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AbstractThis paper studies the estimation of a large covariance matrix. We introduce a
novel procedure called ChoSelect based on the Cholesky factor of the inverse covariance.
This method uses a dimension reduction strategy by selecting the pattern of zero of the
Cholesky factor. Alternatively, ChoSelect can be interpreted as a graph estimation proce-
dure for directed Gaussian graphical models. Our approach is particularly relevant when the
variables under study have a natural ordering (e.g. time series) or more generally when the
Cholesky factor is approximately sparse. ChoSelect achieves non-asymptotic oracle inequal-
ities with respect to the Kullback-Leibler entropy. Moreover, it satisfies various adaptive
properties from a minimax point of view. We also introduce and study a two-stage proce-
dure that combines ChoSelect with the Lasso. This last method enables the practitioner to
choose his own trade-off between statistical efficiency and computational complexity. More-
over, it is consistent under weaker assumptions than the Lasso. The practical performances
of the different procedures are assessed on numerical examples.
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Keywords and phrases: Covariance matrix, banding, Cholesky decomposition, directed
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1. Introduction

The problem of estimating large covariance matrices has recently attracted a lot of attention. On
the one hand, there is an inflation of high-dimensional data in many scientific areas: gene arrays,
functional magnetic resonance imaging (fMRI), image classification, and climate studies. On the
other hand, many data analysis tools require an estimation of the covariance matrix Σ. This is
for instance the case for principal component analysis (PCA), for linear discriminant analysis
(LDA), or for establishing independences or conditional independences between the variables.
It is known for a long time that the simplest estimator, the sample covariance matrix performs
poorly when the size of the vector p is larger than the number of observations n (see for instance
Johnstone [16]).

Depending on the objectives of the analysis and on the applications, different approaches are
used for estimating high-dimensional covariance matrices. Indeed, if one wants to perform PCA
or to establish independences between the covariates, then it is advised to estimate directly the
covariance matrix Σ. In contrast, performing LDA further relies on the inverse of the covariance
matrix. In the sequel, we call this matrix the precision matrix and note it Ω. Sparse precision
matrices are also of interest because of their connection with graphical models and conditional
independence. The pattern of zero in Ω indeed corresponds to the graph structure of the distri-
bution (see for instance Lauritzen [20] Sect.5.1.3).
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Most of the methods based on direct covariance matrix estimation amount to regularize the
empirical covariance matrix. Let us mention the work of Ledoit and Wolf [21] who propose
to replace the sample covariance with its linear combination with the identity matrix. However,
these shrinkage methods are known to provide an inconsistent estimation of the eigenvectors [17].
Applying recent results on random matrix theory, El Karoui [11] and Bickel and Levina [5]
have studied thresholding estimators of Σ. The resulting estimator is sparse and is proved (for
instance [5]) to be consistent with respect to the operator norm under mild conditions as long
as log(p)/n goes to 0. These results are particularly of interest for performing PCA since they
imply a consistent estimation of the eigenvalues and the eigenvectors. Observe that all these
methods are invariant under permutation of the variables. Yet, in many applications (for instance
times series, spectroscopy, climate data), there exists a natural ordering in the data. In such
a case, one should use other procedures to obtain faster rates of convergence. Among other,
Furrer and Bentgsson [14] and Bickel and Levina [6] use banded or tapering estimators. Again,
the consistency of such estimators is proved. Moreover, all these methods share an attractive
computational cost. We refer to the introduction of [5] for a more complete review.

The estimation procedures of the precision matrix Ω fall into three categories depending
whether there exists an ordering on the variables and to what extent this ordering is important.
If there is not such an ordering, d’Aspremont et al. [3] and Yuan and Lin [33] have adopted a
penalized likelihood approach by applying a l1 penalty to the entries of the precision matrix. It
has also been discussed by Rothman et al. [27] and Friedman et al. [13] and extended by Lam
and Fan et al. [19] or Fan et al. [12] to other penalization methods. These estimators are known
to converge with respect to the Frobenius norm (for instance [27]) when the underlying precision
matrix is sparse enough.

When there is a natural ordering on the covariates, the regularization is introduced via the
Cholesky decomposition:

Ω = T ∗S−1T ,

where T is a lower triangular matrix with a unit diagonal and S is a diagonal matrix with
positive entries. The elements of the i-th row can be interpreted as regression coefficient of i-
th component given its predecessors. This will be further explained in Section 2.1. For time
series or spectroscopy data, it is more likely that the relevant covariates for this regression of
the i-th component are its closest predecessors. In other word, it is expected that the matrix
T is approximately banded. With this in mind, Wu and Pourahmadi [31] introduce a k-banded
estimator of the matrix T by smoothing along the first k subdiagonals and setting the rest to 0.
The choice of k is made by applying AIC (Akaike [1]). They prove element-wise consistency of
their estimator but did not provide any high-dimensional result with respect to a loss function
such as Kullback or Frobenius. Bickel and Levina [6] also consider k-banded estimator of T and
are able to prove rates of convergence in the matrix operator norm. Moreover, they introduce
a cross-validation approach for choosing a suitable k, but they do not prove that the selection
method achieves adaptiveness. More recently, Levina et al. [22] propose a new banding procedure
based on a nested Lasso penalty. Unlike the previous methods, they allow the number k = ki
used for banding to depend on the line i of T . They do not state any theoretical result, but they
exhibit numerical evidence of its efficiency. In the sequel, we call the issue of estimating Ω by
banding the matrix T the banding problem.

Between the first approach based on precision matrix regularization and the second one which
relies on banding the Cholesky factor, there exists a third one which is not permutation invariant,
but does not assume that the matrix T is approximately banded. It consists in approximating T
by a sparse lower triangular matrix (i.e. most of the entries are set to 0).

When is it interesting to adopt this approach? If we consider a directed graphical model whose
graph is sparse and compatible with the ordering of the variables, then the Cholesky factor T is
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sparse. Indeed, its pattern of zero is related to the directed acyclic graph (DAG) of the directed
graphical model associated to this ordering (see Section 2.1 for a definition). More generally, it
may be worth using this strategy even if one does not know a “good” ordering on the variables.
On the one hand, most of the procedures based on the estimation of T are computationally
faster than their counterpart based on the estimation of Ω. This is due to the decomposition
of the likelihood into p independent terms explained in Section 3. On the other hand, there
exist examples of sparse Cholesky factor T such that the precision matrix Ω is not sparse at
all. Consider for instance a matrix T which is zero except on the diagonal and on the last line.
Admittedly, it is not completely satisfying to apply a method that depends on the ordering
of the variables when we do not know a good ordering. There are indeed examples of sparse
precision matrices Ω such that for a bad ordering, the Cholesky factor is not sparse at all (see
[27] Sect.4). Nevertheless, if sparse precision matrices and sparse Cholesky factors have different
approximation capacities, it remains still unclear which one should be favored.

In the sequel, we call the issue of estimating T in the class of sparse lower triangular matrices
the complete graph selection problem by analogy to the complete variable estimation problem
in regression problems. In this setting, Huang et al. [15] propose to add an l1 penalty on the
elements of T . More recently, Lam and Fan [19] have extended the method to other types of
penalty and have proved its consistency in the Frobenius norm if the matrix T is exactly sparse.
To finish, let us mention that Wagaman and Levina [30] have developed a data-driven method
based on the isomap algorithm for picking a “good” ordering on the variables.

In this paper, we consider both the banding problem and the complete graph selection problem.
We introduce a general l0 penalization method based on maximum likelihood for estimating the
matrices T and S. We exhibit a non-asymptotic oracle inequality with respect to the Kullback
loss without any assumption on the target Ω.

For the adaptive banding issue, our method is shown to achieve the optimal rate of convergence
and is adaptive to the rate of decay of the entries of T when one moves away from the diagonal.
Corresponding minimax lower bounds are also provided. We also compute asymptotic rates of
convergence in the Frobenius norm. Contrary to the l1 penalization methods, we explicitly provide
the constant for tuning the penalty. Finally, the method is computationally efficient.

For complete graph selection, we prove that our estimator non-asymptotically achieves the op-
timal rates of convergence when T is sparse. We also provide the corresponding minimax lower
bounds. To our knowledge, this minimax lower bounds with respect to the Kullback discrepansy
are also new. Moreover, our method is flexible and allows to integrate some prior knowledge on
the graph. However, this procedure is computationally intensive which makes it infeasible for p
larger than 30. This is why we introduce in Section 7 a computationally faster version of the
estimator by applying a two-stage procedure. This method inherits some of the good properties
of the previous method and applies for arbitrarily large p. Moreover, it is shown to select consis-
tently the pattern of zeros under weaker assumptions than the Lasso. These theoretical results
are corroborated by a simulation study.

Since data analysis methods like LDA are based on likelihood we find more relevant to obtain
rates of convergence with respect to the Kullback-Leibler loss than Frobenius rates of conver-
gence. Moreover, considering Kullback loss allows us to obtain rates of convergence which are
free of hidden dependency on parameter such as the largest eigenvalue of Σ. In this sense, we
argue that this loss function is more natural for the statistical problem under consideration.

The paper is organized as follows. Section 2 gathers some preliminaries about the Cholesky
decomposition and introduces the main notations. In Section 3, we describe the procedure and
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provide an algorithm for computing the estimator Ω̃. In Section 4, we state the main result of
the paper, namely a general non-asymptotic oracle type inequality for the risk of Ω̃. In Section
5, we specify our result to the problem of adaptive banding. Moreover, we prove that our so-
defined estimator is minimax adaptive to the decay of the off-diagonal coefficients of the matrix
T . Asymptotic rates of convergence with respect to the Frobenius norm are also provided. In
Section 6, we investigate the complete graph selection issue. We first derive a non-asymptotic
oracle inequality and then derive that our procedure is minimax adaptive to the unknown spar-
sity of the Cholesky factor T . As previously, we provide asymptotic rates of convergence with
respect to the Frobenius loss function. Moreover, we introduce a computationally feasible estima-
tion procedure in Section 7 and we derive an oracle-type inequality and sufficient condition for
consistent selection of the graph. In Section 8, the performances of the procedure are assessed on
numerical examples for both the banding and the complete graph selection problem. We make a
few concluding remarks in Section 9. Sketch of the proof are in Section 10, while the details are
postponed to the technical Appendix [28].

2. Preliminaries

2.1. Link with conditional regression and graphical models

In this subsection, we review basic properties about Cholesky factors and explain their connec-
tion with directed graphical models.

We consider the estimation of the vector X = (Xi)1≤i≤p of size p which follows a centered
normal distribution with covariance matrix Σ. We always assume that Σ is non-singular. We recall
that the precision matrix Ω uniquely decomposes as Ω = T ∗ST where T is a lower triangular
matrix with unit diagonal and S is a diagonal matrix. Let us first emphasize the connection
between the modified Cholesky factor T and conditional regressions. For any i between 2 and
p we note ti the vector of size i − 1 made of the i − 1-th first elements of the ith-line of T . By
convention t1 is the vector of null size. Besides, we note si the i-th diagonal element of the matrix
S. Let us define the vector ǫ = (ǫi)1≤i≤p of size p as ǫ := TX . By standard Gaussian properties,
the covariance matrix of ǫ is S. Since the diagonal of T is one, it follows that for any 1 ≤ i ≤ p

X [i] =

i−1∑

j=1

−ti[j]X [j] + ǫi , (1)

where Var(ǫi) = si and the (ǫi)1≤i≤p are independent.

Let
−→
G be a directed acyclic graph who vertex set is {1, . . . , p}. We assume that the direction

of the edges is compatible with the natural ordering of {1, . . . , p}. In other words, we assume

that any edge j → i in
−→
G satisfies j < i. Given a vertex i, the set of its parents is defined by:

pa−→
G
(i) := {j < i , j → i} .

Then, the vector X is said to be a directed Gaussian graphical model with respect to−→
G if for any 1 ≤ j < i ≤ p such that j /∈ pa−→

G
(i), Xi is independent of Xj conditionally to

(Xk)k∈pa−→
G
(i). This means that only the variables (Xk)k∈pa−→

G
(i) are relevant for predicting Xi

among the variables (Xk)k<i. There are several definitions of directed Gaussian graphical model
(see Lauritzen [20]), which are all equivalent when Σ is non-singular.
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There exists a correspondence between the graph
−→
G and the Cholesky factor T of the precision

matrix Ω. If X is a directed graphical model with respect to
−→
G , then T [i, j] = 0 for any j < i

such that j 9 i. Conversely, X is a directed graphical model with respect to the graph
−→
G defined

by j → i if and only T [i, j] 6= 0. Hence, it is equivalent to estimate the pattern of zero of T and

the minimal graph
−→
G compatible with the ordering.

These definitions and properties depend on a particular ordering of the variables. It is beyond
the scope of this paper to discuss the graph estimation when the ordering is not fixed. We refer
the interested reader to Kalisch and Bühlmann [18].

2.2. Notations

For any set A, |A| stands for its cardinality. We are given n independent observations of the
random vector X . We always assume that X follows a centered Gaussian distribution N (0p,Σ).
In the sequel, we note X the n× p matrix of the observations. Moreover, for any 1 ≤ i ≤ p and
any subset A of {1, . . . , p− 1}, Xi and XA respectively refer to the vector of the n observations
of Xi and to the n× |A| matrix of the observations of (Xi)i∈A.

In the sequel, K(Ω;Ω′) stands for the Kullback divergence between the centered normal dis-
tribution with covariance Ω−1 and the centered normal distribution with covariance Ω′−1. We
shall also sometimes assess the performance of the procedures using the Frobenius norm and
the l2 operator norm. This is why we respectively define ‖A‖2F :=

∑
i,j A[i, j]

2 and ‖A‖ as the
Frobenius norm and the l2 operator norm of the matrix A. For any matrix Ω, ϕmax(Ω) stands
for the largest eigenvalue of Ω. Finally, L, L1, L2,. . . denote universal constants that can vary
from line to line. The notation L. specifies the dependency on some quantities.

3. Description of the procedure

In this section, we introduce our procedure for estimating Ω given a n-sample of the vector X .
For any i between 1 and p, mi stands for a subset of {1, . . . , i − 1}. By convention, m1 = ∅.
In terms of directed graphs, mi stands for the set of parents of i. Besides, we call any set m of
the form m = m1 ×m2 × . . . ×mp a model. This model m is one to one with a directed graph
whose ordering is compatible with the natural ordering of {1, . . . , p}. We shall sometimes call m
a graph in order to emphasize the connection with graphical models.

Given a model m, we define Tm as the affine space of lower triangular matrices T with unit
diagonal such for any i between 1 and p, the support (i.e. the non-zero coefficients) of ti is
included in mi. We note Diag(p) the set of all diagonal matrices with positive entries on the

diagonal. The matrices T̂m and Ŝm are then defined as the maximum likelihood estimators of T
and S

(
T̂m, Ŝm

)
= arg min

T ′∈Tm, S′∈Diag(p)
Ln(T, S) :=

1

2
tr
[
T ∗S−1TX∗X

]
+

1

2
log |S| (2)

Here, Ln(T, S) stands for the negative log-likelihood. Hence, the estimated precision matrix is

Ω̂m = T̂ ∗
mŜ−1

m T̂m. This matrix Ω̂m is the maximum likelihood estimator of Ω among the precision
matrices which correspond to directed graphical models with respect to the graph m.

For any i between 1 and p, Mi refers to a collection of subsets of {1, . . . , i − 1} and we
call M := M1 × . . . × Mp a collection of models (or graphs). The choice of the collection M
depends on the estimation problem under consideration. For instance, we shall use a collection
corresponding to banded matrices when we will consider the banding problems. The collections
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M are specified for the banding problem and the complete graph selection problem in Sections
5 and 6.

Our objective is to select a model m̂ ∈ M such that the Kullback-Leibler risk E[K(Ω; Ω̂m)] is
as small as possible. We achieve it through penalization. For any 1 ≤ i ≤ p, peni : Mi → R

+

is a positive function that we shall explicitly define later. The penalty function pen : M → R
+

is defined as pen(m) =
∑p

i=1 peni(mi). Then, we select a model m̂ that minimizes the following
criterion

m̂ := arg min
m∈M

2Ln(T̂m, Ŝm) + pen(m) = arg min
m∈M

tr
[
Ω̂mX∗X

]
− log |Ω̂m|+ pen(m)

For short, we write Ω̃ := Ω̂m̂, S̃ := Ŝm̂, and T̃ = T̂m̂.

As mentioned earlier, the idea underlying the use of the matrices T and S lies in the regression
models (1). Indeed, these regressions naturally appear when deriving the negative log-likelihood
(2):

2Ln(T
′, S′) =

p∑

i=1

s′−1
i ‖Xi +X<i(t

′
i)

∗‖2n + log(s′i) ,

where ‖.‖n stands for the Euclidean norm in R
n divided by

√
n. By definition of T̂m and Ŝm,

we easily derive that the i-th row vector t̂i,mi
of T̂m and the i-th diagonal element ŝi,mi

of Ŝm

respectively equal

t̂i,mi
= arg min

supp(t′
i
)⊂mi

‖Xi +X<i(t
′
i)

∗‖2n and ŝ2i,mi
= ‖Xi +X<i t̂

∗
i,mi

‖2n , (3)

for any 1 ≤ i ≤ p. Here, supp(t′i) stands for the support of t′i. Hence, the row vector t̂i,mi
is the

least-squares estimator of ti in the regression model (1) and ŝi,mi
is the empirical conditional

variance of Xi given Xmi
. There are two main consequences: first, Expression (3) emphasizes the

connection between covariance estimation and linear regression in a Gaussian design. Second,
it highly simplifies the computational cost of our procedure. Indeed, the negative log-likelihood
Ln(T̂m, Ŝm) now writes

Ln

(
T̂m, Ŝm

)
=

1

2

p∑

i=1

[log (ŝi,mi
) + 1] .

and it follows that m̂i = argminmi∈Mi
log (ŝi,mi

)+peni(mi). This is why we suggest to compute

m̂ and Ω̂ as follows. Assume we are given a collection of graphs M = (M1, . . . ,Mp) and penalty
functions (pen1(.), . . . , penp(.)).

Algorithm 3.1. Computation of m̂ and Ω̃.

1. For i going from 1 to p,

• Compute ŝi,mi
for each model mi ∈ Mi.

• Take m̂i = argminmi∈Mi
log (ŝi,mi

) + peni(mi).

2. Set m̂ = (m̂1, . . . , m̂p) and built (T̃ , S̃) by gathering the estimators (t̂i,m̂i
, ŝi,m̂i

).

3. Take Ω̃ = T̃ S̃−1T̃ .
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In what follows, we refer to this method as ChoSelect. In order to select m̂, one needs to
compute all ŝi,mi

for any i ∈ {1, . . . , p} and any model mi ∈ Mi. Hence, the complexity of the
procedure is proportional to

∑p
i=1 |Mi|. We further discuss computational issues and we provide

a faster procedure in Section 7.

4. Risk analysis

In this section, we first provide a bias-variance decomposition for the Kullback risk of the para-
metric estimator Ω̂m. Afterwards, we state a general non-asymptotic risk bound for Ω̃.

4.1. Parametric estimation

Let m be model in M. Let us define the matrix Ωm as the best approximation of Ω that
corresponds to the model m. The matrices Tm and Sm are defined as the minimizers in Tm and
Diag(p) of the Kullback loss with Ω

(Tm, Sm) := arg min
T ′∈Tm, S′∈Diag(p)

K
(
Ω;T ′∗S′−1T ′)

We note Ωm = T ∗
mS−1

m Tm.
We define the conditional Kullback-Leibler divergence of the distribution of Xi given X<i by

K (ti, si; t
′
i, s

′
i) := E

{
K
[
Pti,si(Xi|X<i);Pt′

i
,s′

i
(Xi|X<i)

]}
, (4)

where Pti,si(Xi|X<i) stands for the conditional distribution of Xi given X<i with parameters
(ti, si). Applying the chain rule, we obtain thatK(Ω;Ω′) =

∑p
i=1 K (ti, si; t

′
i, s

′
i). Consequently, we

analyze the Kullback risk E[K(Ω; Ω̂m)] by controlling each conditional risk E
[
K(ti, si; t̂i,mi

, ŝi,mi
)
]
.

Let us define ti,mi
and si,mi

as the projections of (ti, si) on the space associated to the model
mi with respect to the Kullback divergence K(ti, si; ., .). In other words, ti,mi

and si,mi
satisfy

ti,mi
= arg min

supp(t′
i
)⊂mi

E

[
(Xi +X<i(t

′
i)

∗)
2
]

and si,mi
= Var (Xi|X<i) .

Applying the chain rule, we check that ti,mi
corresponds to (i − 1)-th first elements of the i-th

line of Tm and si,mi
is the i-th diagonal element of Sm. Thanks to the previous property, we

derive a bias-variance decomposition for the Kullback risk E [K(ti, si; ŝi,mi
, ŝi,mi

)].

Proposition 4.1. Assume that |mi| is smaller than n − 2. The Kullback risk of (t̂i,mi
, ŝi,mi

)
decomposes as follows

E
[
K
(
ti, si; t̂i,mi

, ŝi,mi

)]
= K (ti, si; ti,mi

, si,mi
) +Rn,|mi| , (5)

where Rn,d is defined by

Rn,d :=
d+ 1

n− d− 2
+

d(d+ 1)

2(n− d− 1)(n− d− 2)
+

1

2

[
Ψ(n− d) + log

(
1− d

n

)]
,

and Ψ(n− d) := E
[
log
(
χ2(n− d)/(n− d)

)]
. Besides, Rn,d is bounded as follows

d+ 1

2(n− d− 2)
≤ Rn,d ≤ d+ 1

n− d− 2
+

1

2

[
d+ 1

n− d− 2

]2

and Rn,d =
d+ 1

2(n− d− 2)
+O

(
d+ 1

n

)2

.
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An explicit expression of Rn,d is provided in the proof. Applying the chain rule, we then derive

a bias-variance decomposition for the maximum likelihood estimator Ω̂m.

Corollary 4.2. Let m = (m1, . . . ,mp) be a model such that the size |mi| of each submodel is

smaller than n− 2. Then, the Kullback risk of the maximum likelihood estimator Ω̂m decomposes
into

E

[
K
(
Ω; Ω̂m

)]
= K (Ω;Ωm) +

p∑

i=1

Rn,|mi| .

If the size |mi| of each submodels is small with respect to n, the variance term is of the order∑p
i=1(|mi| + 1)/[2(n− |mi| − 2)]. For other loss functions such as the Frobenius norm or the l2

operator norm between Ω and Ω̂m, there is no such bias-variance decomposition with a variance
term that does not depend on the target.

4.2. Main result

In this subsection, we state a general non-asymptotic oracle inequality for the Kullback-Leibler
risk of the estimator Ω̃. We shall consider two types of penalty function pen(.): the first one only
takes into account the complexity of the model collection while the second is based on a prior
probability on the model collection.

Definition 4.3. For any integer i between 2 and p, the complexity function Hi(.) is defined by

Hi(d) :=
1

d
log |{m ∈ Mi, |mi| = d}| ,

where d is any integer larger or equal to 1. Besides, Hi(0) is set to 0 for any i between 1 and p.

These functions are analogous to the complexity measures introduced in [9] Sect.1.3 or in [29]
Sect.3.2. We shall obtain an oracle inequality for complexity-based penalties under the following
assumption.

Assumption (HK,η): Given K > 1 and η > 0, the collection M and the number η satisfy

∀ 2 ≤ i ≤ p , ∀mi ∈ Mi ,
|mi|

n− |mi|
[
1 +

√
2Hi(|mi|)

]2
≤ η < η(K) , (6)

where η(K) is defined as η(K) := [1−2(3/(K+2))1/6]2
∨
[1−(3/K+2)1/6]2/4. The function η(.)

is positive and increases to one with K. This condition requires that the size of the collection is
not too large. Assumption (HK,η) is similar to the assumption made in [29] Sect 3.1 for obtaining
an oracle inequality in the linear regression with Gaussian design framework. We further discuss
(HK,η) in Sections 5 and 6 when considering the particular problems of ordered and complete
variable selection.

Theorem 4.4. Let K > 1 and let η < η(K). Assume that n is larger than some quantity n0(K)
only depending on K and that the collection M satisfies (HK,η). If the penalty pen(.) is lower
bounded as follows

peni(mi) ≥ K
|mi|

n− |mi|
(
1 +

√
2Hi(|mi|)

)2
for any 1 ≤ i ≤ p and mi ∈ Mi , (7)
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then the risk of Ω̃ is upper bounded by

E

[
K
(
Ω; Ω̃

)]
≤ LK,η inf

m∈M

[
K (Ω;Ωm) + pen(m) +

p

n

]
+ τn , (8)

where τn is defined by

τn = τ (Ω,K, η, n, p) := LK,ηn
5/2 [p+K(Ω; Ip)] exp [−nL2(K, η)] ,

and L2(K, η) is positive. Here, Ip stands for the identity matrix of size p.

Remark 4.1. This theorem tells us that Ω̃ performs almost as well as the best trade-off between
the bias term K(Ω;Ωm) and the penalty term pen(m). The term p/n is unavoidable since it is of
the same order as the variance term for the null model by Corollary 4.2. The error term τn is
considered as negligible since converges exponentially fast to 0 with n.

Remark 4.2. The result is non-asymptotic and holds for arbitrary large p as longs n is larger
than the quantity n0(K) (independent of p). There is no hidden dependency on p except in the
complexity functions Hi(.) and Assumption (HK,η) that we shall discuss for particular cases in
Sections 5.1 and 6.1. Besides, we are not performing any assumption on the true precision matrix
Ω except that it is invertible. In particular, we do not assume that it is sparse and we give a rate of
convergence that only depends on a bias variance trade-off. Besides, there is no hidden constant
that depends on Ω (except for τn).

Remark 4.3. Finally, the penalty introduced in this theorem only depends on the collection M
and on a number K > 1. One chooses the parameter K depending on how conservative one wants
the procedure to be. We further discuss the practical choice of K in Sections 5 and 6. In any
case, the main point is that we do not need any additional method to calibrate the penalty.

4.3. Penalties based on a prior distribution

The penalty defined in Theorem 4.4 only depends on the models through their cardinality. How-
ever, the methodology developed in the proof easily extend to the case where the user has some
prior knowledge of the relevant models.

Suppose we are give a prior probability measure πM = πM1
× . . .× πMp

on the collection M.

For any non-empty model mi ∈ Mi, we define l
(i)
mi by

∀ 2 ≤ i ≤ p , ∀mi ∈ Mi , l(i)mi
:= − log (πMi

(mi))

|mi|
. (9)

By convention, we set l
(i)
∅ to 1. We define in the next proposition penalty functions based on the

quantity l
(i)
m that allow to get non-asymptotic oracle inequalities.

Assumption (Hbay
K,η): Given K > 1 and η > 0, the collection M, the numbers l

(i)
m and the

number η satisfy

∀ 2 ≤ i ≤ p , ∀mi ∈ Mi ,
|mi|

n− |mi|

[
1 +

√
2l

(i)
mi

]2
≤ η < η(K) , (10)

where η(K) is defined as in (HK,η).
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Proposition 4.5. Let K > 1 and let η < η(K). Assume that n ≥ n0(K) and that Assumption

(Hbay
K,η) is fulfilled. If the penalty pen(.) is lower bounded as follows

peni(mi) ≥ K
|mi|

n− |mi|

(
1 +

√
2l

(i)
mi

)2

for any 1 ≤ i ≤ p and any mi ∈ Mi , (11)

then the risk of Ω̃ is upper bounded by

E

[
K
(
Ω; Ω̃

)]
≤ LK,η inf

m∈M

[
K (Ω;Ωm) + pen(m) +

p

n

]
+ τn , (12)

where LK,η and τn are the same as in Theorem 4.4.

The proof is postponed to the technical Appendix [28].

Remark 4.4. In this proposition, the penalty (11) as well as the risk bound (12) depend on

the prior distribution πM. In fact, the bound (12) means that Ω̃ achieves the trade-off between

the bias and some prior weight, which is of the order − log[πM(m)]/n . This emphasizes that Ω̃
favours models with a high prior probability. Similar risk bounds are obtained in the fixed design
regression framework in Birgé and Massart [8].

Remark 4.5. Roughly speaking, Assumption (Hbay
K,η) requires that the prior probabilities πMi

(mi)
are not exponentially small with respect to n.

5. Adaptive banding

In this section, we apply our method ChoSelect to the adaptive banding problem and we inves-
tigate its theoretical properties.

5.1. Oracle inequalities

Let d be some fixed positive integer which stands for the largest dimension of the models mi.
For any 2 ≤ i ≤ p, we consider the ordered collections

Md
i,ord := {∅, {1}, {1, 2}, . . . , {1 ∧ (i− d), . . . , i− 1}} ,

and Md
1,ord := {∅}. A model m = (∅, . . . , {1, . . . , ki}, . . . , {1, . . . , kp}) in the collection Md

ord

corresponds to the set of matrices T such that on each line i of T , only the ki closest entries to
the diagonal are possibly non-zero. This collection of models is suitable when the matrix T is
approximately banded.

For any 1 ≤ i ≤ p and any model mi in Md
i,ord we fix the penalty

peni(mi) = K
|mi|

n− |mi|
. (13)

We write Ω̃d
ord for the estimator Ω̃ defined with the collection Md

ord and the penalty (13).

Corollary 5.1. Let K > 1, η smaller than η(K). Assume that d ≤ n η
1+η . If n is larger than

some quantity n0(K), then

E

[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η inf

m∈Md
ord

E

[
K
(
Ω; Ω̂m

)]
+ τn (Ω,K, η, n, p) . (14)
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This bound is a direct application of Theorem 4.4.

Remark 5.1. The term τn is defined in Theorem 4.4 and is considered as negligible since it
converges to 0 exponentially fast towards 0. Hence, the penalized estimator Ω̃ achieves an oracle
inequality without any assumption on the target Ω.

Remark 5.2. This oracle inequality is non-asymptotic and holds for any p and any n larger than
n0(K). Moreover, by choosing a constant K large enough, one can consider a maximal dimension
of model d up to the order of n, because η(K) converges to one when K increases.

Choice of the parameters K and d. Setting K to 2 gives a criterion close to AICc (see for
instance [24]). Besides, Verzelen [29] (Prop.3.2) has justified in a close framework this choice
of K is asymptotically optimal. A choice of K = 3 is advised if one wants a more conservative
procedure. We have stated Corollary 5.1 for models mi of size smaller than d = η

1+ηn. In practice,

taking the size n/2 yields rather good results even if it is not completely ensured by the theory.

Computational cost. The procedure is fast in this setting. Indeed, its complexity is the same as
p times the complexity of an ordered variable selection in a classical regression framework. From
numerical comparisons, it seems to be slightly faster than the methods of Bickel and Levina [6]
and Levina et al. [22] which require cross-validation type strategies.

5.2. Adaptiveness with respect to ellipsoids

We now state that the estimator Ω̃d
ord is simultaneously minimax over a large class of sets that

we call ellipsoids.

Definition 5.2. Let (ai)1≤i≤p−1 be a non-increasing sequence of positive numbers such that
a1 = 1 and let R be a positive number. Then, the set E(a,R, p) is made of all the non-singular
matrices Ω = T ∗S−1T where S is in Diag(p) and T is a lower triangular matrix with unit
diagonal that satisfies the following property

i−1∑

j=1

T [i, i− j]2

a2j
≤ R2 , ∀ 2 ≤ i ≤ p . (15)

By convention, we set ap = 0. The sequence (ai) measures the rate of decay of each line of T
when one moves away the diagonal. Observe that in this definition, every line of T decreases the
same rate. To the price of more technicity, we can also allow different rates of decay for each line
of T . We shall restrict ourselves to covariance matrices with eigenvalues that lie in a compact
when considering the ellipsoid E(a,R, p)

Bop(γ) :=

{
ϕmin (Ω) ≥

1

γ
and ϕmax (Ω) ≤ γ

}
. (16)

Proposition 5.3. For any ellipsoid E(a,R, p), the minimax rates of estimation is lower bounded
by

inf
Ω̂

sup
Ω∈E(a,R,p)

E

[
K
(
Ω; Ω̂

)]
≥ Lp sup

k=1,...,⌊√n⌋

(
R2a2k ∧

k + 1

n

)
. (17)

Let us consider the estimator Ω̃d
ord defined in Section 5.1 with d = ⌊n η

1+η ⌋ and the penalty (13).

We also fix γ > 2. If the sequence (ai)1≤i≤p and R also satisfy R2 ≥ 1
n and a2⌊√n⌋∧p

≤ 1
R2

√
n
,
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then

sup
Ω∈E(a,R,p)∩Bop(γ)

E

[
K
(
Ω; Ω̃d

Co

)]
≤ LK,η,β,γ inf

Ω̂
sup

Ω∈E(a,R,p)∩Bop(γ)

E

[
K
(
Ω; Ω̂

)]
, (18)

if n is larger than n0(K)

Remark 5.3. The minimax rates of convergence over E(a,R, p) in the lower bound (17) is
similar to the one obtained for classical ellipsoids in the Gaussian fixed design regression setting
(see for instance [23] Th. 4.9). We conclude from the second result that our estimator Ω̃d

ord is
minimax adaptive to the ellipsoids that are not degenerate (i.e. R2 ≥ 1/n) and whose rates (ai)
does not converge too slowly towards zero (i.e. a2⌊√n⌋∧p

≤ (R2√n)−1). Note that all the sequences

(ai) such that a2i ≤ R2/i satisfy the last assumption.

Remark 5.4. However, the estimator Ω̃d
ord is not adaptive to the parameter γ since the con-

stant L in (18) depends on γ. This is not really surprising. Indeed, the oracle inequality (14) is
expressed in terms of the Kullback loss while the ellipsoids are defined in terms of the entries of
T . If we would have considered the minimax rates of estimation over sets analogous to E(a,R, p)
but defined in terms of the decay of the Kullback bias, then we would have obtained minimax
adaptiveness without any condition on the eigenvalues.

We are also able to prove asymptotic rates of convergence and asymptotic minimax properties
with respect to the Frobenius loss function. For any s > 0, we define the ellipsoid E ′(s, p, R) as
the ellipsoid E(a,R, p) with the sequence (ai)1≤i≤p−1 := i−s.

Corollary 5.4. If
∑pn

i=1 ki + pn = o(n) and k := 1 ∨ max1≤i≤p ki is smaller than
√
n then

uniformly over the set Uord[(k1, . . . , kpn
),+∞] ∩ Bop(γ),

‖Ω− Ω̃d
ord‖2F = OP

(∑pn

i=1 ki + pn
n

)
(19)

If s > 1/2, then uniformly over the set E ′(s,R, pn) ∩ Bop(γ), the estimator Ω̃d
ord satisfies

‖Ω− Ω̃d
ord‖2F = OP

[
pn

((
R

ns

) 2
2s+1

∧ pn
n

)]
. (20)

Moreover, these two rates are optimal from a minimax point of view.

The estimator Ω̃d
ord achieves the minimax rates of estimation over special cases of ellipsoids.

However, all these results depend on γ and are of asymptotic nature.

6. Complete graph selection

We now turn to the complete Cholesky factor estimation problem. First, we adapt the model
selection procedure ChoSelect to this setting. Then, we derive an oracle inequality for the Kull-
back loss. Afterwards, we state that the procedure is minimax adaptive to the unknown sparsity
both with respect to the Kullback entropy and the Frobenius norm. Finally, we discuss the
computational complexity and we introduce a faster two-stage procedure.

6.1. Oracle inequalities

Again, d is a positive integer that stands for the maximal size of the models mi. We consider
the collections of models Md

i,co that contain all the subsets of {1, . . . , i − 1} of size smaller or



N. Verzelen/Covariance estimation 13

equal to d. A model m ∈ Md
co corresponds to a pattern of zero in the Cholesky factors T . As

explained in Section 2, such a model m is also in correspondence with an ordered graph
−→
G which

is compatible with the ordering. Hence, the collection Md
co is in correspondence with the set of

ordered graphs
−→
G of degree smaller than d which are compatible with the natural ordering of

{1, . . . , p}.
For any 2 ≤ i ≤ p and any model mi in Md

i,co we fix the penalty

peni(mi) = log


1 +K

|mi|
n− |mi|

{
1 +

√
2

[
1 + log

(
i− 1

|mi|

)]}2

 , (21)

where K > 1. In the sequel, Ω̃d
co corresponds to the estimator ChoSelect with the collection Md

co

and the penalty (21).

Corollary 6.1. Let K > 1 and η < η′(K) (defined in the proof). Assume that

d ≤ η
n

1 + [log(p/d) ∨ 0]
. (22)

If n is larger than some quantity n0(K), then Ω̃d
co satisfies

E

[
K
(
Ω; Ω̃d

co

)]
≤ LK,η inf

m∈Md
co

{
K (Ω;Ωm) +

p∑

i=2

|mi|
n− |mi|

[
1 + log

(
i− 1

|mi|

)]
+

p

n

}

+ τ ′n , (23)

where the remaining term τ ′n is of the same order as τn in Theorem 4.4.

A proof is provided in Section 10.3. We get an oracle inequality up to logarithms factors, but
we prove in Section 6.2 that these terms log[(i− 1)/|mi|] are in fact unavoidable. For the sake of
clarity, we straightforwardly derive from (23) the less sharp but more readable upper bound

E

[
K
(
Ω; Ω̃d

co

)]
≤ LK,η inf

m∈Md
co

{
K (Ω;Ωm) +

p+ |m| log p
n

}
+ τn (Ω,K, η, n, p) ,

where |m| :=∑p
i=1 |mi|.

Remark 6.1. As for the previous results, we do not perform any assumption on the target Ω
and the obtained upper bound is non-asymptotic. By Condition (22), we can consider dimension
d up to the order n/[log(p/n) ∨ 1]. If p is much larger than n, the maximal dimension has to be
smaller than the order n/ log(p). This is not really surprising since it is also the case for linear
regression with Gaussian design as stated in [29] Sect. 3.2. There is no precise results that proves
that this n/ log(p) bound is optimal but we believe that it is unimprovable. If p is of the same
order as n, it is possible to consider dimensions up to the same order as p.

Remark 6.2. The same bound (23) holds if we use the penalty

pen′
i(mi) = K

|mi|
n− |mi|

{
1 +

√
2

[
1 + log

(
i− 1

|mi|

)]}2

.

For a given K, observe that peni(mi) = log(1+ pen′
i(mi)). Hence, these two penalties are equiv-

alent when n is large. In Corollary 6.1, we have privileged a logarithmic penalty, because this
penalty gives slightly better results in practice.
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Choice of K and d. In practice, we set the maximal dimension to n/{2.5[2+ (log(p/n)∨ 0)]}.
Concerning the choice of K, we advise to use the value 1.1, if the goal is to minimize risk. When
the goal is to estimate the underlying graph, one should use a larger value of K like 2.5 in order
to decrease the proportion of falsely discovered vertices.

6.2. Adaptiveness to unknown sparsity

In this section, we state that the estimator Ω̃d
co achieves simultaneously the minimax rates of

estimation for sparsity of the matrix T . In the sequel, U1[k, p] stands for the set of positive square
matrices Ω = T ∗S−1T of size p such that its Cholesky factor T contains at most k non-zero off-
diagonal coefficients on each line. The set U1[k, p] contains the precision matrices of the directed

Gaussian graphical models whose underlying directed acyclic graph
−→G satisfies the two following

properties:

• It is compatible with the ordering on the variables.

• Each node of
−→G has at most k parents.

We shall also consider the set U2[k, p] that contains positive square matrices whose whose
Cholesky factor is k-sparse (i.e. contains at most k non-zero elements). Hence, the set U2[k, p]
corresponds to the precision matrices of the directed Gaussian graphical models whose underly-

ing directed acyclic graph
−→G is compatible with the ordering on the variables and has at most k

edges. When Ω belongs to U2[k, p] with k “small”, we say that the underlying Cholesky factors
T are ultra-sparse.

For deriving the minimax rates of estimation, we shall restrict ourselves to precision matrices
whose Kullback divergence with the identity is not too large. This is why we define

BK(r) := {Ω s.t. K(Ω; Ip) ≤ pr} ,

for any positive number r > 0.

Proposition 6.2. Let k and p be two positive integers such that k ≤ p. The minimax rates of
estimation over the sets U1[k, p] and U2[k, p] are lower bounded as follows

inf
Ω̂

sup
Ω∈U1[k,p]

EΩ

[
K
(
Ω; Ω̂

)]
≥ Lkp

1 + log (p/k)

n
, if n ≥ Lk2[1 + log(p/k)] , (24)

inf
Ω̂

sup
Ω∈U2[k,p]

EΩ

[
K
(
Ω; Ω̂

)]
≥ L

p+ k log(p)

n
, if k ≤ p. (25)

Consider K > 1, β > 1, and η < η(K). Assume that n ≥ n0(K) and choose a positive

integer d that satisfies Condition (22). The penalized estimator Ω̃d
co defined in Corollary 6.1

is minimax adaptive over the sets U1[k, p] ∩ BK(nβ) for all k smaller than d that also satisfy
n ≥ Lk2(1 + log(p/k)). It is also minimax adaptive over U2[k, p] ∩ BK(nβ) for all k less than d:

sup
Ω∈U1[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̃d

co

)]
≤ LK,β,η inf

Ω̂
sup

Ω∈U1[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̂

)]
,

sup
Ω∈U2[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̃d

co

)]
≤ LK,β,η inf

Ω̂
sup

Ω∈U2[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̂

)]
.

Remark 6.3. The minimax rates of estimation over U1[k, p] is of order kp[1 + log (p/k)]/n.
We do not think that the condition n ≥ Lk2[1 + log(p/k)] is necessary but we do not know how



N. Verzelen/Covariance estimation 15

to remove it. The technical condition K (Ω; Ip) ≤ pnβ is not really restrictive. It comes from
the term n5/2K(Ω; Ip) exp [−nLK,η] in Theorem 4.4 which goes exponentially fast to 0 with n as

long as K(Ω, Ip)/p is grows polynomially with respect to n. In conclusion, our estimator Ω̃d
co is

adaptive to the sparsity of its Cholesky factor T .

Remark 6.4. Let us translate the proposition in terms of directed graphical models. The Kullback
minimax rate of covariance estimation over graphical models with at most k parents by node is
of the order pk(1 + log(p/k))/n. Moreover, the Kullback minimax rate of covariance estimation

over graphical models with at most k vertices is of the order (p + k log p)/n. Finally, Ω̃d
co is

minimax adaptive for estimating the distribution of a sparse directed Gaussian graphical model
whose underlying graph is unknown.

We can also consider the rates of convergence with respect to the Frobenius norm or the
operator norm in the spirit of the results of Lam and Fan [19]. We recall that ‖.‖F and ‖.‖
respectively refer to the Frobenius norm and the operator norm in the space of matrices. We also
recall that the set Bop(γ) is defined in (16).

Corollary 6.3. Let K > 1, η < η(K), γ > 2, and let d be the largest integer that satisfies (22).
If pnkn[1 + log(pn/kn)] = o(n), then

‖Ω− Ω̃d
co‖2F = OP

(
kn

[
1 + log

(
pn
kn

)]
pn
n

)
, (26)

‖Ω− Ω̃d
co‖ = OP

(√
kn

[
1 + log

(
pn
kn

)]
pn
n

)
,

uniformly on U1[kn, pn] ∩ Bop[γ]. If pn + kn log(pn) = o(n), then

‖Ω− Ω̃d
co‖2F = OP

(
pn + kn log(pn)

n

)
, (27)

‖Ω− Ω̃d
co‖ = OP

(√
pn + kn log(pn)

n

)
,

uniformly on U2[kn, pn] ∩ Bop[γ]. Moreover, all these Frobenius rates of convergence are optimal
from a minimax point of view.

Remark 6.5. The estimator Ω̃d
co is asymptotically minimax adaptive to the sets U1[k, p]∩Bop(γ)

and U2[k, p]∩Bop(γ) with respect to the Frobenius norm. Moreover, these rates are coherent with
the ones obtained by Lam and Fan in Sect.4 of [19]. We do not think that the rates of convergence
with respect to the operator norm are sharp.

Remark 6.6. These results are of asymptotic nature and require that pn has to be much smaller
than n. Besides, the upper bounds on the rates highly depend on the largest eigenvalue ϕmax(Ω).
This is why we have restricted ourselves to precision matrices whose eigenvalues lie in the compact
[1/γ; γ]. Nevertheless, to our knowledge all results in this setting suffer from the same drawbacks.
See for instance Th.11 of Lam and Fan [19].

7. A two-step procedure

The computational cost of Ω̃d
co is proportional to the size of Md

i,co, which is of the order of

pd. Hence, it becomes prohibitive when p is larger than 50. In fact, Ω̃d
co minimizes a penalized
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criterion over the collection Md
co. Nevertheless, the collections Md

i,co contain an overwhelming
number of models that are clearly irrelevant. This is why we shall use a two-stage procedure.
First, we compute a subcollection of Md

co. Then, we minimize the penalized criterion over this
subcollection.

Suppose we are given a fast data-driven method that computes a subset M̂i of Md
i,co for any

i in 1, . . . p.

Algorithm 7.1. Computation of m̂f and Ω̃f

1. For i going from 1 to p,

• Compute the subcollection M̂i of Md
i,co.

• Compute ŝi,mi
for each model mi ∈ M̂i.

• Take m̂f
i := argminmi∈M̂i

log (ŝi,mi
) + peni(mi) .

2. Set m̂f = (m̂f
1 , . . . , m̂

f
p) and build (T̃ f , S̃f ) by gathering the estimators (t̂i,m̂f

i
, ŝi,m̂f

i
).

3. Take Ω̃f = T̃ f(S̃f )−1T̃ f .

In what follows, we refer to this method as ChoSelectf. For any 2 ≤ i ≤ p and any model mi

in Md
i,co, we advise to fix the penalty as in Section 6.1:

peni(mi) = log


1 +K

|mi|
n− |mi|

{
1 +

√
2

[
1 + log

(
i− 1

|mi|

)]}2

 ,

with K > 1. K = 1.1 gives good results in practice.

Remark 7.1. Observe that we use the same data for computing the collections M̂i and the
estimator Ω̃f . The estimator Ω̃f exhibits a small risk as long as the collections M̂i contain good
models as shown by the following proposition:

Proposition 7.1. Let m be a model in Md
co and Am be the event such that m ∈ M̂1× . . .×M̂p.

Under the same assumptions as Corollary 6.1, it holds that

E

[
K
(
Ω; Ω̃f

)
1Am

]
≤ LK,η

{
K (Ω;Ωm) +

p∑

i=2

|mi|
n− |mi|

[
1 + log

(
i− 1

|mi|

)]
+

p

n

}

+ τn , (28)

where τn is defined in Theorem 4.4.

Remark 7.2. Hence, under the event Am∗ where m∗ is the oracle model, Ω̃f achieves the optimal
of convergence. The estimator achieves also a small risk as soon as any ”good” model belongs
to the estimated collection. Here, ”good” refers to a small Kullback risk. Observe that it is much
easier to estimate a collection M̂i that contains a ”good” model than directly estimating a ”good”
model.

In fact, Algorithm 7.1 and Proposition 7.1 are generally applicable to any collection M and
penalties defined by (7) or (11).
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The computational cost of Algorithm 7.1 is directly related to the cost of the computation of
Mi and to the size of the collections M̂i. The challenge is to design a fast procedure providing a
fairly small collection M̂i, which contains relevant models with large probability. Let us describe
two examples of such a procedure.

Algorithm 7.2. Computation of the collection M̂i by the Lasso.
Let D be an integer smaller than n

2.5[2+(log(p/n)∨0)] and let k be any positive integer.

1. Using the LARS [10] algorithm, compute the regularization path of the Lasso for the
regression of Xi with respect to the covariates X<i.

2. Order the variables X(1), . . . , X((i−1)∧D) with respect to their appearance in the regu-
larization path.

3. Take M̂i := P(X(1), . . . , X(k∧(i−1)∧D))
⋃
RP(i,D),

where P(A) contains all the subsets of A and where RP(i,D) is the regularization path
stopped at D variables.

Remark 7.3. The size of the random collection M̂i increases with the parameter k. Suppose that
i is larger than D. The size of M̂i is generally of the order 2k ∨D. The case k = 0 corresponds
to choosing the regularization path of the Lasso for M̂i. The estimator Ω̃f then performs as
well (up to a log p factor) as the best parametric estimator with a model in the regularization

path. The collection size is fairly small, but the oracle model may not belong to M̂i with large
probability. This is especially the case is the true covariance Σ is far from the identity since
the Lasso estimator is possibly inconsistent. In many cases, the true (or the oracle) model is a
submodel of the model selected by the Lasso with a suitable parameter [2]. When choosing k = D,

it is therefore likely that the true model or a ”good” model belongs to M̂i.

The regularization path of the Lasso is not necessarily increasing [10]. If we want that M̂
contains all subsets of sparse solutions of the Lasso we need to use a variant of the previous
algorithm:

Algorithm 7.3. Let D be an integer smaller than n
2.5[2+(log(p/n)∨0)] and let k be any positive

integer.

1. Using the LARS [10] algorithm, compute all the Lasso solutions for the regression of
Xi with respect to the covariates X<i.

2. For any λ > 0, consider the set of {Xj1 , Xj2 . . . Xjsλ
} of variables selected by the

Lasso. If sλ > k we define Aλ
i = ∅ while we take Aλ

i = P(Xj1 , . . . , Xjsλ
) is sλ ≤ k.

Here, P(A) contains all the subsets of A.

3. Take M̂i := ∪λ>0A
λ
i

⋃
RP(i,D),

where P(A) contains all the subsets of A and where RP(i,D) is the regularization path
stopped at D variables.

In the following proposition, we show the ChoSelectf outperforms the Lasso under restricted
eigenvalue conditions. We consider an asymptotic setup where p and n go to infinity with p larger
n.

ASSUMPTIONS:

• (H.1) The covariance matrix Σ satisfies restricted eigenvalue conditions of order q∗ > 0.

c∗ ≤ u∗ΣAu

u∗u
≤ c∗, ∀A with |A| = q∗ and u ∈ R

q∗ .
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Moreover, we assume that and q∗ log(p)/n goes to 0 when p and n go to infinity.
• (H.2) Fix some v < 1. The vector tp (which corresponds to the p-th line of T ) is q-sparse
with some q < nv

log p ∨ n
log p . The set of non-zero component is denoted m∗. Let us set some

K > 24 ∨ (2/(1− v)) and define

M2(K, c∗) =
32

c∗

[
2

3
+

112c∗

9c∗
+

(
16c∗

3c∗

)2
]∨

[4(K + 12)/c∗] .

For any zero-component tp[j], we have

tp[j]
2 ≥ M2(K, c∗)

q log(p)

n
σ2 .

• (H.3) Define M1(c∗, c∗) = 2 + 16 c∗

c∗
. The quantities q and q∗ are such that

M1(c∗, c
∗)q + 1 ≤ q∗ .

Proposition 7.2. Consider the procedure ChoSelectf with K as in (H.2) and the penalty (21)
and the algorithm 7.3. Take k ≥ M∗

1 q and D = n/ log(p)2. Under Assumptions (H.1), (H.2),
and (H.3)

P
[
m̂f

p = m∗,p
]
→ 1 .

The proof of the proposition is postponed to the appendix [28]

Remark 7.4. In contrast to ChoSelectf , the Lasso procedure does not consistently select the
support of tp under restricted eigenvalue conditions [35, 34]. Observe that our assumptions (H.1),
(H.2), (H.3) and our result are quite similar to the ones obtained by the stability selection method
of Meinshausen and Bühlmann [25].

Remark 7.5. Under similar conditions, one can prover that ChoSelectf selects consistently the
support of any vector ti for n ≤ i ≤ p. In order to consistently estimate the whole pattern of zero
of T , one needs to slightly change the penalty (21) by replacing (i − 1) by (i− 1) ∨ n.

Remark 7.6. For the sake of simplicity, we have only described two methods for building the
collection M̂. One may also use a collection based on the adaptive Lasso or more generally
any (data-driven) collection M̂. Moreover, ChoSelectf can be interpreted as a way to tune an
estimation procedure and to merge different procedures. Suppose we are given a collection A
of estimation procedure. For any procedure a ∈ A, we build a collection M̂a using the model
corresponding to the estimator Ω̂a or using a regularization path associated to a (if possible).

If we take the collection M̂ as the reunion of all M̂a for a ∈ A, then by Proposition 7.1 the
estimator Ω̃f nearly selects the best model (from the risk point of view) among the ones previously
selected by the procedures a ∈ A.

8. Simulation Study

In this section, we investigate the practical performances of the proposed estimators. We con-
centrate on two applications: adaptive banding and complete graph selection.
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8.1. Adaptive banding

8.1.1. Simulation scheme

Simulating the data. We have used a similar scheme to Levina et al. [22]. Simulations were carried
out for centered Gaussian vectors with two different precision models. The first one has entries
of the Cholesky factor exponentially decaying as one moves away from the diagonal.

Ω1 : T [i, j] = 0.5|i−j], j < i; si = 0.01

The second model allows different sparse structures for the Cholesky factors.

Ω2 : ki ∼ U(1, ⌈j/2⌉); T [i, j] = 0.5, i− ki ≤ j ≤ i− 1

T [i, j] = 0, j < i− ki; si = 0.01

Here U(k1, k2) denotes an integer selected uniformly at random from all integers from k1 to k2.
We generate from this structure for p = 30. Levina et al. pointed out that this structure can
generate poorly conditioned covariance matrix for larger p. To avoid this problem, we divide the
variables for p = 100 and p = 200 into respectively 4 and 8 different blocks and we generate
a random structure from the random structure from the model described above for each of the
blocks.

For each of the covariance models, we generate a sample of n = 100. We consider three differ-
ent values of p: 30, 100, and 200.

We apply the following procedures:

• our procedure ChoSelect as described in Section 5. More precisely, we take the collection

M⌊n/2⌋
ord , the penalty (13), and K = 3.

• the nested Lasso method of Levina et al. [22]. It is computed with the J1 penalty, while
its tuning parameter is selected via 5-fold cross-validation based on the likelihood. We have
used the penalty J1 instead of J2 for computational reasons.

• the banding procedure of Bickel and Levina [6]. The tuning parameter is chosen according
to Sect.5 in [6] with 50 random splits.

• the regularization method of Ledoit and Wolf [21].

For the first covariance model Ω1, we also compute the oracle estimator, i.e. the parametric

estimator which minimizes the Kullback risk among all the estimators Ω̂m with m ∈ M⌊n/2⌋
ord . We

recall that the computation of the oracle estimator require the knowledge of the target Ω1. The
performances of this estimator are presented here as a benchmark. The experiments are repeated
N = 100 times. In the second scheme, N1 = 10 precision matrices are sampled and N2 = 10
experiments are made for each sample.

8.1.2. Results

In Tables 1 and 2, we provide evaluations of the Kullback loss

K(Ω; Ω̂) :=
1

2

[
tr(Ω̂Ω−1)− log(|Ω̂||Ω−1|)− p

]
,

the operator distance ‖Ω̂−Ω‖, and the operator distance between the inverses ‖Ω̂−1−Σ‖ for any
of the fore-mentioned estimators. We have chosen the Kullback loss because of its connection with
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discriminant analysis. The two other loss functions are interestingly connected to the estimation
of the eigenvalues and the eigenspaces.

For the second structure, we also consider the pattern of zero estimated by our procedure,
the nested Lasso and the banding method of Bickel and Levina. More precisely, we estimate the
power (i.e. the fraction of non-zero terms in T estimated as non-zero) and the FDR (i.e. the ratio
of the false discoveries over the true discoveries) in Table 3.

Method Ledoit Banding Nested Lasso ChoSelect Oracle

Kullback discrepancy K(Ω; Ω̂)
p = 30 2.00± 0.05 0.90± 0.05 0.87± 0.02 1.00 ± 0.03 0.79± 0.02
p = 100 14.4± 0.5 3.6± 0.4 3.2± 0.1 3.7± 0.1 2.9± 0.1
p = 200 33.4± 0.6 9.8± 1.5 6.4± 0.1 7.5± 0.1 5.9± 0.1

Operator distance ‖Ω̂− Ω‖ × 10−2

p = 30 1.86± 0.07 1.28± 0.06 1.18± 0.04 1.36 ± 0.06 1.19± 0.04
p = 100 1.76± 0.09 1.68± 0.14 1.52± 0.06 1.75 ± 0.06 1.49± 0.05
p = 200 1.33± 0.01 2.19± 0.22 1.61± 0.04 1.92 ± 0.06 1.61± 0.05

Operator distance ‖Ω̂−1 − Σ‖
p = 30 0.14± 0.02 0.15± 0.02 0.17± 0.02 0.15 ± 0.02 0.14± 0.02
p = 100 1.4± 0.2 1.4± 0.2 1.7± 0.2 1.5± 0.2 1.4± 0.2
p = 200 5.9± 0.6 5.6± 0.7 6.8± 0.7 6.5± 0.6 5.9± 0.6

Table 1: Estimation and 95% confidence interval of the Kullback risk, the operator distance risk,
and the operator distance between inverses risk for the first covariance model Ω1.

Method Ledoit Banding Nested Lasso ChoSelect

Kullback discrepancy K(Ω; Ω̂)
p = 30 112± 4 3.2± 0.2 3.2± 0.2 1.2± 0.1
p = 100 253± 7 27.4± 1.6 7.6± 0.2 3.5± 0.1
p = 200 565± 5 58± 2 14.6± 0.2 7.2± 0.1

Operator distance ‖Ω̂− Ω‖ × 10−2

p = 30 9.6± 0.4 8.2± 0.4 7.3± 0.4 3.6± 0.3
p = 100 8.7± 0.2 8.2± 0.2 6.8± 0.2 3.8± 0.2
p = 200 10.0± 0.2 9.5± 0.3 7.9± 0.3 4.4± 0.2

Operator distance ‖Ω̂−1 − Σ‖ × 10−3

p = 30 13.4± 4.2 12.9± 4.0 14.1± 4.4 12.9± 4.0
p = 100 1.5± 0.4 1.4± 0.4 1.3± 0.4 1.4± 0.4
p = 200 1.8± 0.2 1.3± 0.2 1.3± 0.2 1.3± 0.2

Table 2: Estimation and 95% confidence interval of the Kullback risk, the operator distance risk,
and the operator distance between inverses risk for the second covariance model Ω2.

Comments of Tables 1 and 2: In the first scheme Ω1, the three methods based on Cholesky
decomposition exhibit a Kullback risk close to the oracle. The ratio of their Kullback risks over
the oracle risk remains smaller than 1.4. The risk of the nested Lasso and the banding method
is about 15% smaller than the risk of ChoSelect. We observe the same pattern for the operator
distance between precision matrices. In contrast, all these estimators have more or less the same
risks for the operator distance between the covariance matrices. The estimator of Ledoit and
Wolf is a regularized version of the empirical covariance matrix. Its performances with respect
to the Kullback loss are poor but it behaves well with respect to the operator norms.

In the second scheme, the method of Ledoit and Wolf performs poorly with respect to the
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Kullback loss functions and the first operator norm loss function. ChoSelect performs two times
better than the nested Lasso in terms of the Kullback discrepancy and the operator distance
between precision matrices. The banding method exhibits a far worse Kullback risk. As in the
first scheme, the three procedures based on Cholesky decomposition perform similarly in terms
of the operator distance between covariance matrices. These last risks are high for p = 30 because
the covariance matrix is poorly conditioned in this case and its eigenvalues are high.

The banding method only performs well if the Cholesky matrix T is well approximated by a
banded matrix, which is not the case in the second scheme. The nested Lasso seems to perform
well when there is an exponential decay of the coefficients as in the first scheme. However, its
performance seem to be far worse when the decay is not exponential. In contrast, ChoSelect
seems to always perform quite well. This observation corroborates the theory: indeed, we have
stated in Corollary 5.1 that ChoSelect satisfies an oracle inequality without any assumption on
Σ. Finally, there no clear interpretation for the risk with respect to the operator norm between
covariances.

Power×102 FDR×102

Method Banding Nested Lasso ChoSelect Banding Nested Lasso ChoSelect
p = 30 69.7± 2.3 82.4± 0.3 99.2± 1.1 23.0± 1.0 17.9± 0.2 4.7± 0.1
p = 100 27.0± 0.1 82.5± 0.01 99.4± 0.2 3.0± 0.1 25.7± 0.2 5.0± 0.1
p = 200 26.2± 0.1 82.9± 0.1 99.6± 0.1 3.5± 0.1 10.0± 0.2 4.5± 0.2

Table 3: Estimation and 95% confidence interval of the power and FDR for the second precision
model Ω2.

Estimating the pattern of zero. In the second scheme, we can compare the ability of the procedures
to estimate well the pattern of non-zero coefficients (Table 3). The banding method does not
work well since the Cholesky factor T is not banded. ChoSelect a higher power and a lower FDR
than the nested Lasso.

8.2. Complete Graph selection

8.2.1. Simulation scheme

Simulating the data. In the first simulation study, we consider Gaussian random vectors whose
precision matrices based on directed graphical models.

1. First, we sample a directed graph
−→
G in the following way. For any node i in {2, . . . , p} and

any node j < i, we put an edge going from j to i with probability (Esp/(i−1)∧0.5), where
Esp is a positive parameter previously chosen. Hence, the expected number of parents for
a given node is Esp∧(i− 1)/2.

2. The precision matrix Ωc
1 is then defined from

−→
G .

Ωc

1
: T [i, j] ∼ Unif[−1, 1] if j → i in

−→
G ,

T [i, j] = 1 if i = j and T [i, j] = 0 else.

S[i, i] ∼ Unif[1, 2]

In the simulations, we set p = 30, 100, 200, Esp= 1, 3, 5, and n = 100.
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In the second simulation scheme, we consider the case where the ”good” ordering is partially
known. More precisely, we first sample a precision matrix Ωc

1 according to the first simulation
scheme. Then, we sample uniformly 10 variables and change uniformly their place in the ordering.
This results in a new precision matrix Ωc

2
. Its Cholesky factor is generally less sparse than the

one of Ωc
1. The purpose of this scheme is to check whether our method is robust to small changes

in the ordering. For this study, we choose p = 200, Esp= 1, 3, 5, and n = 100.

We compute the following estimators:

• the procedure ChoSelectf as described in Section 7. We take the collection Md
co with

d = n
2.5[2+log(n∧p)] . The collection M̂ is computed according to Algorithms 7.1 and 7.2 with

k = 8. Finally, we use the penalty (21) with K = 1.1.
• the procedure ChoSelect with collection M7

co, the penalty (21) with K = 1.1. Since this
method is computationally prohibitive, we only apply it for p = 30.

• the regularization method of Ledoit and Wolf [21].
• the Glasso method [3]. It is computed using the Glasso R-package by Friedman et al. [13],
while the tuning parameter is chosen via 5-fold cross validation based on the likelihood.
Following Rothman et al. [27] and Yuan and Lin [33], we do not penalize the diagonal of
Ω.

• the Lasso method of Huang et al. [15]. The regularization parameter is calculated by 5-fold
cross validation based on the likelihood.

For each estimator and simulation scheme, we evaluate the Kullback loss K(Ω; Ω̂), the operator

‖Ω̂−Ω‖, and the operator distance between the inverses ‖Ω̂−1−Σ‖. We also consider the pattern
of zero estimated by our procedure ChoSelectf and the Lasso of Huang et al. [15]. More precisely,
we evaluate the power (i.e. the fraction of non-zero terms in T estimated as non-zero) and the
FDR (i.e. the ratio of the false discoveries over the true discoveries) in the first simulation study.
Empirical 95% confidence intervals of the estimates are also computed. The experiments are
repeated N = 100 times: N1 = 10 precision matrices are sampled and N2 = 10 experiments are
made for each precision matrix sampled.

8.2.2. Results

Kullback discrepancy K(Ω; Ω̂)

Method ChoSelectf ChoSelect

Esp=1 0.69± 0.04 0.69± 0.04
Esp=3 1.29± 0.04 1.31± 0.05
Esp=5 1.95± 0.06 1.82± 0.06

Table 4: Comparison between ChoSelect and ChoSelectf using the first covariance model Ωc
1 and

p = 30.

Comparison of ChoSelect and ChoSelectf. In Table 4, we have set p = 30 in order to compute the
method ChoSelect and compare it with ChoSelectf. It seems that both methods perform more or
less similarly. When the sparsity of the Cholesky factor decreases (Esp=5), ChoSelectf exhibits
a slightly smaller Kullback risk.

These simulations confirm that ChoSelectf exhibits similar performances to ChoSelect with a
much small computational complexity. In the other simulations, we only compute ChoSelectf.
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Method Ledoit Glasso Lasso ChoSelectf

Kullback discrepancy K(Ω; Ω̂)
p = 100 Esp=1 7.7± 0.1 3.7± 0.1 3.1± 0.1 2.6± 0.1

Esp=3 13.9± 0.2 9.4± 0.1 7.2± 0.1 5.9± 0.1
Esp=5 16.7± 0.2 12.6± 0.2 10.9± 0.2 10.1± 0.2

p = 200 Esp=1 19.4± 0.2 9.4± 0.2 7.4± 0.1 5.9± 0.1
Esp=3 41.0± 0.8 21.7± 0.3 18.1± 0.2 13.6± 0.2
Esp=5 54.8± 2.1 35.2± 0.2 28.8± 0.3 24.7± 0.4

Operator distance ‖Ω̂− Ω‖
p = 100 Esp=1 5.5± 0.2 4.6± 0.2 3.8± 0.2 3.2± 0.1

Esp=3 8.6± 0.2 9.3± 0.2 6.8± 0.2 4.6± 0.1
Esp=5 11.5± 0.1 11.9± 0.2 9.5± 0.1 7.6± 0.3

p = 200 Esp=1 6.2± 0.1 5.7± 0.2 4.6± 0.1 3.8± 0.2
Esp=3 10.6± 0.1 10.7± 0.2 8.8± 0.2 5.4± 0.1
Esp=5 15.0± 0.3 15.0± 0.2 13.0± 0.3 8.1± 0.2

Operator distance ‖Ω̂−1 −Σ‖
p = 100 Esp=1 1.5± 0.1 1.1± 0.1 1.1± 0.1 0.8± 0.1

Esp=3 4.3± 0.2 3.9± 0.2 5.5± 0.3 3.6± 0.3
Esp=5 8.4± 0.5 9.1± 0.7 13.0± 0.7 8.4± 0.5

p = 200 Esp=1 2.4± 0.1 1.9± 0.1 1.7± 0.1 1.2± 0.1
Esp=3 8.3± 0.5 6.3± 0.3 10.7± 0.6 6.6± 0.3
Esp=5 16.9± 1.4 14.7± 1.0 30.3± 2.9 17.6± 1.6

Table 5: Comparison between the procedures for the first covariance model Ωc
1.

Estimation of Ω. This study corresponds to the situation where a ”good” ordering of the variables
is known. In Table 5, ChoSelectf has a smaller Kullback risk than the Lasso, which is better than
the Glasso, and Ledoit and Wolf’s method. This is especially true when p is large. We also observe
the same results it terms of the operator distance between the precision matrices. The results for
the operator distance between covariance matrices are more difficult to interpret. It seems that
the risk of the Lasso is high, while the Glasso and ChoSelectf perform more or less similarly.
Ledoit and Wolf’s method gives good results when Esp=3, 5.

Method Lasso ChoSelectf

Power×102 FDR×102 Power×102 FDR×102

Esp=1 58.0± 0.6 79.9± 0.4 40.6 ± 0.6 5.4± 0.6
Esp=3 65.3± 0.6 72.7± 0.3 50.9 ± 0.5 9.7± 0.4
Esp=5 67.4± 0.4 69.2± 0.2 52.0 ± 0.3 21.1± 0.7

Table 6: Estimation and 95% confidence interval of the power and FDR for the first covariance
model Ωc

1 with p = 200.

Estimation of the graph. In Table 6, we compare the ability of the procedures to estimate the
underlying directed graph. This is why we only consider the procedures based on Cholesky
decomposition: the Lasso of Huang et al. and ChoSelectf. The Lasso exhibits a high power but
also a high FDR (larger than 50%). In contrast, ChoSelectf keeps the FDR reasonably small to
the price of a small loss in the power. When p increases, the power of the procedures decreases.
These results corroborate the results of Proposition 7.2. When the number of parents (i.e. ESP)
increases, it seems that the FDR of the ChoSelectf increases. We recall that if one wants a lower
FDR in the graph estimator, one should choose a larger value for K. In practice, taking K = 2.5
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or K = 3 enforces the FDR to be smaller than 10%.

Method Ledoit Glasso Lasso ChoSelectf

Kullback discrepancy K(Ω; Ω̂)
Esp=1 19.2± 0.2 8.8± 0.2 7.5± 0.1 6.0± 0.1
Esp=3 39.6± 0.7 21.8± 0.2 18.9± 0.2 14.7± 0.2
Esp=5 56.4± 1.4 35.6± 0.3 32.0± 0.4 28.9± 0.4

Operator distance ‖Ω̂−Ω‖
Esp=1 6.4± 0.2 5.6± 0.1 4.8± 0.2 3.8± 0.1
Esp=3 10.5± 0.2 10.7± 0.2 8.6± 0.2 5.9± 0.2
Esp=5 15.0± 0.1 14.7± 0.3 13.6± 0.2 9.1± 0.2

Operator distance ‖Ω̂−1 − Σ‖
Esp=1 2.4± 0.1 1.7± 0.1 1.8± 0.1 1.3± 0.1
Esp=3 7.6± 0.4 6.3± 0.4 9.3± 0.5 6.6± 0.4
Esp=5 20.1± 1.6 16.3± 1.3 35.1± 2.5 21.5± 1.5

Table 7: Comparison between the procedures for the second covariance model Ωc
2 with p = 200.

Effect of the ordering. In Table 7, we study here the performances of the procedures when the
ordering of the variables is slightly modified. The Glasso method and the regularization method
of Ledoit and Wolf perform as in the first scheme since these procedures do not depend on
a particular ordering of the variables. Lasso and ChoSelectf procedures provide slightly worse
results than in the first scheme, especially when the sparsity decreases. Indeed, the effect of a bad
ordering is higher when the sparsity is low. Nevertheless, ChoSelectf still performs better than
the other procedures for the Kullback risk and the operator distance between precision matrices,
while the Glasso and ChoSelectf still perform similarly the operator distance between covariance
matrices. The respective performances are different when the ordering is completely unknown
(see the Appendix [28]).

Conclusion. When the ordering is known or partially known, ChoSelectf has a small risk with
respect to the Kullback discrepancy and the operator distance between precision matrices. More-
over, ChoSelectf provides a good estimation of the underlying graph. It is difficult to interpret the
results for the operator distance between the covariance matrices. If the objective is to minimize
the operator distance ‖Σ̂− Σ‖, it seems that a direct estimation of Σ should be prefered to the
inversion of an estimation of Ω.

9. Discussion

Adaptive banding problem. ChoSelect achieves an oracle inequality and is adaptive to the decay in
the Cholesky factor T . We have also derived corresponding asymptotic results for the Frobenius
loss function. This procedure is computationally competitive with the other existing methods.
Finally, we explicitly provide the penalty and there are therefore no calibration problems contrary
to most procedures in the literature. In a future work, we would like to study the performances of
ChoSelect with respect to the operator norm and prove corresponding minimax bounds. Bickel
and Levina have indeed proved risk bounds for their banding procedure [6]. This method is based
on maximum likelihood estimators as ChoSelect. This is why we believe that ChoSelect may also
satisfy fast rates of convergence with respect to the operator distance.

Complete graph estimation problem. We have derived that ChoSelect satisfies an oracle type
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inequality and we have derived the minimax rates of estimation for sparse Cholesky factors T .
ChoSelect is shown to achieves minimax adaptiveness to the unknown sparsity of Cholesky factor.
As in the banded case, we provide an explicit penalty. However, this procedure is computationally
feasible only for small p. In contrast, the method ChoSelectf introduced in Section 7 shares some
advantages of the previous method with a much lower computational cost. In Algorithm 7.2, we
propose two collections based on the Lasso. In practice, there are maybe smarter ways of building
the collections M̂i than using the Lasso.

10. Proofs

10.1. Some notations and probabilistic tools

First, we introduce the prediction contrasts li(., .). Consider i be an integer between 2 and p and
let (t, t′) be two row vectors in R

i−1 then the contrast li(t, t
′) is defined by

li(t, t
′) := Var




i−1∑

j=1

(t[j]− t′[j])X [j]


 . (29)

Consider a model mi ∈ Mi. We define the random variable ǫmi
by

X [i] =
∑

j∈mi

−ti,mi
[j]X [j] + ǫmi

+ ǫi a.s. . (30)

By definition of ti,mi
in Section 4.1, the variable ǫmi

is independent of ǫ and of Xmi
. Besides,

its variance equals li(ti,mi
, ti). If follows from the definition of si,mi

that si,mi
= li(ti,mi

, ti) + si.
The vectors ǫ and ǫm refer to the n samples of ǫ and ǫm. For any model m and any vector Z
of size n, ΠmZ refers to the projection of Z onto the subspace generated by (Xi)i∈m whereas
Π⊥

mZ stands for Z − ΠmZ. For any subset m of {1, . . . , p}, Σm denotes the covariance matrix

of the vector X∗
m. Moreover, we define the row vector Zm := Xm

√
Σ−1

m in order to deal with
standard Gaussian vectors. Similarly to the matrix Xm, the n× |m| matrix Zm stands for the n
observations of Zm.

Lemma 10.1. The conditional Kullback-Leibler divergence K (ti, si; t
′
i, s

′
i) decomposes as

K (ti, si; t
′
i, s

′
i) =

1

2

[
log

s′i
si

+
si
s′i

− 1 +
li(ti, t

′
i)

s′i

]
. (31)

The estimators t̂i,mi
and ŝi,mi

are expressed as follows

X<i t̂
∗
i,mi

= −Xmi
(X∗

mi
Xm)−1X∗

mi
Xi , (32)

ŝi,mi
= ‖Π⊥

mi
Xi‖2n = ‖Π⊥

mi
(ǫi,mi

+ ǫi)‖2n . (33)

This lemma is a consequence of the definitions of t̂i,mi
, ŝi,mi

, and K (ti, si; t
′
i, s

′
i) in Sections 3

and 4.1.

10.2. Proof of Proposition 4.1

Proof of Proposition 4.1. First, we decompose the Kullback-Leibler divergence into a bias term
and a variance term using Expression (31).

E
[
2K
(
ti, si; t̂i,mi

, ŝi,mi

)]
= E

[
log

ŝi,mi

si
+

si + li(t̂i,mi
, ti)

ŝi,mi

− 1

]
.



N. Verzelen/Covariance estimation 26

By definition, t̂i,mi
is the least-squares estimator of ti over the set of vectors of size i− 1 whose

support is included in mi and −X<it
∗
i,mi

is the best predictor of Xi given Xmi
. Hence, the

prediction error li(t̂i,mi
, ti) + si equals li(t̂i,mi

, ti,mi
) + si,mi

and it follows that

E
[
2K
(
ti, si; t̂i,mi

, ŝi,mi

)]
= 2K (ti, si; ti,mi

, si,mi
)

+ E

[
log

ŝi,mi

si,mi

+
li
(
t̂i,mi

, ti,mi

)

ŝi,mi

+

(
si,mi

ŝi,mi

− 1

)]
. (34)

Let us compute the expectation of these three last terms. Notice that nŝi,mi
/si,mi

= n‖Π⊥
mi

Xi‖2n/si,mi

follows the distribution of a χ2 distribution with n− |mi| degrees of freedom.

E

[
si,mi

ŝi,mi

− 1

]
= E

[
n

χ2(n− |mi|)
− 1

]
=

|mi|+ 2

n− |mi| − 2
, (35)

by Lemma 5 in [4]. Similarly, we compute the expectation of the logarithm as follows:

E

[
log

ŝi,mi

si,mi

]
= E

[
log

(
χ2(n− |mi|)

n

)]
= Ψ(n− |mi|) + log

(
n− |mi|

n

)
, (36)

by definition of the function Ψ(.). The last term li(t̂i,mi
, ti,mi

)/ŝi,mi
is slightly more difficult to

handle. Let us first decompose li(t̂i,mi
, ti,mi

):

li(t̂i,mi
, ti,mi

) = (ti,mi
− t̂i,mi

)Σmi
(ti,mi

− t̂i,mi
)∗

= (ǫi + ǫi,mi
)∗Xmi

(X∗
mi

Xmi
)−1Σmi

(X∗
mi

Xmi
)−1X∗

mi
(ǫi + ǫi,mi

) ,

by Lemma 10.1 and definition of ǫi,mi
. Observe that ǫi + ǫi,mi

is independent of Xmi
. Hence,

conditionally to Xmi
, li(t̂i,mi

, ti,mi
) only depends on ǫi+ ǫi,mi

through its orthogonal projection
onto the space generated by (Xj)j∈mi

. Meanwhile, ŝi,mi
= ‖Π⊥

mi
(ǫi + ǫi,mi

)‖2n is the orthogonal

projection of (ǫi+ǫi,mi
) along the same subspace. Thus, li(t̂i,mi

, ti,mi
) and ŝi,mi

are independent
conditionally to Xmi

. Moreover, ŝi,mi
is independent of Xi,mi

. Hence, li(t̂i,mi
, ti,mi

) and ŝi,mi

are independent. Following the proof of Lemma 2.1 in [29], we observe that E[li(t̂i,mi
, ti,mi

)] is
the expectation of the trace of an inverse Wishart Wish−1(|mi|, n) times si,mi

. We then obtain
that

E

[
li
(
t̂i,mi

, ti,mi

)

ŝi,mi

]
= E

[
Wish−1(|mi|, n)
χ2(n− |mi|)/n

]
=

n|mi|
(n− |mi| − 1)(n− |mi| − 2)

, (37)

since E
[
Wish−1(|mi|, n)

]
= |mi|/(n − |mi| − 1) by Von Rosen [26]. Gathering identities (35),

(36), and (37) with (34) yields the first result (5). Let us now compute the function Ψ(.).

Lemma 10.2. For any d larger than 3,

− 1

d− 2
≤ Ψ(d) ≤ 0 and Ψ(d) = −1

d
+O

(
1

d2

)
.

The proof is given in the technical Appendix [28]. Since log(1 − d/n) is negative, we obtain
the first upper bound on Rn,d. For any positive number x, log(1 + x) ≤ x and consequently
log(1 − x) is smaller than −x/(1 − x) for any x such that 0 < x < 1. It then follows that
Ψ(n−d)+ log(1−d/n) ≥ −(d+1)/(n−d−2) and Rn,d ≥ (d+1)/[2(n−d−2)]. Analogously, we
obtain the expansion of Rn,d when d/n goes to 0 thanks to Lemma 10.2 and the Taylor expansion
of the logarithm.
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10.3. Proof of the risk upper bounds

10.3.1. Proof of the main theorem

Proof of Theorem 4.4. This result is based on a Kullback oracle inequality for all the estimators
(t̃i, s̃i) with 1 ≤ i ≤ p. Consider an integer 1 ≤ i ≤ p.

Assumption (Hi
K,η): Given K > 1 and η > 0, the collection M and the number η satisfy

∀mi ∈ Mi ,

[
1 +

√
2Hi(|mi|)

]2
|mi|

n− |mi|
≤ η < η(K) , (38)

where we recall that η(K) is defined in Eq.(12) in [29].

Obviously, Assumption (HK,η) is equivalent to the union of the assumptions (Hi
K,η).

Proposition 10.3. Let K > 1 and η < η(K). Assume that n ≥ n0(K), that (Hi
K,η) holds, and

that the penalty function is lower bounded as follows

peni(m) ≥ K
|m|

n− |m|
(
1 +

√
2Hi(|m|)

)2
for any m ∈ Mi and some K > 1 . (39)

Then, the penalized estimator (t̃i, s̃i) satisfies

E
[
K
(
ti, si; t̃i, s̃i

)]
≤ LK,η inf

mi∈Mi

[
E
[
K
(
ti, si; t̂i,m, ŝi,m

)]
+ peni(m)

]
+ τn [ti, si,K, η] .

The remaining term τn(ti, si,K, η) is defined by

τn [ti, si,K, η] :=
LK

n
+ L′(K, η)n5/2 [1 +K (ti, si; 0, 1)] exp [−nLK,η] ,

where 0 stands here for the null vector of size i− 1.

Let us apply this property for any i between 1 and p. Then, we get an upper bound for
E[K(Ω; Ω̃)] by applying the chain rule as in Section 4.1. The risk bound (8) follows.

Proof of Proposition 10.3. The proof of this result is mainly inspired by ideas introduced in the
proofs of Th.3 in [4] and of Th.3.4 in [29]. The case i = 1 is a consequence of Proposition 4.1
since |M1| = 1. Let us assume that i is larger than one. For the sake of clarity, we forget the
subscripts i in the remainder of the proof.

Let us introduce some new notations. First, 〈., .〉n is the inner product in R
n associated to the

norm ‖.‖n. Let m be any model in the collection M.

We shall use the constants κ1, κ2, and ν(K) as defined in the proof of Th.3.4 in [29]. We
provide their expression for completeness although they are not really of interest.

κ1 :=

√
3

K+2

1−√
η − ν(K)

, κ2 :=
(K − 1)

[
1−√

η
]2 [

1−√
η − ν(K)

]2

16
∧ 1 ,

ν(K) :=

(
3

K + 2

)1/6

∧
1−

(
3

K+2

)1/6

2
.
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Besides, we introduce the positive constant κ0 as the largest number that satisfies

κ0 ≤ 1− 2

K + 1
and

K + 2

3
≤ (1 − κ0)

K + 1.5

2.5
.

For clarity, the proof is split into six lemmas.

Lemma 10.4.

2(1− κ0)K
[
t, s; t̃, s̃

]
≤ 2K

[
t, s; t̂m, ŝm

]
+ (1− κ0)pen(m) +

l(t̃, t)

s̃
[R1(m̂) ∨ (1− κ2)(1− κ0)]

+ R2(m) +
s

s̃
R3(m̂) +R4(m, m̂) ,

where for all model m′ ∈ M,

R1(m
′) := κ1 + 1− κ0 −

‖Π⊥
m′ǫm′‖2n
l(tm′ , t)

+ κ2(1− κ0)ϕmax

[
n(Z∗

m′Zm′)−1
] ‖Πm′(ǫ+ ǫm′)‖2n

l(tm′ , t) + s
,

− K(1− κ0)
[
1 +

√
2H(|m′|)

]2 |m′|
n− |m′|

‖Π⊥
m′(ǫ+ ǫm′)‖2n
l(tm′ , t) + s

,

R2(m) := 2
〈Π⊥

mǫ,Π⊥
mǫm〉n

ŝm
+

‖Π⊥
mǫm‖2n − l(tm, t)

ŝm
,

R3(m
′) := κ−1

1

〈Π⊥
m′ǫ,Π⊥

m′ǫm′〉2n
sl(tm′ , t)

+ κ2(1− κ0)ϕmax

[
n(Z∗

m′Zm′)−1
] ‖Πm′(ǫ+ ǫm′)‖2n

l(tm′ , t) + s

+
‖Πm′ǫ‖2n

s
−K(1− κ0)

[
1 +

√
2H(|m′|)

]2 |m′|
n− |m′|

‖Π⊥
m′(ǫ+ ǫm′)‖2n
l(tm′ , t) + s

,

R4(m,m′) :=
(
‖ǫ‖2n − s(1− κ0)

) [ 1

ŝm
− 1

ŝm′

]
.

This lemma gives a decomposition of the relevant terms that we have to bound. See [28]
Sect.1.1 for a detailed computation. In the next four lemmas, we bound each of these terms.

Lemma 10.5. Let us assume that n ≥ n0(K), where n0(K) is defined in the proof. There exists
an event B1 of probability larger than 1− LKn exp [−nL′(K, η)] with L′(K, η) > 0 such that

R1(m̂)1B1
≤ v(K, η)(1 − κ0) ,

where v(K, η) is a positive constant (strictly) smaller than 1.

Lemma 10.6. Assume that n ≥ n0(K). Then, under the event B1 defined in the proof of Lemma
10.5,

E

[s
s̃
R3(m̂)1B1

]
≤ LK,η

n
.

These two upper bounds are at the heart of the proof. The sketch of their proofs is analogous
to Lemmas 7.10 and 7.11 in [29]. The main tools are deviation inequalities of χ2 random variables
and of the largest eigenvalue of a Wishart matrix. See [28] Sect.1.2 and 1.3 for detailed proofs.

Since l(t̃, t)/s̃ is smaller than 2K
[
t, s; t̃, s̃

]
, it follows that

2E
[
K
(
t, s; t̃, s̃

)
1B1

]
≤ LK,η

{
2E
[
K
(
t, s; t̂m, ŝm

)]
+ pen(m) + E [(R2(m) +R4(m, m̂))1B1

]
}

.
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Lemma 10.7. Assume that n ≥ n0(K). Considering the event B1 defined in Lemma 10.5, we
bound R2(m) by

E [R2(m)1B1
] ≤ LK,η

n
.

See [28] Sect.1.4 for a detailed proof.

Lemma 10.8. Assume that n ≥ n0(K). Considering the event B1 defined in Lemma 10.5, we
bound R4(m) by

E [R4(m, m̂)1B1
] ≤ Lpen(m) + n exp [−nLK ] .

The proofs of this lemma relies on the same ideas as the proofs of Lemma 3 in [4]. See [28]
Sect.1.5 for a detailed proof.

Gathering these two lemmas, we control the Kullback risk of (t̃, s̃) on the event B1

2E
[
K
(
t, s; t̃, s̃

)
1B1

]
≤ LK,η

{
2E
[
K
(
t, s; t̂m, ŝm

)]
+ pen(m)

}

+
LK

n
+ (n+ L) exp [−nLK ] . (40)

To conclude, we need to control the Kullback risk of the estimator (t̃, s̃) on the event Bc
1.

Lemma 10.9. Outside the event B1, the Kullback risk is upper bounded as follows:

E
[
K
(
t, s; t̃, s̃

)
1Bc

1

]
≤ LK,ηn

5/2 [1 +K(t, s; 0, 1)] exp [−nLK ] .

This lemma is based on Hölder’s inequality and on an upper bound of the moments of the
parametric losses K(t, s; t̂m, ŝm). A detailed proof is in the technical Appendix [28] Sect.1.6.
Combining (40) and Lemma 10.9 allows to conclude

E
[
K
(
t, s; t̃, s̃

)]
≤ LK,η

[
E
[
K
(
t, s; t̂m, ŝm

)]
+ pen(m)

]
+

LK

n

+ LK,ηn
5/2 [1 +K(t, s; 0, 1)] exp [−nLK ] .

10.3.2. Proof of the corollaries

Proof of Corollary 5.1. The functions Hi(.) equal 0 for all the collections Md
i,ord. Hence, the

collectionsMd
ord satisfies (HK,η). We conclude by gathering Proposition 4.1 and Theorem 4.4.

Proof of Corollary 6.1. First, we claim that for any K > 1 the penalties (21) are lower bounded
by penalties defined in (7) with some K ′ > 1 if

|mi|/(n− |mi|)
{
1 +

√
2 [1 + log ((i− 1)/|mi|)]2

}
≤ ν′(K) .

If we assume that d[1 + log(p/d) ∨ 0] ≤ nη′(K), for some well chosen function η′(K), then
(HK′,η) is fulfilled and that the risk bound (23) holds. A detailed proof is in the technical
Appendix citetechnical Sect.1.7.

Proof of Proposition 7.1. Under the event Am, the model m belongs to the collection M̂1× . . .×
M̂p. Hence for any i in 1, . . . p, log(ŝi,m̂f

i
) + pen(m̂f

i ) ≤ log(ŝi,mi
) + pen(mi). The rest of the

proof is analogous to the proof of Theorem 4.4.
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10.4. Proofs of the minimax bounds

The minimax bounds are based on Fano’s method [32]. Since the Kullback discrepansy is not
a distance, we cannot directly apply this method. Instead, we use a modified version of Birgé’s
lemma [7] for covariance estimation. In the sequel, we note ‖t‖l2 the Euclidean norm of a vector
t.

Lemma 10.10. Let A be a subset of {1, . . . , p}. For any positive matrices Ω and Ω′, we define
the function d(Ω,Ω′) by

d(Ω,Ω′) :=
∑

i∈A

log

[
1 +

‖ti − t′i‖2l2
4

]
+
∑

i∈Ac

si
s′i

+ log

(
si
s′i

)
− 1 . (41)

Let Υ be a subset of square matrices of size p which satisfies the following assumptions:

1. For all Ω ∈ Υ, ϕmax(Ω) ≤ 2 and ϕmin(Ω) ≥ 1/2.
2. There exists (s1, s2) ∈ [1; 2]2 such that ∀Ω ∈ Υ, ∀1 ≤ i ≤ p, si ∈ {s1, s2}.

Setting δ = minΩ,Ω′∈Υ,Ω6=Ω′ d(Ω,Ω′), provided that maxΩ,Ω′∈Υ K(P⊗n
Ω ;P⊗n

Ω′ ) ≤ κ1 log |Υ|, the
following lower bound holds

inf
Ω̂

sup
Ω∈Υ

EΩ

[
K
(
Ω; Ω̂

)]
≥ κ2δ .

The numerical constants κ1 and κ2 are made explicit in the proof.

The general setup of the proofs is to pick a maximal subset Υ of matrices that are well
separated with respect to d(., .) and such that their Kullback discrepansy is not too large. The
existence of these subsets is ensured by technical combinatorial arguments. We postpone the
complete proofs to the technical appendix [28] Sect.2.

10.5. Proof of the Frobenius bounds

We derive the Frobenius rates of convergence from the Kullback bounds. Indeed, we prove in [28]
that

‖
√
ΣΩ′√Σ− Ipn

‖2F = 4 [K (Ω;Ω′)] + o [K (Ω;Ω′)] , (42)

when K (Ω;Ω′) is close to 0. Hence, one may upper bound the Frobenius distance between Ω′

and Ω in terms of Kullback discrepancy using that

‖Ω′ − Ω‖2F = tr
[√

Ω
(√

ΣΩ′√Σ− Ipn

)
Ω
(√

ΣΩ′√Σ− Ipn

)√
Ω
]

≤ ϕ2
max (Ω) ‖

√
ΣΩ′√Σ− Ipn

‖2F .

The complete proof of Corollaries 5.4 and 6.3 are postponed to the technical Appendix [28]
Sect.4.
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