(1 + τ−1
3 ) ,

U3 := 1 + τ−1
1 .

Since K > 1, there exists a suitable choice of the constants ξ, τ1, and τ2, only depending on K
and η that constrains U1 to be non positive. Hence, under the event B1 ∩ F(x),

Bm̂ ≤ LK,η

n
+ L′(K, η)

x

n
.

Since P [F(x)c] ≤ e−xLK,η, we conclude by integrating the last expression with respect to x.

2.4. Proof of Lemma 10.7

Let us assume that n ≥ 17.

R2(m) = 1− l(tm, t) + ‖Π⊥
mǫ‖2n

‖Π⊥
mǫ+ ǫm‖2n

.

We shall first upper bound the expectation of R2(m).

E

[
l(tm, t)

‖Π⊥
mǫ+ ǫm‖2n

]
=

n

n− |m| − 2

l(tm, t)

[s+ l(tm, t)]
≥ n− |m|

n− |m| − 2

l(tm, t)

[s+ l(tm, t)]
(7)

Let us to the second term.

E

[‖Π⊥
mǫ+ ǫm‖2n
‖Π⊥

mǫ‖2n

]
= 1 +

l(tm, t)

s

n− |m|
n− |m| − 2

≤ s+ l(tm, t)

s

n− |m|
n− |m| − 2

Applying a convexity argument, we derive that

E

[ ‖Π⊥
mǫ‖2n

‖Π⊥
mǫ+ ǫm‖2n

]
≥ s

s+ l(tm, t)

n− |m| − 2

n− |m| . (8)

Gathering the inequalities (7) and (8) allows to conclude that

E [R2(m)] ≤ 2

n− |m| .

We get the upper bound

E [R2(m)1B1 ] = E [R2(m)]− E
[
R2(m)1B

c
1

]

≤ 2

n− |m| +
√
P(Bc

1)
√
E [R2

2(m)] . (9)
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Thus, we need to upper bound the second moment of R2(m).

E
[
R2

2(m)
]

≤ 3

{
1 + E

[
l2(tm, t)

‖Π⊥
mǫ+ ǫm‖4n

]
+

√
E [‖Π⊥

mǫ‖8n]E
[

1

‖Π⊥
mǫ+ ǫm‖8n

]}

≤ 3

[
1 +

(
l(tm, t)n

(s+ l(t,m, t))(n− |m| − 4)

)2

+

(
s(n− |m|+ 6)

(s+ l(t,m, t))(n− |m| − 8)

)2
]

,

by Lemma 2.1. By Assumption (Hi
K,η), we have |m| ≤ n/2. If n ≥ 32, we can upper bound

E
[
R2

2(m)
]
by a universal constant. Combining this result with (9) enables to conclude that

E [R2(m)1B1 ] ≤ LK,η/n.

2.5. Proof of Lemma 10.8

We bound the quantity R4(m, m̂) using the same arguments as in the proof of Theorem 3 in [1].
We first split this quantity into a sum of two terms:

R4(m, m̂) =
(
‖ǫ‖2n − s(1− κ0)

)
+

[
1

ŝm
− 1

s̃

]
+
(
s(1− κ0)− ‖ǫ‖2n

)
+

[
− 1

ŝm
+

1

s̃

]

≤ R4,1(m, m̂) +R4,2(m̂) ,

where R4,1(m, m̂) and R4,2(m̂) are respectively defined by

R4,1(m, m̂) :=
(
‖ǫ‖2n − s(1− κ0)

)
+

[
1

ŝm
− 1

s̃

]

R4,2(m̂) :=
(
s(1− κ0)− ‖ǫ‖2n

)
+

1

s̃
.

By definition, we know that log (s̃/ŝm) is smaller than pen(m)− pen(m̂).

R4,1(m, m̂) ≤
(
‖ǫ‖2n − s(1− κ0)

)
+

1

ŝm
log

(
s̃

ŝm

)

≤
(
‖ǫ‖2n − s(1− κ0)

)
+

1

ŝm
pen(m) .

Applying Cauchy-Schwarz inequality yields

E [R4,1(m, m̂)1B1 ] ≤ E

[(
‖ǫ‖2n − s(1− κ0)

)
+

ŝm

]
pen(m)

≤
√
E
[
(‖ǫ‖2n − s(1− κ0))

2
]
E

[
1

ŝ2m

]
pen(m)

≤ s

sm

√[
κ2
0 +

2

n

]
n2

(n− |m| − 2)(n− |m| − 4)
pen(m)

≤ Lpen(m) ,
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since |m| ≤ n/2 by Assumption HK,η and since n ≥ 17. Let us turn to R4,2 (m̂). We apply
Hölder’s inequality with v := ⌊n/8⌋ and u = v/(v − 1).

E [R4,2(m̂)1B1 ] ≤ E

[(
s(1− κ0)− ‖ǫ‖2n

)
+

1

s̃

]

≤ E
[
1s(1−κ0)≥‖ǫ‖2

n

s

s̃

]

≤
[
P
[
‖ǫ‖2n ≤ s(1− κ0)

]]1/u [
E
(s
s̃

)v]1/v

≤
[
P
[
‖ǫ‖2n ≤ s(1− κ0)

]]1/u
[ ∑

m∈M
E

(
s

ŝm

)v
]1/v

.

Since v is smaller than n/8 and since |m| is smaller than n/2 it follows that n−|m|− 2v is larger
than n/4. Hence, we can apply Lemma 2.1 to any model m ∈ M.

E [R4,2(m̂)1B1 ] ≤ exp

[
−n

κ2
0

4u

] [ ∑

m∈M

nv

(n− |m| − 2) . . . (n− |m| − 2v)

]1/v

≤ n

n/2− 2v
exp

[
−n

κ2
0

4u

]
|M|1/v

≤ n exp

[
−n

κ2
0

4u

]
|M|1/v .

Let us bound the cardinality of the collection M. We recall that the dimension of any model
m ∈ M is assumed to be smaller than n/2 by (HK,η). Besides, for any d ∈ {1, . . . , n/2}, there
are less than exp(dH(d)) models of dimension d. Hence,

log (|M|) ≤ log(n) + sup
d=1,...,n/2

dH(d) .

By assumption (HK,η), dH(d) is smaller than n/2. Thus, log(|M|) ≤ log(n) +n/2 and it follows
that |M|1/v is smaller than an universal constant providing that n is larger than 8. All in all, we
get

E [R4,2(m̂)1B1 ] ≤ Ln exp

[
−n

κ2
0

4u

]
.

2.6. Proof of Lemma 10.9

For any x > 0, the following inequality holds

x− 1− log(x) ≤ 9

64

(
x− 1

x

)2

.

This statement is easy to establish by studying the derivative of the associated function. Hence,
we upper bound the Kullback divergence

K
[
t, s; t̂m, ŝm

]
=

s

ŝm
+ 1− log

(
s

ŝm

)
+

l(t̂m, t)

ŝm

≤ 9

64

[
s2

ŝ2m
+

ŝ2m
s2

]
+

l(tm, t)

ŝm
+

l(t̂m, tm)

ŝm
.
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Thanks to Cauchy-Schwarz inequality, we obtain

E
[
K
(
t, s; t̃, s̃

)
1B

c
1

]
≤ E

[(
9

64

[
s2

s̃2
+

s̃2

s2

]
+

l(tm, t)

s̃
+

l(t̃, tm̂)

s̃

)
1B

c
1

]

≤ L
√
P [Bc

1]

√√√√∑

m∈M
E

[
1m=m̂

(
s4

ŝ4m
+

ŝ4m
s4

+
l2(tm, t)

ŝ2m
+

l2(t̂m, tm)

ŝ2m

)]
.

As in the proof of Lemma 10.8, we apply Hölder’s inequality with v = ⌊n/16⌋ and u = v/(v−1).
Again, we check that for any model m ∈ M, n− |m| − 8v ≥ 1.

E

[
1m=m̂

(
s4

ŝ4m
+

ŝ4m
s4

+
l2(tm, t)

ŝ2m
+

l2(t̂m, tm
ŝ2m

)]

≤ P [m = m̂]
1
u


E
(
s4v

ŝ4vm

) 1
v

+ E

(
ŝ4vm
s4v

) 1
v

+ E

(
l2v(tm, t)

ŝ2vm

) 1
v

+ E

(
l2v(t̂m, tm)

ŝ2vm

) 1
v


 .

We bound the first two terms applying Lemma 2.1 or computing the v-th moment of χ2

random variable.

E

[
s4v

ŝ4vm

] 1
v

≤ n4

(n− |m| − 8v)4
,

E

[
ŝ4vm
s4v

] 1
v

=

(
(n− |m|)(n− |m|+ 2) . . . (n− |m|+ 2(4v − 1))(sm)4v

(ns)4v

) 1
v

≤ (n− |m|+ 8v)4 (s+ l(0, t))
4

n4s4
.

As ‖Π⊥
m(ǫ+ ǫm)‖2n is independent of the couple (‖Πm(ǫ+ ǫm)‖2n,Xm), the random variables ŝm

and l(t̂m, tm) are independent. We bound the the l2v-risk of l(t̂m, t) thanks to Proposition 7.8 in
[8].

E

(
l2v(t̂m, tm)

ŝ2vm

) 1
v

=

(
E
[
l2v(t̂m, tm)

]
E

[
1

ŝ2vm

]) 1
v

≤ Lv2|m|2n4

(n− |m| − 4v)2
≤ Lv2|m|2n2 n2

(n− |m| − 4v)2
.

Combining these upper bounds and noting that n− |m| − 8v ≥ 1 and |m| ≤ n/2 yields

E
[
K
(
t, s; t̃, s̃

)
1B

c
1

]
≤

[
2n2

(n− |m| − 8v)2
+

Lv|m|n2

n− |m| − 4v
+

(n− |m|+ 8v)2

n2

(
1 +

l(0, t)

s

)2
]

× L
√
P [Bc

1]|M| 1
2v

≤ LK,ηn
5/2

[
1 +

l(0, t)

s

]
exp [−nLK,η] ,

since |M|1/2v is smaller than than an universal constant as explained in the proof of Lemma
10.8. Finally, l(0, t)/s is smaller than K(t, s; 0, 1).
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2.7. Proof of Corollary 6.1

First, we claim that the penalties (21) are lower bounded by penalties defined in (7). Suppose
that K > e− 1. Since log(1 +Kx) ≥ log(1 +K)x for any x between 0 and 1, it follows that

peni(mi) ≥ log(1 +K)
|mi|

n− |mi|

{
1 +

√
2 [1 + log ((i − 1)/|mi|)]2

}
, (10)

if |mi|/(n − |mi|){1 +
√
2[1 + log((i − 1)/|mi|))]2} ≤ 1. If K ≤ e − 1, there exists a positive

constant ζ(K) such that log(1 +Kx) ≥
√
Kx , for all x ≤ ζ(K). Hence, we get

peni(mi) ≥
√
K

|mi|
n− |mi|

{
1 +

√
2 [1 + log ((i− 1)/|mi|)]2

}
, (11)

if K ≤ e− 1 and if |mi|/(n− |mi|)[1 +
√
2[1 + log((i − 1)/|mi|)]2] ≤ ζ(K).

Gathering (10) and (11), we get that for any K > 1, there exists some K ′ > 1 and some
ζ(K) > 0 such that:

peni(mi) ≥ K ′ |mi|
n− |mi|

{
1 +

√
2 [1 + log ((i− 1)/|mi|)]2

}
,

if |mi|/(n− |mi|){1 +
√
2[1 + log((i − 1)/|mi|)]2} ≤ ζ(K).

For any 2 ≤ i ≤ p and any 1 ≤ k ≤ (i− 1)∧d, Hi(k) is smaller than 1+ log((i− 1)/k). Hence,
peni(mi) is lower bounded by a penalty of the form (7) with some K ′ > 1. Assuming that

|mi|
n− |mi|

{
1 +

√
2 [1 + log ((i − 1)/|mi|)]2

}
≤ ζ(K) ∧ η(K ′) , (12)

we derive that (HK′,η) is fulfilled and that the risk bound (23) holds.

We conclude by observing that Condition (12) is satisfied if

d[1 + log(p/d) ∨ 0] ≤ nη′(K) ,

for some suitable function η′(K).

2.8. Proof of Proposition 4.5

We apply the same arguments as in the proof of Theorem 4.4, except that we replace H(|m|) by
lm. Then, Lemmas 10.4 and 10.7 are still true.

In the proof of Lemmas 10.8 and 10.9, the only difference with the previous case concerns
the upper bound of log (|M|). By definition of lm,

|M| − 1 ≤ sup
m∈M\{∅}

exp(|m|lm) .

Hence, log(|M|) ≤ 1+ supm∈M\{∅} |m|lm, which is smaller than 1+n/2 by Assumption (Hbay
K,η).

Lemmas 10.5 and 10.6 also hold when H(|m|) is replaced by lm as explained in the proof of
Proposition 3.5 in [8].
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3. Proofs of the minimax bounds

We note dH(., .) the Hamming distance between two vectors. The Hamming distance between
two matrices of size p is defined as the Hamming distance between their vectorialized version of
size p2. It is also noted dH(., .).

3.1. Main lemma

We first state two useful lemmas for proving the minimax lower bounds. The first one is known
as Varshamov-Gilbert’s lemma, whereas the second one is a modified version of Birgé’s lemma
for covariance estimation.

Lemma 3.1 (Varshamov-Gilbert’s lemma). Let {0, 1}D be equipped with Hamming distance dH .

There exists some subset Θ of {0, 1}D with the following properties

dH(θ, θ′) > D/4 for every (θ, θ′) ∈ Θ2 with θ 6= θ′ and log |Θ| ≥ D/8 .

We note ‖t‖l2 the Euclidean norm of a vector t.

Lemma 3.2. Let A be a subset of {1, . . . , p}. For any positive matrices Ω and Ω′, we define the

function d(Ω,Ω′) by

d(Ω,Ω′) :=
∑

i∈A

log

[
1 +

‖ti − t′i‖2l2
4

]
+
∑

i∈Ac

si
s′i

+ log

(
si
s′i

)
− 1 . (13)

Let Υ be a subset of square matrices of size p which satisfies the following assumptions:

1. For all Ω ∈ Υ, ϕmax(Ω) ≤ 2 and ϕmin(Ω) ≥ 1/2.
2. There exists (s1, s2) ∈ [1; 2]2 such that ∀Ω ∈ Υ, ∀1 ≤ i ≤ p, si ∈ {s1, s2}.

Setting δ = minΩ,Ω′∈Υ,Ω6=Ω′ d(Ω,Ω′), provided that maxΩ,Ω′∈Υ K(P⊗n
Ω ;P⊗n

Ω′ ) ≤ κ1 log |Υ|, the

following lower bound holds

inf
Ω̂

sup
Ω∈Υ

EΩ

[
K
(
Ω; Ω̂

)]
≥ κ2δ .

The numerical constants κ1 and κ2 are made explicit in the proof.

Proof of Lemma 3.2. This lemma is mainly based on an application of Birgé’s version of Fano’s
lemma [3]. We provide a statement of the result that is taken from [6] Sect.2.4.

Lemma 3.3. Let (Pi)0≤i≤N be some family of probability distributions and (Ai)0≤i≤N be some

family of disjoint events. Let a = min0≤i≤N Pi(Ai), then

a ≤ κ ∨
(
max1≤i≤N K (Pi;P0)

log(1 +N)

)
,

where κ = 2e/(2e+ 1).

Let Ω̂ be an estimator of Ω. Let Ω̃ be an estimator that takes its values in Υ and satisfies

d(Ω̃, Ω̂) = min
Ω′∈Υ

d(Ω′, Ω̂) .
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We note (T̃ , S̃) and (T̂ , Ŝ) the Cholesky decompositions of Ω̃ and Ω̂. Let i ∈ {1, . . . , p}. By the
triangle inequality,

‖ti − t̃i‖2l2
4

≤ 2

[
‖ti − t̂i‖2l2

4
+

‖t̂i − t̃i‖2l2
4

]
.

For any positive numbers a and b, log(1 + a + b) ≤ log(1 + a) + log(1 + b). Moreover, for any
positive number a, we have log(1+2a) ≤ 2 log(1+a) because the log function is concave. Hence,
we get

log

[
1 +

‖ti − t̃i‖2l2
4

]
≤ 2 log

[
1 +

‖ti − t̂i‖2l2
4

]
+ 2 log

[
1 +

‖t̂i − t̃i‖2l2
4

]
. (14)

Let us define the function f by f(x) := x− log(x)−1 for any x > 0. We state that there exists
some numerical constant L such that

f

(
si
s̃i

)
≤ L

[
f

(
si
ŝi

)
+ f

(
s̃i
ŝi

)]
. (15)

If si = s̃i, this inequality holds for any L > 0 since f(1) = 0 and f is non negative. If si 6= s̃i,
there are two possibilities: either si = s1 and s̃i = s2 or si = s2 and s̃i = s1. By deriving
f(s1/x) + f(s2/x), one observes that this sum is minimized for x = (s1 + s2)/2 and that this
minimum equals f [2/ (1 + s1/s2)] + f [2/ (1 + s2/s1)]. Hence, we obtain that

f

(
si
s̃i

)
≤

f
(

s1
s2

)
∨ f

(
s2
s1

)

f
[
2/
(
1 + s1

s2

)]
+ f

[
2/
(
1 + s2

s1

)]
[
f

(
si
ŝi

)
+ f

(
s̃i
ŝi

)]
.

Since s1 and s2 lie between one and two, it follows that

f

(
si
s̃i

)
≤ sup

1/2≤x≤2

f(x)

f [2/(1 + x)] + f
[
2/(1 + 1

x)
]
[
f

(
si
ŝi

)
+ f

(
s̃i
ŝi

)]
. (16)

The ratio f(x)/ (f [2/(1 + x)] + f [2/(1 + 1/x)]) is positive and continuous on [1/2; 1[ and ]1; 2]. By
studying the Taylor series of f(x) at x equals one, we observe that f(x) = (x−1)2/2+o[(x−1)2],
f(2/(1 + x)) = (x − 1)2/8 + o[(x − 1)2], and f(2/(1 + 1/x)) = (x − 1)2/8 + o[(x − 1)2]. Hence,
there exists a continuation of the ratio f(x)/(f [2/(1 + x)] + f [2/(1 + 1/x)]) around one. The
supremum in (16) is therefore finite and the upper bound (15) holds.

Combining the upper bounds (14) and (15) with the definition of Ω̃ yields

d(Ω, Ω̃) ≤ 2
∑

i∈A

{
log

[
1 +

‖ti − t̂i‖2l2
4

]
+ log

[
1 +

‖t̂i − t̃i‖2l2
4

]}
+ L

∑

i∈Ac

[
f

(
si
ŝi

)
+ f

(
si
s̃i

)]

≤ L
[
d(Ω, Ω̂) + d(Ω̃, Ω̂)

]
≤ Ld(Ω, Ω̂) .

Hence, one can lower bound the risk of Ω̂ as follows

sup
Ω∈Υ

EΩ

[
d
(
Ω, Ω̂

)]
≥ L−1δ sup

Ω∈Υ
PΩ

[
Ω 6= Ω̃

]
= L−1δ

(
1− min

Ω∈Υ
PΩ

[
Ω = Ω̂

])
.
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Applying Lemma 3.3, we conclude that

inf
Ω̂

sup
Ω∈Υ

EΩ

[
d
(
Ω, Ω̂

)]
≥ L−1(1 − κ)δ , (17)

if maxΩ,Ω′∈Υ K(P⊗n
Ω ,P⊗n

Ω′ ) ≤ κ log |Υ|.

Let us now express this minimax lower bound in term of Kullback divergence. Thanks to the
chain rule and Lemma 10.1, the Kullback divergence between two positive matrices Ω and Ω′

decomposes as

K (Ω;Ω′) =
p∑

i=1

1

2

[
log

s′i
si

+
si
s′i

− 1 +
li(ti, t

′
i)

s′i

]
.

Straightforward computations allow to prove that the function log(s′i/si)+si/s
′
i−1+ li(ti, t

′
i)/s

′
i

is minimized with respect to s′i when s′i = si + li(ti, t
′
i). This leads to the lower bound

log
s′i
si

+
si
s′i

− 1 +
li(ti, t

′
i)

s′i
≥ log

(
1 +

li(ti, t
′
i)

si

)
.

By Definition (29) of li(., .) the quantity li(ti, t
′
i) is lower bounded by [ϕmax (Ω)]

−1 ‖ti− t′i‖2l2 . By
assumption, [ϕmax (Ω)]

−1 is larger than 1/2 for any Ω ∈ Υ. Moreover, si is smaller than 2. We
conclude that for any Ω ∈ Υ and any positive matrix Ω′, the following lower bound holds

2K (Ω;Ω′) ≥
∑

i∈A

log

(
1 +

‖ti − t′i‖2l2
4

)
+
∑

i∈Ac

si
s′i

− log

(
si
s′i

)
− 1 = d(Ω,Ω′) .

We conclude by gathering this last bound with (17) and setting κ1 := κ and κ2 := L−1(1 −
κ)/2.

3.2. Adaptive banding

In order to compute the minimax rates of estimation over ellipsoids, we first need to consider a
lower bound over the sets Tord[k1, . . . , kp, r] and Uord[k1, . . . , kp, r].

Definition 3.4. Let (k1, . . . , kp) ∈ Np such that ki ≤ i − 1 and let r be a positive number. We

respectively define the sets Tord[k1, . . . , kp, r] and Uord[k1, . . . , kp, r] as

Tord[k1, . . . , kp, r] :=
{
T ∈ Trig(p) s.t. ∀ 2 ≤ i ≤ p, T [i, j] =

0 if 1 ≤ j ≤ i− ki − 1
0 or r if i− ki ≤ j ≤ i− 1

}
, (18)

Uord[k1, . . . , kp, r] :=
{
T ∗S−1T , T ∈ Tord[k1, . . . , kp, r] and S ∈ Diag(p)

}
. (19)

The set Tord[k1, . . . , kp, r] contains lower triangular matrices with unit diagonal such that for
each line i between 2 and p, the support of the vector (T [i, j])1≤j≤i−1 is included in {i−ki, i−ki+
1, . . . , i−1}. We are able to lower bound the minimax rates of estimation over Uord [(k1, . . . , kp), r].

Proposition 3.5. Assume that k := 1 ∨max1≤i≤p ki is smaller than
√
n. Then,

inf
Ω̂

sup
Ω∈Uord[(k1,...,kp),r]

E
[
K
(
Ω; Ω̂

)]
≥ L

[
p∑

i=2

ki + p

](
r2 ∧ 1

n

)
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These minimax rates of estimation are not really surprising, since they correspond to the
minimax rates of estimation of p different parametric regression problems whose minimax rates
is known to be of the order ki(r

2 ∧ 1/n). We refer for instance to [6] Prop. 4.8. Moreover, the
term p/n is due to the diagonal matrices S in Ω = T ∗S−1T . We believe that the assumption “k
is smaller than

√
n” is not necessary but we do not know how to remove it.

3.2.1. Proof of Proposition 5.3

The lower bound (17) is a consequence of Proposition 3.5. Let k be a positive integer smaller than
⌊√n⌋∧(p−1). Given some 0 < r <

√
a2kR

2/k, we consider the set Uord[0, 1, . . . , k−1, k, . . . , k, r].
Let (T, S) refer to the Cholesky decomposition of a matrix Ω belonging to this set. By definition
of Uord,

i−1∑

j=1

T [i, i− j]2

a2j
=

k∑

j=1

T [i, i− j]2

a2j
≤ kr2/a2k ≤ R2 .

Hence, the set Uord[0, 1, . . . , k − 1, k, . . . , k, r] is included in E(a,R, p). By Proposition 3.5, we
obtain the minimax lower bound.

inf
Ω̂

sup
Ω∈E(a,R,p)

E
[
K
(
Ω; Ω̂

)]
≥ Lp(k + 1)

(
a2kR

2

k
∧ 1

n

)

≥ Lp

(
a2kR

2 ∧ k + 1

n

)
.

Similarly if k = 0, the set Uord[0, . . . , 0,+∞] is included in E(a,R, p) and the minimax rates of
estimation over E(a,R, p) is lower bounded by Lp(a0R

2 ∧ 1/n) with the convention a0 = +∞.
Taking the infimum for all non-positive integers k smaller than ⌊√n⌋∧(p−1) yields the first result.

Let us now turn to the second part of the proposition. We fix some γ > 2. The matrices Ω
considered in the proof of Proposition 3.5 for bounding the minimax rates of estimation over sets
of the type Uord[0, 1, . . . , k − 1, k, . . . , k, r] have their eigenvalues between 1/2 and 2. Hence, the
previous lower bound still holds and we get

inf
Ω̂

sup
Ω∈E(a,R,p)∩Bop(γ)

E
[
K
(
Ω; Ω̂

)]
≥ Lp sup

k=0,...,⌊√n⌋∧(p−1)

(
a2kR

2 ∧ k + 1

n

)
. (20)

Let k be a non-negative integer smaller or equal to d∧(p−1), where d is the maximal dimension

of the models defining the estimator Ω̃d
ord. We consider the model m ∈ Md

ord defined by

m := (∅, {1}, . . . , {i− 1, . . . , i− k}, . . . , {p− 1, . . . , p− k}) .
This model corresponds to estimating a k-th banded Cholesky factor. By Corollary 5.1, the risk
of Ω̃d

ord is upper bounded by

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η

[
p(k + 1)

n
+K (Ω;Ωm)

]
+ τn(Ω,K, η) . (21)

Let us upper bound the bias term K (Ω;Ωm). By Equation (31), it decomposes as

2K (Ω;Ωm) =

p∑

i=1

si
si,mi

− log

(
si

si,mi

)
− 1 +

li(ti, ti,mi
)

si,mi

=

p∑

i=1

log

(
1 +

li(ti, ti,mi
)

si

)
≤

p∑

i=1

li(ti, ti,mi
)

si
,
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since we have mentioned in the proof of Lemma 3.2 that si,mi
= si + li(ti, ti,mi

).
Let i be an integer between k+2 and p (if there exists one). We define tPi,mi

as the orthogonal

projection of ti with respect to the Euclidean norm in Ri−1. Since Ω belongs to Bop(γ), it follows
that si is larger than 1/γ and that the largest eigenvalue of ϕmax(Ω

−1) ≤ γ. Hence, we obtain
that

li(ti, ti,mi
)

si
≤ γli(ti, ti,mi

) ≤ γ2




i−1∑

j=1

(
ti[i− j]− tPi,mi

[i− j]
]
)2




= γ2




i−1∑

j=k+1

t2i [i− j]


 ≤ γ2a2k+1R

2 .

If i ≤ k + 2, then li(ti, ti,mi
) = 0. Combining this upper bound with (21), we get

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η,γp

[
(k + 1)

n
+ ak+1R

2

]
+ τn(Ω,K, η) .

Let us note (ϕ1(Ω), . . . , ϕp(Ω)) the eigenvalues of Ω. Since Ω belong to Bop(γ),

2K(Ω; Ip)/p = 1/p

p∑

i=1

[ϕi(Ω)− log (ϕi(Ω))− 1]

≤ [ϕmin(Ω)− log (ϕmin(Ω))− 1] ∨ [ϕmax(Ω)− log (ϕmax(Ω)) − 1] ≤ Lγ .

Hence, the term τn(Ω,K, η) is smaller than some LK,η,γp/n. For n larger than some universal

constant, the largest dimension d in the model collection that defines Ω̃d
ord is larger than ⌊√n⌋.

Taking the infimum over k in 0, . . . , ⌊√n⌋ ∧ (p− 1), we conclude that

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η,γ,βp inf

k=1,...,⌊√n⌋∧(p−1)

(
a2k+1R

2 +
k + 1

n

)
.

Let us define d∗ := sup
{
d′ ≥ 0 s.t. (d′ + 1)/n ≤ ad′R2

}
. By assumption, d∗ is smaller or equal

to ⌊√n⌋. Hence,

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η,γ,βp

(
a2d∗+1R

2 +
d∗ + 1

n

)

≤ LK,η,γ,β inf
Ω̂

sup
Ω∈E(a,R,p)∩Bop(γ)

E
[
K
(
Ω; Ω̂

)]
,

thanks to Equation (20).

3.2.2. Proof of Proposition 3.5

Given r > 0, let T ′
ord[k1, . . . , kp, r] be a maximal subset of Tord[k1, . . . , kp, r] which satisfies the

property: ”for any two different elements T and T ′ of T ′
ord[k1, . . . , kp, r], the Hamming distance

dH(T, T ′) is larger than
∑

1≤i≤p ki/4”.

By Lemma 3.1, there exists such a set T ′
ord[k1, . . . , kp, r] which satisfies log |T ′

ord[k1, . . . , kp, r]| ≥∑
2≤i≤p ki/8. Let T be a matrix in T ′

ord[k1, . . . , kp, r]. Standard computations allow to prove that
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the diagonal elements of T ∗T lie between 1 and 1 + kr2. Besides, the sum of the absolute values
of the off-diagonal elements on each line is upper bounded as follows.

∑

j 6=i

|T ∗T [i, j]| =
p∑

l=1

∑

j 6=i

|T [l, i]T [l, j]| ≤
∑

j 6=i

T [i, j] +
∑

j 6=i

T [j, i] +
∑

j 6=i

∑

j 6=l 6=i

T [l, i]T [l, j]

≤ 2kr + k2r2 .

If r is smaller than 1/(8k), the matrices T ∗T are diagonally dominant and their eigenvalues lie
between 5/8 and 1.3. Let us choose the subset A of {1, . . . , p} defined by A := {i, ki > 0}. Then,
we introduce the subset S[A, p, r] as

S[A, p, r] := {S ∈ Diag(p), S[i, i] = 1 if i ∈ A and S[i, i] = 1 or 1 + r if i ∈ Ac} .

Applying again Lemma 3.1, we define a subset S ′[A, p, r] of S[A, p, r] such that log |S ′[A, p, r]| ≥
log (|Ac|) /8 and such that its elements are |Ac|/4-separated with respect to the Hamming dis-
tance. If r is smaller than 0.5, then the eigenvalues of any matrix in S ′[A, p, r] are between 1 and
1.5. Finally, we define the set U ′

ord[k1, . . . , kp, r] as

U ′
ord[k1, . . . , kp, r] := {T ∗ST, T ∈ T ′

ord[k1, . . . , kp, r] and S ∈ S ′[A, p, r]} .

We therefore lower bound its cardinality

log |U ′
ord[k1, . . . , kp, r]| ≥

(
|Ac|+

p∑

i=1

ki

)
/8 ≥

(
p+

p∑

i=1

ki

)
/16 .

Moreover, if r ≤ 1/(8k), the eigenvalues of any matrix in this set are between 1/2 and 2. Let us
upper bound the Kullback entropy between any two elements Ω = T ∗S−1T and Ω′ = T ′∗S′−1T ′

of U ′
ord[k1, . . . , kp, r].

2K (Ω;Ω′) =
∑

i∈A

li (ti, t
′
i)

s′i
+
∑

i∈Ac

si
s′i

+ log

(
si
s′i

)
− 1 .

If i ∈ A, then s′i = 1. Besides, li(ti, t
′
i) ≤ [ϕmin(Ω)]

−1‖ti − t′i‖2l2 ≤ 2kir
2. Recalling that the

function f is defined by f(x) = x − log x − 1 and that r ≤ 1/8, straightforward computations
lead to f (s′i/si) ≤ Lr2. Hence, for any (Ω1,Ω2) ∈ U ′

ord[k1, . . . , kp, r], it holds that

K
(
P⊗n
Ω1

;P⊗n
Ω2

)
≤ L

(
p+

p∑

i=2

ki

)
r2 .

Moreover, we have f(1 + r) ≥ Lr2 and f [(1 + r)−1] ≥ Lr2 since f(1 + x) = x2/2 + o(x2) and
r ≤ 1/8. If Ω1 6= Ω2, then d(Ω1,Ω2) is lower bounded as follows

d(Ω1,Ω2) ≥
∑

i∈A

log

(
1 +

kir
2

16

)
+

|Ac|
4

[f(1 + r) ∧ f(1/(1 + r))]

≥ L

[∑

i∈A

ki + |Ac|
]
r2 ≥ L

[
p∑

i=1

ki + p

]
r2 ,

since r is smaller than 1/8 and kir
2/16 is smaller than 1/64. Hence, as long as r ≤ L1/

√
n ∧

1/8k ∧ 1/2, one can apply Lemma 3.2.

inf
Ω̂

sup
Ω∈Uord[k1,...,kp,r]

E
[
K
(
Ω; Ω̂

)]
≥ L

[
p∑

i=2

ki + p

](
r2 ∧ 1

n
∧ 1

k2

)
.

By assumption, 1/k2 is larger than 1/n and the result follows.
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3.3. Complete graph selection (proof of Proposition 6.2)

3.3.1. First case: minimax rate over U1(k, p)

Let T ∈ T1[k, p, r] be the set of lower triangular matrices of size p with a unit diagonal and such
that each line contains at most k non-zero off-diagonal entries. These entries are also smaller
than r in absolute value. We first provide a minimax lower bound on the minimax risk over
T ∈ T1[k, p, r].
Proposition 3.6. Let k and p be two positive integers such that k ≤ p. Assume that n ≥
Lk2[1 + log(p/k)], where L is some universal constant exhibited in the proof. Then, for any

r > 0, the minimax rates of estimation over the set T1[k, p, r] is lower bounded as follows

inf
Ω̂

sup
T∈T1[k,p,r]

K
(
T ∗T ; Ω̂

)
≥ Lkp

[
r2 ∧ 1 + log

(
p
k

)

n

]
. (22)

We believe that the condition n ≥ Lk2[1+log(p/k)] is essentially technical but we do not know
how to remove it. Thanks to Corollary 6.1, we can easily derive the minimax rates of estimation
over the sets U1[k, p]. Let us first provide the proof of Proposition 3.6 and then derive the proof
of Proposition 6.2.

Proof of Proposition 3.6. Assume first that k is a power of 2, that 2k divides p and that log(p/k) ≥
19. Let us consider the set T (1)

1 [k, p, r] of lower triangular square matrices T of size p such that:

1. the diagonal of T is made of 1,
2. the lower left submatrix of T of size p/2 contains exactly k entries that equal r on each

line and on each column,
3. every other entry of T is zero.

Clearly, T (1)
1 [k, p, r] is in one to one correspondence with the set Θ[k, p/2] of binary square

matrices of size p/2 that contain exactly k non-zero coefficients on each line and each column.

Consider T ∈ T (1)
1 [k, p, r]. We claim that as long as r is smaller than 1/8k, the eigenvalues of

T ∗T are between 1/2 and 2. Indeed, the diagonal elements of T ∗T are all between 1 and 1+ kr2.
Besides, the sum of the off-diagonal elements is upper bounded by

∑

j 6=i

|T ∗T [i, j]| =
p∑

l=1

∑

j 6=i

|T [l, i]T [l, j]| ≤
∑

j 6=i

T [i, j] +
∑

j 6=i

T [j, i] +
∑

j 6=i

∑

j 6=l 6=i

T [l, i]T [l, j]

≤ 2kr + k2r2 .

Hence, if r ≤ 1/8k, the matrix T is diagonally dominant and the sum of the off diagonal terms
is smaller than 3/8 whereas the diagonal term is between 1 and 1 + 1/8.

Let T and T ′ be two elements of T (1)
1 [k, p, r]. Let us upper bound the Kullback entropy between

the corresponding precision matrices.

2K (T ∗T ;T ′∗T ′) =

p∑

i=1

li(ti, t
′
i) ≤

p∑

i=p/2+1

ϕmax(T
∗T )‖ti − t′i‖2l2 ≤ 4kpr2 . (23)
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Lemma 3.7. Assume that log(p/k) ≥ 19. Let Θ[k, p/2] be equipped with Hamming distance dH .

There exists some subset Θ′[k, p/2] of Θ[k, p/2] with the following properties

dH(θ, θ′) > pk/4 for every (θ, θ′) ∈ Θ′2 with θ 6= θ′ and log |Θ′| ≥ kp/20 log
(p
k

)
. (24)

The proof of this lemma is postponed to the end of this subsection. By Lemma 3.7, there exists

some subset T (2)
1 [k, p, r] of T (1)

1 [k, p, r] such that dH(T, T ′) ≥ pk/4 for every (T, T ′) ∈ T (2)
1 [k, p, r]

with T 6= T ′ and

log |T (2)
1 [k, p, r]| ≥ kp/20 log

(p
k

)
. (25)

Let us take A = {1, . . . p} and let us consider the function d(., .) defined in Lemma 3.2. Observe
that 2kr2 ≤ 1/32 since r ≤ 1/(8k). By the mean value theorem, we obtain that log(1+x/4) ≥ x/8
for any positive number x smaller than 2kr2. Hence, we get

d(T ∗T, T ′∗T ′) =

p∑

i=1

log

[
1 +

dH(ti, t
′
i)r

2

4

]
≥

p∑

i=1

dH(ti, t
′
i)r

2

8

≥ dH(T, T ′)
r2

8
≥ pkr2

32
, (26)

for any T 6= T ′ in T (2)
1 [k, p, r]. We are now in position to apply Lemma 3.2 to T (2)

1 [k, p, r] with
the bounds (23), (25), and (26).

inf
Ω̂

sup
T∈T (1)

1 [k,p,r]

E
[
K
(
T ∗T ; Ω̂

)]
≥ κ2

64
pkr2 ,

as long as 2kpnr2 ≤ κ1kp/20 log (p/k) and r ≤ 1/8k. This yields

inf
Ω̂

sup
T∈T1[k,p,r]

E
[
K
(
T ∗T ; Ω̂

)]
≥ Lpk

[
r2 ∧ log

(
p
k

)

n

]

≥ Lpk

[
r2 ∧ 1 + log

(
p
k

)

n

]
,

since n ≥ k2[1 + log(p/k)] and log(p/k) ≥ 19.

We now turn to the case where k is not a power of 2 or 2k does not divide p. We only
assume that log(p/k) is larger than 19 + log(2). Let us define k′ := 2⌊log2 k⌋ and p′ as the
largest integer that is divided by 2k′ and is smaller than p. Here log2 refers to the function
log(.)/ log(2). It follows that k/2 ≤ k′ ≤ k and p/2 ≤ p′ ≤ p. Consequently, log(p′/k′) is larger

than log(p/2k) ≥ 19. Let T (1)
1 [k′, p′, p, r] denote the set of lower triangular matrices T such that

the diagonal elements of T equal 1, the lower left submatrix of T of size p′/2 contains exactly
k′ entries that equal r on each line and on each column and such that every other entry of T is
zero. Arguing as in the first case, we obtain that

inf
Ω̂

sup
T∈T1[k,p,r]

E
[
K
(
T ∗T ; Ω̂

)]
≥ Lp′k′


r2 ∧

1 + log
(

p′

k′

)

n




≥ Lpk

[
r2 ∧ 1 + log

(
p
k

)

n

]
.
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Finally, we consider the situation where the ratio log(p/k) is smaller than 19+ log(2). The set
Tord[(0, 1, . . . , k − 1, k, . . . , k), r] is included in T1[k, p, r]. If we choose the set A to be {1, . . . , p},
then a slight modification in the proof of Proposition 3.5 allows to show the minimax lower
bound:

inf
Ω̂

sup
T∈Tord[(0,...,k,...,k),r]

K
[
T ∗T ; Ω̂

]
≥ Lkp

[
r2 ∧ 1

n

]
,

as long as k ≤ √
n. Hence, it follows that

inf
Ω̂

sup
T∈T1[k,p,r]

K
[
T ∗T ; Ω̂

]
≥ Lkp

[
r2 ∧ 1

n

]
≥ Lkp

[
r2 ∧ 1 + log

(
p
k

)

n

]
,

since log(p/k) is smaller than 19 + log(2).

Proof of Proposition 6.2. We derive from the proof of Proposition 3.6 a minimax lower bound
over U1[k, p] ∩ BK(nβ). First, we consider the case where k is a power of 2, 2k divides p and
log(p/k) is larger than 19. Take r2 = [(1 + log(p/k))/n]∧ (8k)−2. In the previous proof, we have
shown that

inf
Ω̂

sup
T∈T (1)

1 [k,p,r]

E
[
K
(
T ∗T ; Ω̂

)]
≥ Lkp

(
r2 ∧ 1 + log(p/k)

n

)
≥ Lkp

1 + log(p/k)

n
,

since n ≥ k2(1 + log(p/k). Moreover, we have mentioned that for any matrix T in T (1)
1 [k, p, r],

ϕmin(T
∗T ) ≥ 1/2. Let us now upper bound the Kullback divergence with the identity matrix.

K (T ∗T ; Ip) ≤ 1

2

p∑

i=2

li(ti, 0i−1) ≤
ϕ−1
min(T

∗T )

2
‖T − Ip‖2F

≤ kpr2 ≤ p ≤ pnβ .

Hence, the set {T ∗T, T ∈ T (1)
1 [k, p, r]} is included in U1[k, p] ∩ BK(nβ) and the lower bound

follows.
The case where k is not a power of 2 or 2k does not divide p is handled similarly if one

uses the set T (1)
1 [k′, p′, p, r] defined in the proof of Proposition 3.6. Finally, one uses the set

Tord[(0, . . . , k, . . . , k), r] if log(p/k) ≤ 19 + log(2).

Let us turn to the upper bound on the risk. By Corollary 6.1, the estimator Ω̃d
co satisfies

E
[
K
(
Ω; Ω̃d

co

)]
≤ LK,ηpk

1 + log
(
p
k

)

n
+ LK,ηpn

5/2 [1 +K(Ω; Ip)] exp [−nLK,η]

≤ LK,η,βpk
1 + log

(
p
k

)

n
,

for any Ω ∈ U1[k, p] ∩ BK(nβ). We conclude by gathering the lower and the upper bounds.
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3.3.2. Second case: minimax rate over U2(k, p)

This proof follows the same sketch as the proof of Proposition 3.6. Let k be an integer smaller
than p/2. It is sufficient to prove the result (25) for all k smaller than p/2 since this lower bound
holds up to a multiplicative numerical constant. Assume first that log(p) ≥ 21.

Let us take A := {p− k+ 1, . . . , p}. We need to build a suitable subset of U2[k, p] that is well
separated with respect to the function d(., .) introduced in Lemma 3.2. Let r1 and r2 be two
positive numbers respectively smaller than 1/4 and 1/8. We shall fix them later.

Let us introduce the set S[Ac, p, r1] of diagonal matrices S such that S[i, i] = 1 if i ∈ A and
S[i, i] is either 1 or 1 + r1 if i ∈ Ac. The cardinality of this set is 2|A

c|. Applying Lemma 3.1,
there exists a subset S ′[Ac, p, r1] that satisfies log |S ′[Ac, p, r1]| ≥ |Ac|/8 and such that any two
elements of S ′[Ac, p, r1] are |Ac|/4 separated with respect to the Hamming distance dH .

Let us consider the set T (1)
2 [k, p, r] of lower triangular square matrices T of size p such that:

1. the diagonal of T is made of 1,
2. the lower left submatrix of T of size k×⌊p/2⌋ contains exactly one entry that equals r2 on

each line and at most one on each column.
3. every other entry of T is zero.

Lemma 3.8. Assume that log p ≥ 21. There exists some subset T (2)
2 [k, p, r2] of T (1)

2 [k, p, r2] such

that the Hamming distance between any two different elements of T (2)
2 [k, p, r2] is larger than k/2

and such that log |T (2)
2 [k, p, r2]| ≥ k log(p)/10.

We now define the subset U ′
2[k, p, r1, r2] of U2[k, p] by

U ′
2[k, p, r1, r2] :=

{
Ω = T ∗S−1T , T ∈ T (2)

2 [k, p, r2] and S ∈ S ′[Ac, p, r1]
}

.

In order to apply Lemma 3.2, we need to bound the eigenvalues of the matrices in U ′
2[k, p, r1, r2],

lower bound the function d(., .) defined in (13), upper bound the Kullback divergence between
elements of U ′

2[k, p, r1, r2], and lower bound the cardinality of U ′
2[k, p, r1, r2].

1. Let us first bound the smallest and the largest eigenvalues of the matrices Ω in this set. Let
T and S correspond to the Cholesky decomposition of Ω. Straightforward computations
allow to prove that each diagonal element of T ∗T is between 1 and 1+r22 and the sum of the
absolute value of the off-diagonal elements of T ∗T on each line is smaller than 2r2. Hence,
T ∗T is diagonally dominant and ϕmax(T

∗T ) ≤ (1 + r2)
2 and ϕmin(T

∗T ) ≥ 1 − 2r2. Since
r2 is constrained to be smaller than 1/8 than the eigenvalues of T ∗T are between 3/4 and
3/2. The eigenvalues of S are between 1 and 5/4, because r1 is constrained to be smaller
than 1/4. The eigenvalues of Ω are bounded as follows: ϕmax(Ω) ≤ ϕmax(T

∗T )ϕmax(S
−1)

and ϕmin(Ω) ≥ ϕmin(T
∗T )ϕmin(S

−1). Hence, we conclude that the eigenvalues of Ω are
between 1/2 and 2.

2. Let us now lower bound d(Ω,Ω′) if Ω 6= Ω′. The quantity dH(ti, t
′
i)r

2
2/4 is smaller than 2.

Hence, by the mean value theorem log(1 + dH(ti, t
′
i)r

2
2/4) is larger than dH(ti, t

′
i)r

2
2/8. By
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definition of the sets T (2)
2 [k, p, r2] and S ′[Ac, p, r1], we get

d(Ω,Ω′) =

p−k∑

i=1

f

(
si
s′i

)
+

k∑

i=p−k+1

log

(
1 +

dH(ti, t
′
i)r

2
2

4

)

≥ p− k

4
[f(1 + r1) ∧ f(1/(1 + r1))] +

dH(T, T ′)r22
8

≥ L
[
(p− k)r21 + k log(p)r22

]

≥ L
[
pr21 + k log(p)r22

]
,

since k is assumed to be smaller than p/2.
3. Let us upper bound the Kullback divergence between two element Ω and Ω′ in U ′

2[k, p, r1, r2]

2K (Ω;Ω′) =

p∑

i=1

si
s′i

− log

(
si
s′i

)
− 1 +

li(ti, t
′
i)

s′i

=

p−k∑

i=1

si
s′i

− log

(
si
s′i

)
− 1 +

k∑

i=p−k+1

li(ti, t
′
i) .

Since the smallest eigenvalue of Ω is smaller than 1/2, it follows that li(ti.t
′
i) is smaller

than 2‖ti − t′i‖2l2 which is smaller than 4r22 by definition of T (2)
2 [k, p, r2]. Let us recall that

the function f defined by f(x) = x− 1− log(x) is positive and equivalent to (x− 1)2 when
x is close to one. Since r1 is smaller than 1/4, there exists some numerical constant L such
that f(si/s

′
i) ≤ Lr21 . All in all, we obtain the upper bound

K (Ω;Ω′) ≤ L
[
(p− k)r21 + kr22

]
≤ L

[
pr21 + kr22

]
.

4. Finally, we lower bound the cardinality of U ′
2[k, p, r1, r2].

log |U ′
2[k, p, r1, r2]| ≥

p− k

8
+

k log p

8
≥ L [p+ k log(p)] .

Applying Lemma 3.2, we conclude that

inf
Ω̂

sup
Ω∈U ′

2[k,p,r1,r2]

E
[
K
(
Ω; Ω̂

)]
≥ L

[
pr21 + k log(p)r22

]
,

provided that r1 ≤ 1/4, r2 ≤ 1/8, and n
[
pr21 + kr22

]
≤ L1 [p+ k log(p)]. Choosing r21 = 1/16 ∧

(L1 ∧ 1)/n and r22 = 1/64∧ (L1 ∧ 1) log(p)/n yields

inf
Ω̂

sup
Ω∈U ′

2[k,p,r1,r2]

E
[
K
(
Ω; Ω̂

)]
≥ L

p+ k log p

n
,

since we assume that n ≥ log(p). Let us now prove that the set U ′
2[k, p, r1, r2] is included in

BK(1).

K (Ω; Ip) ≤ [ϕmin(Ω)]
−1 kr22

2
+

p− k

2
f(1 + r1) ≤

k log p

n
+ p− k ≤ p ,

since f(5/4) ≤ 1 and n ≥ log(p). Hence, the following minimax lower bound also holds

inf
Ω̂

sup
Ω∈U2[k,p]∩BK(nβ)

E
[
K
(
Ω; Ω̂

)]
≥ L

p+ k log p

n
.
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If log p ≤ 21, we consider the set Uord[0, . . . , 0, 1, . . . , 1, r] where there are p− k times 0 and k
times 1. It is included in U2[k, p] and by Proposition 3.5, we conclude that

inf
Ω̂

sup
Ω∈U2[k,p]

E
[
K
(
Ω; Ω̂

)]
≥ L

p+ k

n
≥ L

p+ k log p

n
,

since log p ≤ 21. Besides, one can prove that the set Uord[0, . . . , 0, 1, . . . , 1, r] is included in BK(1)
if r is smaller than 1/

√
n∧1/8. Hence, the same minimax lower bound holds on U2[k, p]∩BK(nβ)

3.3.3. Technical lemmas

Proof of Lemma 3.7. Let Θ′[k, p/2] be a maximal subset of Θ[k, p/2] which is pk/4-separated
with respect to the Hamming distance. Then, the closed Hamming balls BH(x, pk/4) centered
at the elements of Θ′[k, p/2] and with radius kp/4s are covering Θ[k, p/2]. Hence,

|Θ[k, p/2]| ≤
∑

x∈Θ′[k,p/2]

∣∣∣BH

(
x, 0.5k

p

2

)∣∣∣ .

The balls BH(x, kp/4) can also be considered as subsets of the set {0, 1}(p/2)
2

kp/2 of binary sequences

of size (p/2)2 with exactly kp/2 non-zero coefficients. In the proof of Lemma 4.10 in [6], Massart
shows that if p ≥ 8k ∣∣∣BH

(
x, k

p

4

)∣∣∣ ≤
(
(p/2)2

kp/2

)( p

2k

)−ρk(p/2)

,

where ρ ≥ 0.23. Since we assume that log(p/k) ≥ 19, we can apply this result. If follows that

log |Θ′[k, p/2]| ≥ ρ

2
kp log

( p

2k

)
+ log |Θ[k, p/2]| − log

(
(p/2)2

kp/2

)
. (27)

Let us now lower bound the cardinality of Θ[k, p/2]. Observe that |Θ[2k, 2p]| ≥ |Θ[k, p]|4. Let us
indeed cut the square matrix of size 2p into four square matrices of size p. Then, any combination
of any four elements of Θ[k, p] yields an unique element of Θ[2k, 2p]. Since k = 2s for some integer
s > 0 and since 2k divides p, one concludes by straightforward induction that

log |Θ[k, p/2]| ≥ k2 log |Θ[1, p/(2k)]| .

Moreover, Θ[1, p/2k] is in correspondence with the set of permutations of p/2k elements. Thus,

log |Θ[1, p/(2k)]| ≥
( p

2k

)
! ≥ p

2k
log
( p

2ek

)
,

since a! ≥ (a/e)a for any positive integer a. If follows that log |Θ[k, p/2]| ≥ pk/2 log [p/(2ek)].

In contrast, log

(
(p/2)2

kp/2

)
is upper bounded by kp/2 log[pe/(2k)] since

(
a

b

)
≤ (ae/b)b for any

positive integers a and b. Gathering these bounds with (27) yields

log |Θ′[k, p/2]| ≥ pk

2

[
ρ log

(p
k

)
− ρ log 2− 2

]
≥ ρ

4
kp log

(p
k

)
,

since log(p/k) is assumed to be larger than 19 which is larger than 2 log 2 + 4/ρ.
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Proof of Lemma 3.8. The set T (1)
2 [k, p, r2] is in one to one correspondence with the set Θ2[k, ⌊p/2⌋]

of binary matrices of size k × ⌊p/2⌋ with exactly one non-zero entry on each line and at most
one on each column. The proof is then quite similar to the proof of Lemma 3.7. Let Θ′

2[k, ⌊p/2⌋]
be a maximal subset of Θ2[k, ⌊p/2⌋] such that the Hamming distance between any two different

elements of Θ′
2[k, ⌊p/2⌋] is larger than k/2. Then, we take the set T (2)

2 [k, p, r2] that corresponds
to Θ′

2[k, ⌊p/2⌋].

Let us lower bound the cardinality of Θ′
2[k, ⌊p/2⌋]. Since the closed Hamming balls with radius

k/2 and centered at the elements of Θ′
2[k, ⌊p/2⌋] cover Θ2[k, ⌊p/2⌋], we get

|Θ2[k, ⌊p/2⌋]| ≥
∑

x∈Θ′
2[k,⌊p/2⌋]

|BH(x, k/2)| .

One can consider these balls as subsets of the set {0, 1}k⌊p/2⌋k of binary sequence of size k⌊p/2⌋
with exactly k non-zero coefficients. We use the same lower bound for the Hamming balls as in
the previous proof:

|BH(x, k/2)| ≤
(
k⌊p/2⌋

k

)
(⌊p/2⌋)−ρk

,

if p ≥ 8. We recall that ρ ≥ 0.23. We can apply this result since log(p) ≥ 21. It follows that

log |Θ′
2[k, ⌊p/2⌋]| ≥ ρk log (⌊p/2⌋) + log |Θ2[k, ⌊p/2⌋]| − log

(
k⌊p/2⌋

k

)
.

The cardinality of Θ2[k, ⌊p/2⌋] is ⌊p/2⌋!/(⌊p/2⌋− k)!. For any positive integers a and b, it holds

that

(
a

b

)
≥ (a/b)b and a! ≥ (a/e)a. Hence, we obtain

log |Θ2[k, ⌊p/2⌋]| ≥ log

(⌊p/2⌋
k

)
+ log(k!) ≥ k log

(⌊p/2⌋
e

)
.

Let us combine the previous bounds and and let us apply the inequality

(
a

b

)
≤ (ae/b)b which

holds for any positive integer a and b. Hence, we get

log |Θ′
2[k, ⌊p/2⌋]| ≥ ρk log (⌊p/2⌋)− 2k ≥ k [ρ log(p)− ρ log(4)− 2] ≥ ρk

2
log(p) ,

since log(p) ≥ 21.

4. Proof of the Frobenius bounds

4.1. Proof of Corollary 5.4

For any symmetric matrixA, we denote {ϕi(A)}1≤i≤pn
the set of its eigenvalues. Since x−log x−1

is equivalent to (x−1)2 when x goes to one, the Kullback-Leibler divergence K (Ω;Ω′) decomposes
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as

K (Ω;Ω′) =
1

2
[tr (Ω′Σ)− log (|Ω′Σ|)− pn]

=
1

2

pn∑

i=1

{
ϕi

(√
ΣΩ′√Σ

)
− log

[
ϕi

(√
ΣΩ′√Σ

)]
− 1
}

=
1

4

pn∑

i=1

[
ϕi

(√
ΣΩ′√Σ

)
− 1
]2

+ o [K (Ω;Ω′)]

=
1

4

pn∑

i=1

ϕ2
i

(√
ΣΩ′√Σ− Ipn

)
+ o [K (Ω;Ω′)] ,

when K (Ω;Ω′) is close to 0. This last sum corresponds to the Frobenius norm of
√
ΣΩ′√Σ− Ipn

.
Hence, we get

‖
√
ΣΩ′√Σ− Ipn

‖2F = 4 [K (Ω;Ω′)] + o [K (Ω;Ω′)] , (28)

when K (Ω;Ω′) is close to 0. Let us come back to the Frobenius distance between Ω′ and Ω,

‖Ω′ − Ω‖2F = tr
[√

Ω
(√

ΣΩ′√Σ− Ipn

)
Ω
(√

ΣΩ′√Σ− Ipn

)√
Ω
]

≤ ϕ2
max (Ω) ‖

√
ΣΩ′√Σ− Ipn

‖2F .

Gathering this upper bound with the preceding result yields

‖Ω′ − Ω‖2F ≤ 4ϕ2
max (Ω) [K (Ω;Ω′) + o (K (Ω;Ω′))] , (29)

when K (Ω;Ω′) is close to 0. By Corollary 5.1, the risk of Ω̃d
ord on Uord[k1, , . . . , kp,+∞]∩Bop(γ)

is upper bounded

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η

pn +
∑pn

i=1 ki
n

+ τn(K, η,Ω) .

The Kullback divergenceK (Ω; Ipn
) /pn is upper bounded by ϕmax(Ω)∨(log[1/ϕmin(Ω)]−1) ≤ Lγ .

Hence, the term τn(K, η,Ω) is upper bounded by LK,η,γpn/n. We conclude that

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η,γ

pn +
∑pn

i=1 ki
n

.

Gathering this upper bound with (29) yields the first result. By Proposition 5.3, we know that

E
[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η,γpn

(
R

2
2s+1n− 2s

2s+1 ∧ pn
n

)
.

We prove the second result using this last bound and (29).

The corresponding minimax lower bounds are proved as Propositions 3.5 and 5.3. Indeed,
we consider again the set U ′

ord[k1, . . . , kpn
, r] defined in the proof of proposition 3.5 with r ≤

(8k)−1 ∧ 1/n. We recall that this set belongs to Bop(2). For any two matrices Ω1 6= Ω2 in this
set,

K(Ω1; Ω2) ≥ 2d(Ω1,Ω2) ≥ L

[
pn∑

i=1

ki + pn

]
r2 ,
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where d(., .) is introduced in Lemma 3.2. The second lower bound is given at the end of the proof
of Proposition 3.5. We also have stated the converse upper bound

K(Ω1; Ω2) ≤ L

[
pn∑

i=1

ki + pn

]
r2 .

Arguing as previously, we connect the Frobenius distance between Ω1 and Ω2 with the Kullback
entropy.

‖Ω1 − Ω2‖2F ≥ ϕ2
min (Ω1) ‖

√
Ω1

−1
Ω2

√
Ω1

−1 − Ipn
‖2F

≥ 4ϕ2
min (Ω1)K (Ω1; Ω2) + o [K (Ω1; Ω2)]

≥ K (Ω1; Ω2) + o [K (Ω1; Ω2)] ,

because ϕmin(Ω1) is larger than 1/2. Since r2 is assumed to be smaller than 1/n and since∑pn

i=1 ki + pn = o(n), K (Ω1; Ω2) goes to 0 when n goes to infinity. Hence, for n sufficiently large,

‖Ω1 − Ω2‖2F ≥ 1

2
K (Ω1; Ω2) ≥ L

[
pn∑

i=1

ki + pn

]
r2 .

Applying suitably Lemma 3.3 yields

inf
θ̂

sup
Ω∈Uord[k1,...,kpn ,r]∩Bop(γ)

E
[
‖Ω− Ω̂‖2F

]
≥ L

[
pn∑

i=1

ki + pn

](
r2 ∧ 1

n

)
,

as long as n is large enough. This proves the first minimax lower bound.

Let us define kn := (R2n)1/(2s+1) ∧ (p − 1) and rn = 1/(8
√
n). Since s > 1/4, kn is smaller

than ⌊√n⌋ for n large enough. We straightforwardly check as in the proof of Proposition 5.3

that Uord[0, 1, . . . , kn, . . . kn, rn] is included in E ′[s, pn, R]∩Bop(2). Using the last minimax lower
bound, we conclude that

inf
θ̂

sup
Ω∈E′[s,pn,R]∩Bop(2)

E
[
‖Ω− Ω̂‖2F

]
≥ L

pnkn
n

≥ Lpn

((
R

ns

) 2
2s+1

∧ pn − 1

n

)
,

for n large enough.

4.2. Proof of Corollary 6.3

From the previous proof, we know that for any estimator Ω̂ such that K(Ω; Ω̂) = oP (1) satisfies

‖Ω̂− Ω‖2F = OP [K(Ω; Ω̂)]. Let us apply Corollary 6.1:

E
[
K
(
Ω; Ω̃

)]
≤ LK,η

(kn + 1) log pn
n

+ LK,ηn
5/2 [p+K (Ω; Ipn

)] exp [−nLK,η] .

The Kullback divergence K (Ω; Ipn
) is upper bounded by pn [ϕmax(Ω) ∨ (log[1/ϕmin(Ω)]− 1)].

Hence, we get

E
[
K
(
Ω; Ω̃

)]
≤ LK,η,γ

pn + kn log pn
n

[1 + o(1)] .

Gathering this last upper bound with (28) yields the first result. Since the Frobenius norm
dominates the operator norm, the second result follows.

The corresponding asymptotic minimax lower bound is proved as Proposition 6.2 using again
the lower bound of the Frobenius distance ‖Ω−Ω̂‖2F in terms of the Kullback divergence K(Ω; Ω̂).
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5. Proof of Lemma 10.2

Let d be a positive integer larger than one. By Jensen’s inequality, we first notice that Ψ(d) is
non-positive. Using the density of a χ2(d) distribution, we obtain

Ψ(d) =

∫ +∞

0

log(t)e−ttd/2−1

2d/2Γ(n/2)
dt− log(d) := Id − log(d) ,

where Γ(.) stands for the Gamma function. Let us exhibit a recurrence relation for Id applying
integration by parts:

Id =

∫ +∞

0

log(2t)e−ttd/2−1

Γ(d/2)
dt = 0 +

∫ +∞

0

e−ttd/2−2 1 + log(2t)(d/2− 1)

Γ(d/2)

=
1

d/2− 1
+ Id−2 .

Hence, we only have to work out I1 and I2 in order to compute Id.

I2 = log(2) + Γ′(1)/Γ(1) = log(2)− γ ,

I1 = log(2) + Γ′(1/2)/Γ(1/2) = − log(2)− γ ,

where γ is the Euler constant. For any positive integer d, we therefore derive that

Ψ(2d) =

d−1∑

i=1

1

i
− γ − log(d) ,

Ψ(2d+ 1) =

d∑

i=1

2

2i− 1
− γ − 2 log(2)− log(d+ 1/2) .

Using the asymptotic expansion of the harmonic series yields Ψ(2d) = −1/(2d) + O
(
1/(2d)2

)
.

We note h(d) the d-th partial sum of harmonic series. Straightforwards computations lead to

Ψ(2d+ 1) = 2h(2d)− h(d)− γ − 2 log(2)− log(d+ 1/2)

= O
(

1

d2

)
+ log

(
d

d+ 1/2

)
=

−1

2d+ 1
+O

(
1

(2d)2

)
.

Thus, we obtain the asymptotic expansion Ψ(d) = −1/d + O
(
1/d2

)
. Let us turn to the lower

bound. From now on, we assume that d ≥ 3. We define the sequence vd by vd := Ψ(d)+1/(d−2).
We know that vd converges to 0 when d goes to infinity. Let us prove that the subsequences
(v2d)d>1 and (v2d+1)d≥1 are decreasing. Since log(1 − x) ≤ −x− x2/2 for any 0 ≤ x < 1,

v2d+2 − v2d =
3

2d
− 1

2d− 2
+ log

(
1− 1

d+ 1

)

≤ 1

d
− 1

2d(d− 1)
− 1

d+ 1
− 1

2(d+ 1)2

≤ 1

2d(d+ 1)2
− 1

d(d + 1)(d− 1)
< 0 .

Analogously, we compute

v2d+1 − v2d−1 =
3

2d− 1
− 1

2d− 3
+ log

(
1− 2

2d+ 1

)

≤ 4

(2d− 1)(2d+ 1)2
− 8

(2d− 3)(2d− 1)(2d+ 1)
< 0 .
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We conclude that vd is non-negative for any d ≥ 3. It follows that Ψ(d) ≥ −1/(d− 2).

6. Proof of Proposition 7.2

For the sake of clarity, we forget the subscript p − 1 and p in the collection of models M, the
penalty pen(.) and the vector t.

The proof is divided in two steps. First, we explain why the “true” model m∗ belongs to M̂
with high probability. Then, we prove that m∗ minimizes the penalized criterion over the whole
collection MD

co with high probability. The matrix Σ1:(p−1) refers to the submatrix of Σ where
the last line and the last column are removed.

The restricted eigenvalues of order q∗ of the matrix Σ1:(p−1) lie between c∗ and c∗. Define

Z = X1:(p−1)

√
Σ

−1

1:(p−1). The matrix Z follows a standard Wishart distribution with parameters

n and p − 1. Let us define V = ∪|A|=q∗ ∪supp(u)=A

√
Σu as the images of q∗-sparse vectors by√

Σ. The set V is the union
(
(p−1)
q∗

)
subspaces of of dimension q∗. Let us call V1 one of these

subspaces. By Theorem 2.13 in [4], it holds that

1/2 ≤ u∗Z∗Zu

nu∗u
≤ 2, ∀u ∈ V1

with probability larger than 2 exp[−n(1−1/
√
2−
√
q∗/n)]. Applying an union bound, we conclude

that

c∗/2 ≤
u∗
[√

ΣZ∗Z
√
Σ
]
A
u

nu∗u
≤ 2c∗, ∀A with |A| = q∗ and u ∈ Rq∗ ,

with probability going to one. Hence, the empirical design X1:(p−1) satisfies a sparse Riesz con-
dition of order q∗ with spectrum bounds c∗/2 and 2c∗ with probability going to 1.

We will apply Theorem 2 in [9]. In order to check the assumptions of this theorem, we
shortly use the notations of Zhang and Huang (See Section 2 in [9]). Since t is q-sparse, we
have η1 = η2 = 0. Moreover, M∗

1 and M∗
3 only depend on c∗ and c∗. As p is large, we can take

λ = 4
√
2c∗
√
s log(p)n. By Theorem 2 in [9], the Lasso estimator t̂λ selects all non-zero coeffi-

cients of t and selects no more than (M∗
1 −1)q other variables with high probability. We conclude

that m∗ belongs to M̂ with probability going to one.

The notations o(1), O(1) respectively refer to sequences that converge to 0 or stay bounded
when n goes to infinity. These sequences may depend on K, but do not depend on m∗, on the
true covariance Σ, or a particular model m. For any model m of size smaller than D, let us define

∆(m,m∗) := ‖Π⊥
mXp‖2nepen(m) − ‖Π⊥

m∗
Xp‖2nepen(m∗) ,

where the notation Π⊥
m is defined in Section 10.1. Observe that m̂ = m∗ if ∆(m,m∗) is positive

for any model m.

CASE 1: m∗ ( m. We have ∆(m,m∗) ≥ 0 if

‖Πm⊥
∗ ∩mǫ‖2n/|m \m∗|

‖Π⊥
mǫ‖2n/(n− |m|) ≤ epen(|m|) − epen(q)(n− |m|)

|m \m∗|epen(q)
(30)
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Let us call A1 and A2 the right and the left expression of (30). By definition (21) of the penalty,
we derive that

A1 ≥ 2K log

(
p

|m|

)
(1 + o(1)) , (31)

since q log(p)/n goes to 0 and p/|m| goes to infinity (uniformly with respect to m such m ≤ D =
n/ log2(p).

Let us turn to A2. Consider u ∈ (0, 1) and let F−1
D,N (u) denote the 1 − u quantile of a Fisher

random variable with D and N degrees of freedom. By Lemma 1 in [2], it holds that

DF−1
D,N (u) ≤ D + 2

√
D

(
1 + 2

D

N

)
log

(
1

u

)
+

(
1 + 2

D

N

)
N

2

[
exp

(
4

N
log

(
1

u

))
− 1

]
.

Let us set u to

u =

{
p−2

(
p− q

|m \m∗|

)}−1

.

Applying the inequality
(
r
s

)
≤ s log(er/s), we get the upper bound

A2 = F−1
|m\m∗|,n−|m|(u) ≤

[
2 log

(
p

|m \m∗|

)
+ 2

√
2 log(p)

|m \m∗|
+

2 log(p)

|m \m∗|

]
(1 + o(1)) ,

≤ 4 log

(
p

|m \m∗|

)
(1 + o(1)) , (32)

since |m| log(p)/n ≤ D log(p)/n goes to 0.

Conclusion. Let us compare the lower bound (31) of A1 with the upper bound (32) of A2.

• Let us first assume that |m| ≤ 2q. Then,

A1 ≥ 2K log

(
p

q

)
(1 + o(1)) ≥ 2K(1− v) log(p) (1− o(1)) ,

since q ≤ nv/ log(p) ≤ pv. Hence, we get

A2 ≤ 4 log

(
p

|m \m∗|

)
(1 + o(1)) < A1,

for n large enough since we assume that 2K(1− v) > 4.
• If |m| > 2|m∗|, we also have

A2 ≤ 4 log

(
p

|m|

)
(1 + o(1)) < A1 ,

for n large enough since we assume that 2K > 4.

It follows from Ineq. (30) and the definition of A1 and A2 that P [m∗ ( m̂] ≤ L/p, for n larger
than some positive constant that may depend on K, s, but does not depend on m∗.
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CASE 2: m∗ * m. The random variable n‖Π⊥
mXp‖2n/(s+ l(tm, t)) follows a χ2 distribution with

n− |m| degrees of freedom. Applying Lemma 1 in [5], we derive that for any model m

‖Π⊥
mXp‖2n ≥ s

(
1− 2

√
|m| log(ep/|m|) + 2 log p

n

)
= s(1 + o(1)) ,

with probability larger than 1− L/p. Similarly, we get that

‖Π⊥
m∗

ǫ‖2n ≤ s

[
1 + 4

√
log(p)

n

]
= s(1 + o(1)) ,

with probability larger than 1/p. Let us define the random variable Em by

Em =

〈
Π⊥

mǫ,
X(t− tm)

‖X(t− tm)‖2n

〉2

n

The quantity ∆(m,m∗) decomposes as

∆(m,m∗) ≥ −‖Πmǫ‖2n + ‖Πm∗ǫ‖2n − 2Em +
1

2
‖Π⊥

mX(t− tm)‖2n
+ s[1 + o(1)][epen(m) − 1]− s[1 + o(1)][epen(m∗) − 1] .

The random variables involved in this last expression follow χ2 distributions. Applying Lemma
1 in [5], we get that for all m,

‖Πmǫ‖2n
s

≤ 6
|m|
n

log

(
p

|m|

)
[1 + o(1)]

Em

s
≤ 6

|m|
n

log

(
p

|m|

)
[1 + o(1)]

‖Π⊥
mX(t− tm)‖2n ≥ l(tm, t)/2 ,

with probability larger than 1− L/p. Hence, with probability larger than 1− L/p, we get

∆(m∗,m)

s
≥ l(tm, t)

2s
+ (K − 12)

|m|
n

log

(
p

|m|

)
[1 + o(1)]−K

q

n
log

(
p

q

)
[1 + o(1)] . (33)

CASE 2.A: |m| > 2q. In this case, we lower bound the difference exp(pen(m))− exp(pen(m∗))
as in (31). Hence, we obtain that

∆(m,m∗)

s
≥ [K(|m| − q)− 12|m|] log

(
p

|m|

)
(1 + o(1)) ,

which is strictly positive for n large enough since K is larger than 24.

CASE 2.B: |m| ≤ 2q. In such a case, we derive from (33) that

∆(m,m∗)

s
≥ l(tm, t)

2s
− (K + 12)

q

n
log

(
p

q

)
[1 + o(1)] .
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By Assumptions (H.1) and (H.2) we derive that

l(tm, t) ≥ c∗
2
M2(K, c∗)s

q

n
log(p) .

Since M2(K, c∗) > 2(K + 12)/c∗, ∆(m,m∗) is positive for n large enough.
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