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Abstract

Folded binomial arises from binomial distributions when the num-
ber of successes is considered equivalent to the number of failures or
they are indistinguishable. Formally, if Y ∼ Bin(m,π) is a binomial
random variable, then the random variable X = min(Y,m − Y ) is
folded binomial distributed with parameters m and p = min(π, 1 − π).
In this work, we present results on the stochastic ordering of folded
binomial distributions. Providing an equivalence between their cumu-
lative distribution functions (cdf) and a combination of two Beta ran-
dom variable cdf’s, we prove both that folded binomials are stochas-
tically ordered with respect to their parameter p given the number
of trials m, and that they are stochastically ordered with respect to
their parameter m given p. Furthermore, the reader is offered two
corollaries on strict stochastic dominance.

Keywords: Data depth, First-order stochastic dominance, Fisher’s sign
test, Strict stochastic dominance.

1 Introduction

Folded binomial arises from binomial distributions when the number of suc-
cesses is considered equivalent to the number of failures or they are indis-
tinguishable (Urbakh, 1967; Gart, 1970; Mantel, 1970). In other words, a
folded binomial observation is given by x = min(y, m − y) when m inde-
pendent Bernoulli trials with equal probability π have yielded y successes.
It arises when two subsets of outcomes for m trials can be identified, but
either which are the successes and which are the failures cannot be said, or
successes and failures are considered equivalent. Thus, 10 trials yielding 4
successes will give the same pattern as 10 trials yielding 6 successes.
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A folded binomial can be formally defined as a transformation of a bino-
mial random variable. Let Y ∼ Bin(m, π) be a binomial random variable,
where m is the number of trials and π is the success probability, with m a
positive integer and 0 ≤ π ≤ 1. Then, the random variable

X = min(Y, m − Y )

is folded binomial distributed, with the following parameters: the number
of trials m, and the probability p = min(π, 1 − π), 0 ≤ p ≤ 1/2. In other
words, p = π if 0 ≤ π ≤ 1/2 and p = 1 − π if 1/2 < π ≤ 1. When X is
a folded binomial random variable with parameters m and p, we will write
X ∼ fBin(m, p).

After Gart (1970), the probability mass function (pmf) of X ∼ fBin(m, p)
is given by:

P (X = x) = [1 − 1

2
δx,m−x]

(
m

x

) [
px(1 − p)(m−x) + p(m−x)(1 − p)x

]
, (1)

where δk,j = 1 or 0 as k = j or k 6= j, respectively.
The support set X of the distribution depends on the number of Bernoulli

trials, and it is given by X = {0, 1, . . . , ⌊m/2⌋ }, where ⌊x⌋ is the greatest
integer not exceeding x (the floor function). That is, if m is even, X =
{0, 1, . . . , m/2}, while if m is odd, X = {0, 1, . . . , (m − 1)/2}. We note that
in Equation (1) δx,m−x = 1 only if x = m/2, and this latter case occurs only
for m even. For m odd, δx,m−x = 0 for all x.

Unlike binomial distributions, folded binomials degenerate for m = 1. In
this case P (X = 0) = 1. For this reason, it is worth studying the properties
of folded binomials for m > 1.

Folded binomials have been used within epidemiology (Mantel et al.,
1976), genetic studies (Nordheim et al., 1983; Nordheim et al., 1984), in
experimental psychology (Coombs and Huang, 1970; Aschenbrenner, 1984),
in population growth studies (Pickens and Mode, 1986), and in physics (Toke
et al, 1997).

Furthermore, considering the two-sided (or non-directional) distribution
free Fisher’s sign test (Hollander and Wolfe, 1999; Sec. 3.4), we find that the
sample distribution of the test statistic is a folded binomial (with p = 1/2
under H0). In our opinion, this is an undervalued result that can lead to
further applications. In particular, it can be exploited to study the sign test
power functions.

The aim of this work is to present results on the stochastic ordering
of folded binomial distributions. That is, we investigate the relationships
between the cumulative distribution functions (cdf) of folded binomials in
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order to establish which cdf attaches more probability to larger values than
the others. Specifically, we prove both that folded binomials are stochasti-
cally ordered with respect to their parameter p given the number of trials m
(Theorem 1), and that they are stochastically ordered with respect to their
parameter m given p (Theorem 2). Furthermore, the reader is offered two
corollaries on strict stochastic dominance.

Notice that the first theorem proves that the two-sided Fisher’s sign test
is unbiased. On the other hand, both theorems can be exploited to derive
properties of the convex hull probability depth (Porzio and Ragozini, 2009).

2 Stochastic ordering

In this section we offer two theorems on the stochastic ordering of folded bino-
mial random variables. Results on strict stochastic dominance are provided
as well. With these aims, we first formally define the stochastic ordering no-
tion we consider. Then we rewrite Gart’s expression of the folded binomial
pmf and of the corresponding cdf, exploiting it to establish the equivalence
between the folded binomial cdf and a combination of two Beta random vari-
able cdf’s (Lemma 1). The latter result is used in turn to prove our theorems.

Thus let X1 and X2 be two univariate random variables such that

P (X1 > u) ≤ P (X2 > u) ∀u ∈ ℜ.

Then X1 is said to be stochastically smaller than or equal to X2, and this
is denoted by X1 ≤st X2 (Whitt, 1988). Equivalently, we can say that
X1 ≤st X2 if

FX1(u) ≥ FX2(u) ∀u ∈ ℜ, (2)

where FX1 and FX2 denote the cdf’s of X1 and X2, respectively.
When this latter inequality holds, it can also be said that X2 stochastically

dominates X1, where this kind of dominance is referred to as first-order
stochastic dominance.

Finally, if in addition to the inequality (2), we also have that:

FX1(u) > FX2(u) for some u ∈ ℜ, (3)

then X1 is said to be stochastically smaller than X2, or equivalently a strict
stochastic dominance of X2 on X1 holds.

For our purposes, let us now rewrite Gart’s expression (Equation 1) of
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the pmf of X ∼ fBin(m, p) as:

P (X = x) = [1 − 1

2
I{m/2}(x)]

[(
m

x

)
px(1 − p)(m−x) +

(
m

m − x

)
p(m−x)(1 − p)x

]
=

= I[0,m/2[(x)

[(
m

x

)
px(1 − p)(m−x) +

(
m

m − x

)
p(m−x)(1 − p)x

]
+

+ I{m/2}(x)

(
m

m/2

)
pm/2(1 − p)m/2, (4)

with x ∈ X , and IA(x) = 1 if and only if x ∈ A.
Our expression of the folded binomial pmf highlights that the δx,m−x term

in Equation (1) accounts only for the case x = m/2. As stated, this latter
case occurs only for m even. For m odd, the second term of the sum in
Equation (4) simply cancels itself out.

Consequently, the cdf of X, FX(x) can be written as:

FX(x) =

x∑

k=0

{
I[0,m/2[(k)

[(
m

k

)
pk(1 − p)(m−k) +

(
m

m − k

)
p(m−k)(1 − p)k

]
+

+ I{m/2}(k)

(
m

m/2

)
pm/2(1 − p)m/2

}
0 ≤ x ≤ m/2.

(5)

Given that FX(m/2) = 1 for m both even and odd, we eventually have:

FX(x) =





0 x < 0∑x
k=0

[(
m
k

)
pk(1 − p)(m−k) +

(
m

m−k

)
p(m−k)(1 − p)k

]
0 ≤ x < m/2

1 x ≥ m/2
(6)

This latter equation allows us to prove the following Lemma.

Lemma 1. Let X be a folded binomial random variable, that is X ∼ fBin(m, p).
Then, the cdf of X can be expressed as:

FX(x) =





0 x < 0
FW1(1 − p) + [1 − FW2(1 − p)] 0 ≤ x < m/2
1 x ≥ m/2

where W1 ∼ Beta(m − x, x + 1), and W2 ∼ Beta(x + 1, m − x).

Proof. By Equation (6), for 0 ≤ x < m/2 we have:
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FX(x) =

x∑

k=0

(
m

k

)
pk(1 − p)(m−k) +

x∑

k=0

(
m

m − k

)
p(m−k)(1 − p)k =

= P (Y ≤ x) + P (Y ≥ m − x) =

= FY (x) + [1 − FY (m − x − 1)],

where Y ∼ Bin(m, p).
Then, the Lemma is established given the relationship between the cdf’s

of binomial and Beta random variables.

We now use Lemma 1 to present some results on stochastic ordering of
folded binomials.

Theorem 1 (Stochastic ordering w.r.t. p). Let X1 and X2 be two folded bi-
nomial distributions with m independent Bernoulli trials (m > 1) and prob-
ability of success p1 and p2, respectively. That is, X1 ∼ fBin(m, p1) and
X2 ∼ fBin(m, p2). If p1 < p2, then X1 ≤st X2. That is, X1 is stochastically
smaller than or equal to X2.

Proof. By definition of stochastic ordering (Equation 2), and by Equation
(6), it is enough to evaluate for 0 ≤ x < m/2 the inequality:

FX2(x) ≤ FX1(x) p1 < p2,

or equivalently FX1(x) − FX2(x) ≥ 0.
Let W1 ∼ Beta(m − x, x + 1) and W2 ∼ Beta(x + 1, m − x). By Lemma

1, the latter inequality is equivalent to:

FW1(1 − p1) − FW1(1 − p2) − [FW2(1 − p1) − FW2(1 − p2)] ≥ 0.

That is,

B(m − x, x + 1)

∫ 1−p1

1−p2

tm−x−1(1 − t)xdt +

−B(x + 1, m − x)

∫ 1−p1

1−p2

tx(1 − t)m−x−1dt ≥ 0, (7)

where B(·, ·) denotes the Beta function.
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As B(α, β) = B(β, α) and the integrals in Equation (7) are defined over
the same interval, the theorem holds if the inequality of the integrand func-
tions

tm−x−1(1 − t)x ≥ tx(1 − t)m−x−1 (8)

holds over all the possible values of (1 − p2) < t < (1 − p1). As 0 ≤ p1 <
p2 ≤ 1/2, Equation (8) must be evaluated for 1/2 < t < 1. It becomes
[t/(1 − t)]m−2x−1 ≥ 1.

Given that t/(1 − t) > 1, the inequality (8) is then verified when m −
2x − 1 ≥ 0, i.e.:

x ≤ (m − 1)/2. (9)

Hence, FX2(x) ≤ FX1(x) for 0 ≤ x ≤ (m − 1)/2.
Furthermore, we note that for m odd FX1(

m−1
2

) = FX2(
m−1

2
) = 1, and

thus the ordering holds for any x.
For m even, folded binomials share the following cdf properties:

FX

(
m − 2

2

)
= FX

(
m − 1

2

)
= P (X < m/2). (10)

Consequently, as by Equation (9) FX1(
m−2

2
) ≥ FX2(

m−2
2

), X1 and X2 are
stochastically ordered also for (m − 1)/2 ≤ x < m/2.

Finally, given that FX(m/2) = 1, for p1 < p2, we have:





FX2(x) = FX1(x) = 0 x < 0
FX2(x) ≤ FX1(x) 0 ≤ x < m/2
FX2(x) = FX1(x) = 1 x ≥ m/2

Corollary 1 (Strict stochastic dominance w.r.t. p). Let X1 and X2 be two
folded binomial distributions with m independent Bernoulli trials (m > 1)
and probability of success p1 and p2, respectively. That is, X1 ∼ fBin(m, p1)
and X2 ∼ fBin(m, p2). If p1 < p2, then X2 strictly stochastically dominates
X1.

Proof. By definition of strict stochastic dominance (Equation 3), and con-
sidering Equation (8), we note that the strict inequality holds for 0 ≤ x <
(m − 1)/2. Hence:

FX2(x) < FX1(x) 0 ≤ x < (m − 1)/2.

6
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Theorem 2 (Stochastic ordering w.r.t. m). Let X1 and X2 be two folded
binomial distributions with m1 and m2 independent Bernoulli trials (m1 >
1, m2 > 1), respectively, and both with the same probability of success p,
0 ≤ p ≤ 1/2. That is, X1 ∼ fBin(m1, p) and X2 ∼ fBin(m2, p). If
m1 < m2, then X1 ≤st X2. That is, X1 is stochastically smaller than or
equal to X2.

Proof. By definition of stochastic ordering (Equation 2), by Equation (6),
and as m1 < m2, it is enough to evaluate for 0 ≤ x < m2/2 the inequality:

FX2(x) ≤ FX1(x), m1 < m2. (11)

Given that FX1(m1/2) = 1 and FX2(m1/2) ≤ 1, the ordering in Equation
(11) holds for m1/2 ≤ x < m2/2.

Hence, it is left to evaluate the inequality (11) for 0 ≤ x < m1/2. Let
W11 ∼ Beta(m1 − x, x + 1), W21 ∼ Beta(x + 1, m1 − x), W12 ∼ Beta(m2 −
x, x + 1), and W21 ∼ Beta(x + 1, m2 − x). By Lemma 1, the inequality (11)
is equivalent to:

FW11(1 − p) + [1 − FW21(1 − p)] − {FW12(1 − p) + [1 − FW22(1 − p)]} ≥ 0

For p = 0, the equality holds. This corresponds to the fact that if p = 0,
then P (X = 0) = 1, whatever the number of Bernoulli trials, and in this
case we have FX1(x) = FX2(x) for any x. For 0 < p ≤ 1/2, we have:

B(m1−x, x+1)

∫ 1−p

0

tm1−x−1(1−t)xdt−B(x+1, m1−x)

∫ 1−p

0

tx(1−t)m1−x−1dt+

−
[
B(m2 − x, x + 1)

∫ 1−p

0

tm2−x−1(1 − t)xdt − B(x + 1, m2 − x)

∫ 1−p

0

tx(1 − t)m2 −x−1dt

]
≥ 0

Given that B(α, β) = B(β, α), and that the integrals are defined over the
same integrating interval, we may equivalently write:

B(m1 − x, x + 1)

∫ 1−p

0

[tm1−x−1(1 − t)x − tx(1 − t)m1−x−1]dt +

−B(m2 − x, x + 1)

∫ 1−p

0

[tm2−x−1(1 − t)x − tx(1 − t)m2−x−1]dt ≥ 0

7
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For the sake of simplicity, let us for a while set:

∆(mj) =

∫ 1−p

0

[tmj −x−1(1 − t)x − tx(1 − t)mj −x−1]dt j = 1, 2.

The inequality (11) thus holds if:

B(m1 − x, x + 1)∆(m1) ≥ B(m2 − x, x + 1)∆(m2), (12)

for any m2 > m1, for any 0 ≤ x < m1/2, and for any 0 < p ≤ 1/2. This is
always true, as both B(m1 −x, x+1) > B(m2 −x, x+1) and ∆(m1) > ∆(m2).

Let us for a while focus on

B(m1 − x, x + 1) > B(m2 − x, x + 1).

Given that Beta(α, β) = Γ(α)Γ(β)
Γ(α+β)

, where Γ(·) is the Gamma function, we
have:

Γ(m1 − x)Γ(x + 1)

Γ(m1 + 1)
>

Γ(m2 − x)Γ(x + 1)

Γ(m2 + 1)
.

That is:
Γ(m2 + 1)

Γ(m1 + 1)
>

Γ(m2 − x)

Γ(m1 − x)
.

Given that Γ(α+1) = αΓ(α), this inequality holds for any 0 ≤ x < m1/2
and for m2 > m1. First, let us consider the case of m2 = m1 + 1. We have:

Γ(m1 + 2)

Γ(m1 + 1)
>

Γ(m1 − x + 1)

Γ(m1 − x)
,

i.e.

(m1 + 1)
Γ(m1 + 1)

Γ(m1 + 1)
> (m1 − x)

Γ(m1 − x)

Γ(m1 − x)
,

and hence (m1 + 1) > (m1 − x). Analogously, it can be shown that the
inequality holds even more so for any m2 > m1 + 1.

Consider now the inequality ∆(m1) > ∆(m2). As these integrals are
defined on the same integrating interval, we can equivalently compare the
integrand function for 0 < t < (1 − p) < 1. We will have ∆(m1) > ∆(m2) if:

[
tm1−x−1(1 − t)x − tx(1 − t)m1−x−1

]
−

[
tm2−x−1(1 − t)x − tx(1 − t)m2−x−1

]
> 0.

(13)
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As 0 < t < 1, we have:

tm1
(1 − t)x

tx+1
− (1 − t)m1

tx

(1 − t)x+1
−

[
tm2

(1 − t)x

tx+1
− (1 − t)m2

tx

(1 − t)x+1

]
=

=
(1 − t)x

tx+1
(tm1 − tm2) −

{
tx

(1 − t)x+1
[(1 − t)m1 − (1 − t)m2 ]

}
=

=
(1 − t)x(1 − t)x+1(tm1 − tm2) − txtx+1 [(1 − t)m1 − (1 − t)m2 ]

[(1 − t)t]x+1
.

Hence, Equation (13) is equivalent to:

(1 − t)2x+1(tm1 − tm2) − t2x+1 [(1 − t)m1 − (1 − t)m2 ] > 0.

That is,

(1 − t)2x+1tm1(1 − tm2−m1) > t2x+1(1 − t)m1
[
1 − (1 − t)m2 −m1

]
.

In other words, the theorem holds if the following inequality holds:

(
1 − t

t

)2x+1 (
t

1 − t

)m1 (1 − tm2−m1)

[1 − (1 − t)m2−m1 ]
> 0

For 0 < t < 1, the quantities
(

1−t
t

)2x+1 (
t

1−t

)m1 are both positive, and it
is enough to evaluate only if:

(1 − tm2 −m1)

[1 − (1 − t)m2−m1 ]
> 0

As m2 − m1 > 0, this holds. We have both 0 < tm2 −m1 < 1 and 0 <
(1 − t)m2−m1 < 1, since 0 < t < 1.

Corollary 2 (Strict stochastic dominance w.r.t. m). Let X1 and X2 be two
folded binomial distributions with m1 and m2 independent Bernoulli trials
(m1 > 1, m2 > 1), respectively, and both with the same probability of success
p, 0 < p ≤ 1/2. That is, X1 ∼ fBin(m1, p) and X2 ∼ fBin(m2, p). If
m1 < m2, then X2 strictly stochastically dominates X1.

Proof. By definition of strict stochastic dominance (Equation 3), and con-
sidering Equation (12), it has already been proved that the strict inequality
holds for 0 ≤ x < m1/2. Hence:

FX2(x) < FX1(x) 0 ≤ x < m1/2.
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