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The Fujita phenomenon for nonlinear parabolic problems ∂tu = ∆u + u p in an exterior domain of R N under the Robin boundary conditions is investigated in the superlinear case. As in the case of Dirichlet boundary conditions (see Trans. Amer. Math. Soc 316 (1989), 595-622 and Isr. J. Math. 98 (1997), 141-156), it turns out that there exists a critical exponent p = 1 + 2/N such that blow-up of positive solutions always occurs for subcritical exponents, whereas in the supercritical case global existence can occur for small non-negative initial data.

Introduction

Let Ω be an exterior domain of R N , that is to say a connected open set Ω such that Ω c is a bounded domain when N ≥ 2, and in dimension one, Ω is the complement of a real closed interval. We always suppose that the boundary ∂Ω is of class C 2 . The outer normal unit vector field is denoted by ν : ∂Ω → R N and the outer normal derivative by ∂ ν . Let p be a real number with p > 1, α a non-negative continuous function on ∂Ω × R + and ϕ a continuous function in Ω. Consider the following nonlinear parabolic problem

   ∂ t u = ∆u + u p in Ω × (0, +∞), ∂ ν u + αu = 0 on ∂Ω × (0, +∞), u(•, 0) = ϕ in Ω. (1) 
In this paper, we give a positive answer to Levine & Zhang's question [START_REF] Levine | The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values[END_REF]: the Fujita phenomenon, well-known in the case of Ω = R N (see Ref. [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for u t = ∆u + u 1+α[END_REF]), remains true for the Robin boundary conditions. The case limiting α ≡ 0 and α = +∞ were proved by Levine & Zhang in [START_REF] Levine | The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values[END_REF] and by Bandle & Levine in [START_REF] Bandle | On the existence and the nonexistence of global solutions of reaction-diffusion equations in sectorial domains[END_REF], respectively. The real number 1 + 2 N is still the critical exponent, and we prove the blowingup of all positive solutions of Problem (1) for subcritical exponents p, whereas in the supercritical case, we show the existence of global positive solutions of Problem (1) for sufficiently small initial data. In the last section, we study the case of a general second order elliptic operator replacing the Laplacian. We also consider a non-linearity including a time and a space dependence. Throughout, we shall assume that α is non-negative

α ≥ 0 on ∂Ω × R + , (2) 
and, in order to deal with classical solutions, we need some regularity on α

α ∈ C(∂Ω × R + ). (3) 
To construct solutions with the truncation procedure (see Section 2), we suppose

ϕ ∈ C(Ω), 0 < ϕ ∞ < ∞, ϕ ≥ 0, lim x 2→∞ ϕ(x) = 0. ( 4 
)
In the case Ω = R N , the boundary conditions are dropped, and the result is well-known by the classical paper of Fujita [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for u t = ∆u + u 1+α[END_REF]. Thus we suppose Ω = R N .

Preliminaries

First, we give the definition of positive solution which is understood along this paper.

Definition 2.1 A positive solution of Problem (1) is a positive function u : (x, t) → u(x, t) of class C(Ω × [0, T )) ∩ C 2,1 (Ω × (0, T )), satisfying    ∂ t u = ∆u + u p in Ω × (0, +∞), ∂ ν u + αu = 0 on ∂Ω × (0, +∞), u(•, 0) = ϕ in Ω,
where α and ϕ are given with (2), ( 3) and (4). The time T = T (α, ϕ) ∈ (0, +∞] denotes the maximal existence time of the solution u. If T = +∞, the solution is called global.

From [START_REF] Bandle | On the existence and the nonexistence of global solutions of reaction-diffusion equations in sectorial domains[END_REF], if T < +∞, u blows up in finite time, that is to say:

lim tրT sup x∈Ω u(x, t) = +∞.
Then, let us recall a standard procedure to construct solutions of Problem (1) in outer domains for uniformly bounded and continuous initial data ϕ. For more details, we refer to [START_REF] Bandle | Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up[END_REF] , [START_REF] Rault | The Fujita phenomenon in exterior domains under dynamical boundary conditions[END_REF] and references therein. Let (D n ) n∈N be a sequence of nested bounded domains such that

Ω c ⊆ D 0 ⊆ D 1 ⊆ • • • ⊆ n∈N D n = R N .
Let u n be the solution of

       ∂ t u = ∆u + u p in Ω ∩ D n × (0, +∞), ∂ ν u + αu = 0 on ∂Ω × (0, +∞), u = 0 on ∂D n × (0, +∞), u(•, 0) = ϕ n in Ω ∩ D n , (5) 
where (ϕ n ) n∈N denotes a sequence of functions in

C 0 (Ω ∩ D n ) such that 0 ≤ ϕ n ≤ ϕ in Ω ∩ D n and ϕ n → ϕ uniformly in any compact of Ω ∩ D n as n → +∞. Let z denote the solution of the ODE ż = z p , z(0) = ϕ ∞ ,
with maximal existence time S =

1 (p-1) ϕ p-1 ∞
. By the comparison principle (see [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF]), we have

0 ≤ u n (x, t) ≤ u n+1 (x, t) ≤ z(x, t) in Ω ∩ D n × [0, S].

Standard arguments based on a priori estimates for the heat equation imply

u n → u in the sense of C 2,1 loc (Ω × (0, S)) as n → +∞,
where u is a positive solution of Problem [START_REF] Levine | The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values[END_REF]. Moreover, since u n vanishes on ∂D n for each n ∈ N * , the solution u vanishes at infinity:

lim x 2→∞ u(x, t) = 0 , ∀ t ∈ (0, T ).

Blow up case

In this section, we compare the solution of Problem (1) with an appropriate Dirichlet solution. We prove the following theorem: Theorem 3.1 Suppose that conditions (2), ( 3) and (4) are fullfiled. Then all non-trivial positive solutions of Problem (1) blow up in finite time for p ∈ (1, 1 + 2/N ). Moreover, if N ≥ 3, blow up also occurs for p = 1 + 2/N . Proof: Ab absurdo, suppose that there exists α and a non-trivial ϕ satisfying the hypotheses above, and such that the solution u of Problem (1) with these parameters is global. Then, consider u n the solution of the truncated Problem [START_REF] Rault | The Fujita phenomenon in exterior domains under dynamical boundary conditions[END_REF]. By the comparison principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], we obtain

0 ≤ u n (x, t) ≤ u(x, t) in Ω ∩ D n for t > 0.
Thus, u n can not blow up in finite time, and u n must be global. Next, define v n the solution of the following problem

       ∂ t v n = ∆v n + v p n in Ω ∩ D n × (0, +∞), v n = 0 on ∂Ω × (0, +∞), v n = 0 on ∂D n × (0, +∞), v n (•, 0) = ϕ n in Ω ∩ D n .
Again, the comparison principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] implies 0 ≤ v n (x, t) ≤ u n (x, t) in Ω ∩ D n for t > 0. Then, we consider v the solution of the Dirichlet problem

   ∂ t v = ∆v + v p in Ω × (0, +∞), v = 0 on ∂Ω × (0, +∞), v(•, 0) = ϕ
in Ω, obtained as the limit of the v n by the truncation procedure described in Section 2. Thus, v ≤ u in Ω×(0, +∞) and v is a global positive solution. A contradiction with Bandle & Levine results [START_REF] Bandle | On the existence and the nonexistence of global solutions of reaction-diffusion equations in sectorial domains[END_REF] (see [START_REF] Bandle | Fujita type results for convective-like reaction diffusion equations in exterior domains[END_REF] for the one-dimensional case). If N ≥ 3 and p = 1 + 2/N , the contradiction holds with Mochizuki & Suzuki's results [START_REF] Mochizuki | Critical exponent and critical blow up for quasilinear parabolic equations[END_REF] and [START_REF] Suzuki | Critical blow-up for quasilinear parabolic equations in exterior domains[END_REF]. Hence, our solution u must blow up in finite time.

Global existence case

Now, we consider supercritical exponents:

p > 1 + 2 N .
We look for a global positive super-solution of Problem (1), we mean a function

U satisfying    ∂ t u ≥ ∆u + u p in Ω × (0, +∞), ∂ ν u + αu ≥ 0 on ∂Ω × (0, +∞), u(•, 0) ≥ ϕ in Ω.
With this global super-solution and using the comparison principle, we construct the sequence (u n ) n∈N of global positive solutions of Problems [START_REF] Rault | The Fujita phenomenon in exterior domains under dynamical boundary conditions[END_REF]. Thus, using the truncation procedure of Section 2, we construct a global positive solution of Problem [START_REF] Levine | The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values[END_REF]. We use two different super-solutions, and we obtain two results on the global existence with some restrictions on the dimension N or on the coefficient α. First, we only suppose that the dimension

N ≥ 3.
Theorem 4.1 Under hypotheses (2), ( 3) and (4), for N ≥ 3 and

p > 1 + 2 N ,
Problem (1) admits global non-trivial positive solutions for sufficiently small initial data ϕ.

Proof: Consider ϕ satisfying (4) and v the non-trivial positive solution v of the Neumann problem

   ∂ t v = ∆v + v p in Ω × (0, +∞), ∂ ν v = 0 on ∂Ω × (0, +∞), v(•, 0) = ϕ in Ω,
where the initial data ϕ is sufficiently small such that the solution v is global. This choice can be achieved because N ≥ 3 and p > 1 + 2/N , see Levine & Zhang [START_REF] Levine | The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values[END_REF]. For all α ≥ 0 on ∂Ω × (0, +∞), we obtain

∂ ν v + αv ≥ 0 on ∂Ω × (0, +∞).
Thus, v is a super-solution of Problem (1), and we can deduce the statement of the theorem. Now, we suppose that there exists a positive constant c > 0 such that

α ≥ c on ∂Ω × R + . (6) 
We do not impose any condition on the dimension.

Theorem 4.2 Let α be a coefficient satisfying (3) and ( 6), ϕ an initial data with (4). For

p > 1 + 2 N ,
Problem (1) admits global positive solutions for sufficiently small initial data ϕ.

Proof: We consider the function

U : Ω × [0, +∞) -→ [0, +∞) defined by U (x, t) = A(t + t 0 ) -µ exp - x 2 2 4(t + t 0 ) ,
where µ = 1/(p-1), t 0 > 0 and A > 0 will be chosen below. All the calculus will be detailed in the proof of the general Theorem 5.3. If A > 0 is small enough, we have

∂ t U ≥ ∆U + U p in Ω × (0, +∞).
On the boundary ∂Ω, hypothesis [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] gives

∂ ν U (x, t) + αU (x, t) ≥ -x • ν(x) 2(t + t 0 ) + α(x, t) U (x, t) ≥ -x • ν(x) 2(t + t 0 ) + c U (x, t)
Since the boundary ∂Ω is compact, the function

(∂Ω ∋ x → -x • ν(x) ∈ R is bounded. We choose t 0 sufficiently big such that -x • ν(x)/(2t 0 ) + c ≥ 0. Then we obtain ∂ ν U + αU ≥ 0 on ∂Ω × (0, +∞).
Finally, if we choose ϕ ≤ U (•, 0) in Ω, the function U is a super-solution of Problem (1).

Remark 4.3 In the previous proof, one can note that the hypothesis (6) can be relaxed into

α(x, t) ≥ x • ν(x) 2(t + t 0 ) for all (x, t) ∈ ∂Ω × (0, +∞). ( 7 
)
This condition gives us an optimal bound on α only if we know the geometry of the domain Ω. For instance, if

Ω = { x 2 > R}, we obtain x • ν(x) = -R for all x ∈ ∂Ω.
Then, the equation ( 7) is equivalent to

α(x, t) ≥ -R 2(t + t 0 )
for all (x, t) ∈ ∂Ω × (0, +∞).

In particular, the previous theorem holds for all non-negative α.

In the one-dimensional case, using symmetry and translation, we can suppose that Ω = (-∞, -1) ∪ (1, +∞). Then, without any additional hypothesis on the parameters of Problem (1), we obtain:

Theorem 4.4 Assume the conditions (2), ( 3) and (4). For dimension N = 1 and p > 3,

Problem (1) admits global positive solutions for sufficiently small initial data ϕ.

Generalization

In the manner of Bandle & Levine's results [START_REF] Bandle | Fujita type results for convective-like reaction diffusion equations in exterior domains[END_REF], we generalize our results. We consider the following problem

   ∂ t u = Lu + t q x s 2 u p in Ω × (0, +∞), ∂ ν u + αu = 0 on ∂Ω × (0, +∞), u(•, 0) = ϕ in Ω, (8) 
where q and s are two positive real numbers, p > 1 is a real number, and L stands for the second order elliptic operator

L = N i,j=1 ∂ xi a ij (x)∂ xj + N i=1 b i (x)∂ xi .
To deal with classical solutions, the coefficients are assumed to be in C 2 (Ω). We keep the hypotheses (2), ( 3) and ( 4) on the parameters α and ϕ. In order to state our principal results, we shall introduce some notations.

ρ(x) = N i,j=1 a ij (x) x i x j x 2 2 .
Throughout, we assume that the matrix A = (a ij ) 1≤i,j≤N is normalized, so that for some

ν 0 ∈ (0, 1] 0 < ν 0 ≤ ρ ≤ 1 in Ω. Denote b = (b 1 , . . . , b N ) and let l(x) = N i,j=1 ∂ xj a ij (x) -b i (x) x i , l * (x) = N i,j=1 ∂ xj a ij (x) + b i (x) x i .
We can state the following theorem concerning the blow-up case.

Theorem 5.1 Assume that N ≥ 2, div b(x) ≤ 0 in Ω, and 
ρ(x) ≤ trace A(x) + l(x) 2 in Ω. ( 9 
)
Then, all non-trivial positive solutions of Problem (8) blow up in finite time for

1 < p < 1 + 2 + 2q + s N .
Proof: Ab absurdo, we suppose that there exists a non-trivial positive solution v of Problem [START_REF] Mochizuki | Critical exponent and critical blow up for quasilinear parabolic equations[END_REF]. As in the proof of Theorem 3.1, we deduce that there exists a non-trivial positive solution u of the following Dirichlet problem

   ∂ t u = Lu + t q x s 2 u p in Ω × (0, +∞), u = 0 on ∂Ω × (0, +∞), u(•, 0) = ϕ in Ω.
According to Bandle & Levine's results from [START_REF] Bandle | Fujita type results for convective-like reaction diffusion equations in exterior domains[END_REF], the solution u blows up in finite time under the above hypotheses. Thus, v must blow up too.

For the one-dimensional case, Bandle & Levine weaken the hypothesis [START_REF] Suzuki | Critical blow-up for quasilinear parabolic equations in exterior domains[END_REF]. Then, we obtain: 

Theorem 5.2 Assume that N = 1, div b(x) ≤ 0
: Ω × [0, +∞) -→ [0, +∞) defined by U (x, t) = A(t + t 0 ) -µ exp - x 2 2 4(t + t 0 ) ,
where µ = (2 + 2q + s)/(2p -2), t 0 > 0 and A > 0 will be chosen below. We have

∂ t U (x, t) = -µ t + t 0 + x 2 2 4(t + t 0 ) 2 U (x, t), LU (x, t) = ρ(x) x 2 2 4(t + t 0 ) 2 - trace A + l * 2(t + t 0 ) U (x, t), and 
∂ ν U (x, t) = -x • ν(x) 2(t + t 0 ) U (x, t).
On the boundary ∂Ω, we obtain:

∂ ν U (x, t) + αU (x, t) = -x • ν(x) 2(t + t 0 ) + α U (x, t).
Thanks to hypothesis [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], and because the boundary ∂Ω is compact, we can choose t 0 sufficiently big such that

-x • ν(x) 2t 0 + c ≥ 0 on ∂Ω.
Thus, ∂ ν U (x, t) + αU (x, t) ≥ 0 is achieved on ∂Ω × (0, +∞). Then, in Ω, we have ∂ t U (x, t) -LU (x, t) = (1ρ(x))

x 2 2 4(t + t 0 ) 2 + trace A + l * -2µ 2(t + t 0 ) U (x, t).

With ρ ≤ 1, we ignore the t-quadratic term, and by definition of γ 0 , we obtain

∂ t U (x, t) -LU (x, t) ≥ γ 0 -µ t + t 0 U (x, t), (10) 
with γ 0µ > 0. On the other hand, t < t + t 0 implies t q x s 2 U p (x, t) ≤ A p-1 x s 2 (t + t 0 ) q-µ(p- By definition of µ, we have s/2 + qµ(p -1) = -1. Thus, we just have to choose A sufficiently small, equations (10) and (11) give ∂ t U (x, t) -LU (x, t) ≥ t q x s 2 U p (x, t).

Finally, if the initial data ϕ ≤ U (•, 0) in Ω, U is a super-solution of Problem ( 8), and we can deduce the existence of a solution using the truncation procedure of Section 2.