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A general definition of conditional information

and its application to ergodic decomposition∗

Łukasz Dębowski

Centrum voor Wiskunde en Informatica

Kruislaan 413, NL-1098 SJ Amsterdam

Abstract

We discuss a simple definition of conditional mutual information (CMI)

for fields and σ-fields. The new definition is applicable also in nonregu-

lar cases, unlike the well-known but more restricted definition of CMI by

Dobrushin. Certain properties of the two notions of CMI and their equiv-

alence for countably generated σ-fields are established. We also consider

an application, which concerns the ergodic decomposition of mutual in-

formation for stationary processes. In this case, CMI is tightly linked, via

additivity of information, with entropy defined as self-information. Thus

we reconsider the latter concept in some detail.

Key words: conditional mutual information, conditional product mea-

sure, excess entropy, ergodic decomposition, self-information
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1 Introduction

The extension of entropy and related information measures into functionals of

arbitrary algebras of events is some useful abstract tool in information theory

(Gelfand et al., 1956; Dobrushin, 1959; Pinsker, 1964). This extension allows to

handle entropy and information not only for discrete and continuous variables

simultaneously but also for the tail and invariant σ-fields of stochastic processes.

Unfortunately, the extension that is provided in the existing literature is

neither fully general nor the simplest possible, see Dobrushin (1959, Section 2)

and Pinsker (1964, Chapters 1–3) for detailed accounts. The aim of this paper is

to show a simpler path to generalizing several information measures, including

conditional Kullback-Leibler divergence.

For probability space (Ω, J , P ) let A, B, and C be subfields of J . Fields

are set algebras closed under finite operations, whereas σ-fields are assumed to

be closed also under denumerable sums and products. A field is called finite

if it has finitely many elements. The smallest (finite) field containing partition

{Bj }J
j=1 of Ω, where Bi ∈ J , will be denoted by [B1, ..., BJ ]. For any finite field

B there is a unique partition {Bj }J
j=1 such that B = [B1, ..., BJ ]. Thus we can

define four Shannon information measures for three finite fields A = [A1, ..., AI ],

B = [B1, ..., BJ ], and C = [C1, ..., CK ]:

• entropy H(A) := HP (A) := − ∑I
i=1 P (Ai) log P (Ai),

• mutual information

I(A; B) := IP (A; B) :=
I∑

i=1

J∑

j=1

P (Ai ∩ Bj) log
P (Ai ∩ Bj)
P (Ai)P (Bj)

,

• conditional entropy H(A|C) :=
∑K

k=1 P (Ck)HP (· |Ck)(A), and

• conditional mutual information I(A; B |C) :=
∑K

k=1 P (Ck)IP (· |Ck)(A; B),

where the algebraic relation 0 log 0 = 0 is assumed.

The above formulae mirror standard definitions for finite-valued random
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variables (e.g., Cover and Thomas, 1991, Eqs. 2.1, 2.10, 2.28, 2.60). If field

Ai is the smallest field with respect to which variable Yi is measurable, then

one puts I(Y1; Y2|Y3) := I(A1; A2|A3), I(Y1; Y2) := I(A1; A2), H(Y1|Y2) :=

H(A1|A2), and H(Y1) := H(A1). Similar conventions are followed for other

random variables once the information measures are extended to infinite fields

(Pinsker, 1964, Translator’s Remarks to Chapter 1).

It is easy to notice that η(A) ≥ η(A′) for A ⊃ A′ in each case of η(A) =

H(A), H(A|C), I(A; B), I(A; B |C). Hence for finite A, B, and C we have

H(A) = supH(A′), I(A; B) = sup I(A′; B ′), (1)

H(A|C) = supH(A′ |C), I(A; B |C) = sup I(A′; B ′ |C), (2)

where the supremum is taken over finite fields A′ ⊂ A and B ′ ⊂ B. The above

equalities can also be used as definitions for infinite A and B. Indeed, formulae

(1) were discussed as definitions by Gelfand et al. (1956) and Pinsker (1964).1

Denote the expectation of the random variable Y as EY =
∫

Y dP . To

resolve the problem of generalizing conditional information measures to infinite

C, it suffices to observe that for finite A, B, and C we have also

H(A|C) = EH(A||C), I(A; B |C) = E I(A; B ||C), (3)

where H(A||C) := HP (· | | C)(A) and I(A; B ||C) := IP (· | | C)(A; B) are random vari-

ables and P (A||C) is the conditional probability of event A ∈ J w.r.t. the

smallest σ-field containing C (cf. e.g. Billingsley, 1979, Section 33). Expressions

(3) remain sound for any field C. Thus we can generalize conditional information

measures first to arbitrary C via (3) and then to arbitrary A and B via (2).

Whereas the left expression in (3) is well known (Billingsley, 1965, Section

12), the analogical approach seems to have never been investigated in depth

for conditional mutual information. A rather cumbersome expression has been

1This approach cannot be used to generalize non-Shannon information measures, such as
triple mutual information, since they are not monotonic in general (Yeung, 2002, Chapter 6
on I-measure). Some generalization of the I-measure to σ-fields might be useful, however.
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generally adopted instead. The motivation came from the equality

I(A; B) = Ĩ(A; B) :=





∫
log dPAB

dPA× B
dPAB PAB ≪ PA× B,

∞ else,

(4)

(Gelfand et al., 1956, Theorem 4; Dobrushin, 1959, Section 2), where the “diago-

nal” measure PAB(A×B) := P (A∩B) and the product measure PA× B(A×B) :=

P (A)P (B) are defined as measures on product σ-field A ⊗ B via their unique

extension from Cartesian product A × B.

By analogy to (4), Dobrushin (1959, Eqs. 2.7.10–10’), followed by Pinsker

(1964, Section 3.1), defined conditional mutual information

Ĩ(A; B |C) :=





∫
log dPAB C

dPA× B |C
dPAB C PAB C ≪ PA× B | C ,

∞ else,

(5)

where PAB C and PA× B | C are measures on A ⊗ B ⊗ C given by PAB C (A×B ×C) :=

P (A ∩ B ∩ C) and

PA× B | C (A × B × C) :=
∫

C

P (A||C)P (B||C)dP. (6)

Measure PA× B | C exists and hence expression (5) is valid if conditional prob-

ability {P (E||C)}E∈ A is regular (Swart, 1996). Thus expressions (4) and (5)

open way to simple algebraic expressions for information measures of Gaussian

variables (Pinsker, 1964, Chapters 9–11; Cover and Thomas, 1991, Chapter 9).

Nonetheless, expression (5) does not make sense in certain other cases, when the

function PA× B | C on the Cartesian product A × B × C fails to be even finitely ad-

ditive (Sazonov, 1964). With regard to these questions see also the Translator’s

remarks to the Chapter 3 of Pinsker (1964).2

2The issue that PA× B | C need not be a measure seems to be first raised in literature by A.
Feinstein, the translator of Pinsker (1964). R. L. Dobrushin forwarded his question to V. V.
Sazonov, who produced a counterexample in his 1964 paper. In the footnote on page 55 of
Pinsker (1964), Feinstein mentions that PA× B | C can fail be a measure but gives no reference
to Sazonov, whose article was published in the same year. A very similar counterexample was
given by Swart (1996), who was unaware of Sazonov’s construction.
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In this paper we will pursue the properties and applications of conditional

information defined via (3) and (2). In Section 2, we will show that this simpler

definition is equivalent to (5) in the case of countably generated fields. Although

the new concept can be applied to any probability space, its general algebraic

properties can be established more easily than for the old one. An application

will be presented in Section 3. The example concerns the ergodic decomposition

of mutual information between the past and future of a countably generated

stationary process. Since the application is focused on the additivity relation

I(A; B) = H(C) + I(A; B |C) for C ⊂ A ∩ B, we will reconsider some properties

of self-information H(C) := I(C; C) in Section 4.

The considered application features regular conditional probabilities. Thus

using I(A; B) and I(A; B |C) rather than Ĩ(A; B) and Ĩ(A; B |C) seems just a mat-

ter of taste. We feel, however, that the new definition of CMI is more natural

and useful for the following reasons: (i) We avoid discussing whether PAB C is

dominated by PA× B | C and consider one Radon-Nikodym derivative less. (ii) We

obtain in a rigorous way a more general additivity relation than established so

far. (iii) The new definition explicitly stimulates thinking about information in

terms of sets of events rather than in terms of random variables and densities.

These theoretical advantages are useful. The general additivity allows to

prove an impossibility result in coding theory mentioned in Section 3. Thinking

in terms of σ-fields helps to demonstrate an elementary characterization of some

strongly nonergodic processes in Section 4. We hope that our paper provides

a motivated and compact introduction to four generalized Shannon information

measures.

2 Properties of conditional information

Let A ∨ B denote the field which is the intersection of all fields that contain A

and B. The newly proposed definition reads:

Definition 1 For finite fields A′ and B ′ on the event space Ω and a probability

4
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measure P on A′ ∨ B ′, define mutual information

IP (A′; B ′) :=
I∑

i=1

J∑

j=1

P (Ai ∩ Bj) log
P (Ai ∩ Bj)
P (Ai)P (Bj)

,

where {Ai}I
i=1 and {Bj }J

j=1 are the partitions of Ω that satisfy A′ = [A1, ..., AI ]

and B ′ = [B1, ..., BJ ].

Next, consider a probability space (Ω, J , P ). For an arbitrary field C and

finite fields A′ and B ′, where A′, B ′, C ⊂ J , we define pointwise conditional

mutual information

I(A′; B ′ ||C) := IP (· | | C)(A′; B ′),

where P (E||C) is the conditional probability of event E ∈ J w.r.t. the smallest

σ-field containing C.

The (average) conditional mutual information (or shortly CMI) between ar-

bitrary fields A and B given a field C is defined as

I(A; B |C) := supE I(A′; B ′ ||C), (7)

where the supremum is taken over all finite fields A′ ⊂ A and B ′ ⊂ B.

For this definition and the other information measures discussed in the Intro-

duction, we also have identities I(A1; A2) = I(A1; A2| {∅, Ω}), H(A1|A2) =

I(A1; A1|A2), and H(A1) = I(A1; A1) like in the case of finite fields.

The expression on the right-hand side of (7) is meaningful for all A, B,

and C, since conditional probabilities P ( · ||C) are J -measurable. No problems

arise when the conditional probability is not regular (cf. Seidenfeld et al., 2001,

Corollary 1) since the conditional distribution (P (E||C))E∈ E restricted to a finite

field E is almost surely a probability measure (Billingsley, 1979, Theorem 33.2).

Although CMI has usually been discussed for σ-fields, the new definition

makes sense also for fields. This point of view is convenient to prove continuity.

We will write Bn ↑ B for a sequence (Bn)n∈N of fields such that B1 ⊂ B2 ⊂ ... ⊂ B

and
⋃

n∈N Bn = B. (B need not be a σ-field.)

5
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Theorem 1 Let A, B, Bn, and C be subfields of J .

(i) I(A; B |C) = I(B; A|C);

(ii) I(A; B |C) ≥ 0 with the equality if and only if P (A∩B||C) = P (A||C)P (B||C)

almost surely for all A ∈ A and B ∈ B;

(iii) I(A; B |C) ≤ min(H(A|C), H(B |C));

(iv) I(A; B1|C) ≤ I(A; B2|C) if B1 ⊂ B2;

(v) I(A; Bn|C) ↑ I(A; B |C) for Bn ↑ B.

Remark: Properties (i) and (ii) were established for definition (5) by Pinsker

(1964) in Section 3.2, whereas (iv) and (v) are analogues of his Theorem 3.10.1.

Proof: Properties (i), (ii), (iii), and (iv) follow directly from the same properties

for finite fields (Cover and Thomas, 1991, Eqs. 2.46, 2.91, 2.40, 2.122). Property

(v) holds since every partition of B =
⋃

n∈N Bn is a partition of Bm for almost

all m. �

An important property of definition (7) is that the value of CMI does not

change when the fields are extended to complete σ-fields (or any intermediate

fields). A field is called complete if it contains all sets of outer P -measure 0. Let

σ(A) denote the intersection of all complete σ-fields containing A. The unique

extension of measure P from J to σ(J ) will be written as P , as well.

Lemma 1 Let A and B be finite fields and let C be any field. For each n ∈ N,

let a finite field Cn ⊂ C satisfy

{ω ∈ Ω : (i − 1)/n < P (E||C) ≤ i/n} ∈ Cn for i = 1, ..., n and E ∈ A ∨ B. (8)

Then limn I(A; B |Cn) = I(A; B |C).

Remark: Such finite fields Cn exist since P (E||C) are C-measurable.

6
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Proof: Condition (8) implies |P (E||Cn) − P (E||C)| ≤ 1/n almost surely. Thus

lim
n→∞

I(A; B ||Cn) = I(A; B ||C) almost surely (9)

by the continuity of IP (A; B) as a function of P (Yeung, 2002, Section

2.3). For A = [A1, ..., AI ] and B = [B1, ..., BJ ], we also have I(A; B |Cn) =
∫

I(A; B ||Cn)dP , I(A; B |C) =
∫

I(A; B ||C)dP and 0 ≤ I(A; B ||C) ≤ log min {I, J }

almost surely. Hence the thesis follows from (9) by the Lebesgue dominated

convergence theorem. �

With Lemma 1, we can demonstrate a proposition, the first part of which

has been mentioned.

Theorem 2 Let A, B, C, and D be subfields of J .

(i) I(A; B |C) = I(A; σ(B)|C)

and I(A; B |C) = I(A; B |σ(C));

(ii) I(A; B ∨ C |D) = I(A; C |D) + I(A; B |C ∨ D).

Remark: The analogue of (i) for I(A; ·) was proved by Dobrushin (1959, Section

2.2). Additivity (ii) is well known for finite-valued variables. For example,

it implies H(X) = I(X ; Y ) + H(X |Y ). The analogue of (ii) for the other

definition of CMI was also treated by Dobrushin (1959, Eqs. 2.7.1 and 2.7.9) for

D = {∅, Ω} and by Pinsker (1964, Theorem 3.6.2 and Eq. 3.6.6) for a general

D. The assertion made by Pinsker covered all cases of measure dominance and

singularity but assumed implicitly that the conditional product measures exist.

After a discussion with Dobrushin, the translator of Pinsker’s book showed in his

remarks to Chapter 3 that the special case (11) holds if PAB C ≪ PA×(B C). This

assumption implies also that PA× B | C exists, PAB C ≪ PA× B | C , and PAC ≪ PA× C .

By the way, there is a misprint in the Eqs. 3.6.1–3 of (Pinsker, 1964), which

correspond to (11) with I(B; C) substituted for I(A; C).

In the following proofs, we use symmetric difference A△B := A \ B ∩ B \ A.

7
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Proof: (i) Equality I(A; B |C) = I(A; B |σ(C)) is obvious in view of the al-

most sure equality P (E||C) = P (E||σ(C)). It remains to justify I(A; B |C) =

I(A; σ(B)|C). We will adapt the proof for case C = { ∅, Ω} given by Dobrushin

(1959, Section 2.2).

Fix a finite field A1 and ǫ > 0. Consider σ0(B) ⊃ B defined as the intersec-

tion of all σ-fields containing B (not necessarily complete ones). According to

Dobrushin (1959, Eq. 2.2.10), for any finite field B2 ⊂ σ0(B) there exists a finite

field B1 ⊂ B such that I(A1; B1) ≥ I(A1; B2) − ǫ. In fact, the proposition re-

mains true also for any B2 ⊂ σ(B). (Since there exists a finite field B ′
2 ⊂ σ0(B)

and a mapping f : B2 → B ′
2 such that P (B△f(B)) = 0 for all B ∈ B2.)

Now let us extend this result to C 6= { ∅, Ω}. Consider a finite field Cn ⊂ C

satisfying (8). By Dobrushin’s result, for almost every ω ∈ Ω there exists

a finite field Bω ⊂ B such that I(A1; Bω ||Cn)(ω) ≥ I(A1; B2||Cn)(ω) − ǫ. For

some version of conditional probability and Bω, random variable ω 7→ Bω is Cn-

measurable and then B1 :=
∨

ω∈Ω Bω is a finite field with B1 ⊂ B. By Theorem

2(iv), B1 satisfies I(A1; B1||Cn) ≥ I(A1; Bω ||Cn) ≥ I(A1; B2||Cn) − ǫ for almost

every ω and thus I(A1; B1|Cn) ≥ I(A1; B2|Cn) − ǫ.

Recall that limn I(A1; B |Cn) = I(A1; B |C) by Lemma 1. Thus we have

∀δ>0 ∀B2⊂σ(B) ∃B1⊂ B I(A1; B1|C) ≥ I(A1; B2|C) − δ, (10)

where B1 and B2 are assumed to be finite fields. For arbitrary δ and B2, a suit-

able B1 is given by the construction in the previous paragraph for a sufficiently

large n and a sufficiently small ǫ. Equality I(A; B |C) = I(A; σ(B)|C) follows

from (10) and the inequality I(A; B |C) ≤ I(A; σ(B)|C).

(ii) Let A and B be finite fields and let C be any field. Let Cn ⊂ C be finite

fields satisfying I(A; B ∨ C) − I(A; B ∨ Cn) ≤ 1/n, I(A; C) − I(A; Cn) ≤ 1/n, and

(8). The latter requirement implies limn I(A; B |Cn) = I(A; B |C). Thus, the well

known equalities I(A; B ∨ Cn) = I(A; Cn) + I(A; B |Cn) for finite A, B, and Cn

8
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(Cover and Thomas, 1991, Eq. 2.60) imply

I(A; B ∨ C) = I(A; C) + I(A; B |C). (11)

By Theorems 1(v) and 2(i), we may extend (11) to any A, B, and C. Assume

finite A again. By (11) we also have

0 = [I(A; B ∨ C ∨ D) − I(A; D) − I(A; B ∨ C |D)]

− [I(A; C ∨ D) − I(A; D) − I(A; C |D)]

− [I(A; B ∨ C ∨ D) − I(A; C ∨ D) − I(A; B |C ∨ D)]

= I(A; C |D) + I(A; B |C ∨ D) − I(A; B ∨ C |D),

where all expressions are finite. Having established the claim for finite A, we

generalize it to infinite A, using Theorems 1(v) and 2(i) again. �

Theorems 1(v) and 2(i) conjoined with the following lemma allow to prove

easily the partial equivalence of the two definitions of CMI.

Lemma 2 Consider σ-fields An ↑ A′, A = σ(A′), Bn ↑ B ′, B = σ(B ′), and C.

If there exists measure PA× B | C then

Ĩ(A; B |C) = lim
n→∞

Ĩ(An; Bn|C). (12)

Proof: Denote S = PA× B | C + PAB C . By the existence of PA× B | C , measure

PF × G | C exists also for F ⊂ A and G ⊂ B. Both cases of (5) can be written as

Ĩ(F ; G |C) =
∫

κ (dPF G C /dS) dS,

where κ(x) := x log x−x log(1−x)−2x+1. We have the martingale convergence

limn dPAn BnC /dS = dPAB C /dS S-almost surely. Since function κ is continuous

and nonnegative, we have Ĩ(A; B |C) ≤ lim infn Ĩ(An; Bn|C) by the Fatou lemma.

On the other hand, κ is convex so Ĩ(An; Bn|C) ≤ Ĩ(A; B |C) by the Jensen

9
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inequality. Thus (12) must be satisfied. �

Theorem 3 Let A, B, and C be subfields of J , where A and B are countably

generated, i.e., A = σ(A′) and B = σ(B ′) for some countable fields A′ and B ′.

Then we have

Ĩ(A; B ||C) = I(A; B ||C). (13)

Proof: Let us notice that both sides of (13) equal
∫

I(A; B ||C)dP when A and

B are finite. Thus the continuity properties expressed in Theorems 1(v) and 2(i)

and Lemma 2 imply that (13) holds also when A and B are countably generated.

�

3 An application to ergodic decomposition

As an example, we will apply the machinery developed in Section 2 to the

ergodic decomposition of a stationary process. Consider a process (Xk)k∈Z on

(Ω, J , P ), where Xi : (Ω, J ) → (X, X ). Set Gm:n ⊂ J as the smallest σ-fields

against which blocks Xm:n := (Xk)m≤k≤n are measurable, assuming Gi := Gi:i.

Let G− ∞ :=
⋂

n<0 G− ∞:n and G∞ :=
⋂

n>0 Gn:∞ be the tail σ-fields. For any

field F ⊂ σ(G− ∞) ∩ σ(G∞), we have

H(G1|G− ∞:0) = H(G1|G− ∞:0 ∨ F ), (14)

I(G− ∞:0; G1:∞) = I(G− ∞:0; G1:∞ ∨ F )

= I(G− ∞:0; F ) + I(G− ∞:0; G1:∞ |F )

= H(F ) + I(G− ∞:0; G1:∞ |F ) (15)

in view of Theorems 1(iii–iv) and 2(i–ii).

Assume that (Xk)k∈Z is stationary. Then

E := I(G− ∞:0; G1:∞) = lim
n→∞

I(X−n:0; X1:n) (16)

10
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is called excess entropy (Crutchfield and Feldman, 2003), cf. Theorems 1(iv)

and 2(i). Moreover, if the variable range X is finite then H(G1|G− ∞:0) equals

entropy rate

h := lim
n→∞

H(X1|X−n:0) = lim
n→∞

H(X1:n)/n, (17)

cf. Yeung (2002, Section 2.9) and Theorems 1(iv) and 8(iii) in the next section.

We shall interpret the right-hand sides of equations (14) and (15) likewise using

ergodic decomposition.

Consider the measurable space of doubly infinite sequences (U, U ) =

×k∈Z(X, X ), where X is countably generated. For shift transformation

T : U ∋ (xk)k∈Z 7→ (xk+1)k∈Z ∈ U, where xk ∈ X, define invariant σ-field

I := {A ∈ U : TA = A}. Let (S, S) be the measurable space of stationary

probability measures on (U, U ) (i.e., µ ◦ T = µ for µ ∈ S) and let (E, E ) ⊂ (S, S)

be the subspace of ergodic measures (i.e., µ(A) ∈ {0, 1} for µ ∈ E and A ∈ I).

Precisely, S and E are defined as the smallest σ-fields containing all cylinder

sets {µ ∈ S : µ(A) ≤ r} and {µ ∈ E : µ(A) ≤ r}, A ∈ U , r ∈ R, respectively.

Since U is countably generated, all respective singletons {µ} belong to S and

E . The ergodic decomposition theorem can be stated as follows:

Theorem 4 Consider a stationary measure µ ∈ S.

(i) (Shields, 1996, Theorem I.4.10; Kallenberg, 1997, Theorem 9.10) There

exists a version of conditional distribution µ(·||I) : U × U → R such that

µ(·||I)(u) ∈ E for all u ∈ U.

(ii) (Kallenberg, 1997, Theorem 9.12) Measure

ν(W ) := µ({u ∈ U : µ(·||I)(u) ∈ W }), W ∈ E ,

is the only measure on E that satisfies

µ =
∫

µ(·||I)dµ =
∫

σ(·)dν(σ), σ ∈ E. (18)

11
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It is convenient to leave the space of doubly-infinite sequences and apply The-

orem 4 to the countably generated process (Xk)k∈Z with distribution µ =

P ((Xk)k∈Z ∈ ·) ∈ S, on a possibly richer space (Ω, J , P ). Set GI := (Xk)−1
k∈Z(I)

and define the random ergodic measure

F := µ(·||I)((Xk)k∈Z).

The distribution of the latter is P (F ∈ W ) = ν(W ). Let F ⊂ J be the smallest

σ-field against which F is measurable.

The following lemma asserts that F is a field that we need.

Lemma 3 We have σ(F ) = σ(GI) ⊂ σ(G− ∞) ∩ σ(G∞).

This is a simple fact in ergodic theory. Since we have not come across an explicit

proof of the lemma, we sketch it for completeness.

Proof: By Theorem 4(ii) and I-measurability of µ(A||I) for any A ∈ U , F (A)

is σ(GI)-measurable. Hence F ⊂ σ(GI). On the other hand, µ(A||I) = IA µ-

almost surely for any A ∈ I so, by Theorem 4(ii), (Xk)−1
k∈Z(A) is an element of

the smallest complete σ-field w.r.t. which F (A) is measurable. Hence GI ⊂ σ(F ).

Let A ∈ U− := (Xk)k∈Z(G− ∞:0). By the ergodic theorem (e.g. Shields,

1996, Theorem I.3.1), variable F (A) is σ(G− ∞)-measurable. This result may be

extended to any A ∈ U using the stationarity assumption and approximation

theorems (Billingsley, 1979, Theorem 11.4 and 13.4). Thus F ⊂ σ(G− ∞) and,

by analogy, F ⊂ σ(G∞). �

It is convenient to consider information measures for the subfields of G− ∞:∞

as functions of the process distribution. For an arbitrary distribution µ =

P ((Xk)k∈Z ∈ ·) ∈ S, notice that P (A) = µ((Xk)k∈Z(A)) for any A ∈ G− ∞:∞.

Thus we may introduce an explicit parametrization Iµ(A, B) := I(A, B) for

A, B ⊂ G− ∞:∞, hµ := h, and Eµ := E.

Let us substitute the random ergodic measure F is for µ. Since F (A) equals

P ((Xk)k∈Z ∈ A||F ) almost surely then IF (A; B) is measurable for finite fields

12
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A and B and

E IF (A; B) = I(A; B |F ). (19)

By the monotone convergence theorem and by Theorems 1(v) and 2(i), equation

(19) may be generalized to any countably generated σ-fields A and B. Hence

there follows an ergodic decomposition of entropy rate and excess entropy:

Theorem 5 For a countably generated stationary process (Xk)k∈Z,

h = EhF if the variable range X is finite, (20)

E = H(F ) +EEF . (21)

Proof: Variables hF and EF are measurable since they are limits of measurable

variables by (16) and (17). Equation (20), proved also by Gray and Davisson

(1974, Theorem 5.1), can be established in the following way. For D being the

cardinality of the range of X, set K := log D so that K − H(X1) ≥ 0. By the

monotone convergence theorem and (14),

E [K − hF ] = E
[
K − lim

n→∞
HF (X1|X−n:0)

]
= lim

n→∞
E [K − HF (X1|X−n:0)]

= lim
n→∞

[K − H(G1|G−n:0 ∨ F )] = [K − H(G1|G− ∞:0)] = K − h.

Hence equation (20) follows. On the other hand, equation (21) follows directly

from Lemma 3, (15), and (19) for A = G− ∞:0 and B = G1:∞. �

Establishing the general additivity (11) has some application in coding the-

ory. Namely, the simultaneous presence of E, H(F ), and EEF in formula (21)

is crucial to obtain such an impossibility result:

Theorem 6 Let C : X+ → X+ be a uniquely decodable code over a finite al-

phabet X = {0, 1, ..., D − 1}, i.e., its extension C∗ : (u1, ..., uk) 7→ C(u1)...C(uk)

into finite tuples of strings ui ∈ X∗ is an injection. For the code length |C(·)|

13
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consider the normalized expectation of its excess

EC
µ (n) := E (|C(X1:n)| + |C(Xn+1:2n)| − |C(X1:2n)|) log D,

taken with respect to a stationary measure µ = P ((Xk)k∈Z ∈ ·) ∈ S. Let NC(K)

be the number of distinct ergodic measures µ ∈ E such that lim supn EC
µ (n) ≤ K,

K ∈ R. If the code is universal, i.e., limn n−1
E |C(X1:n)| log D = h, then

log NC(K) ≤ K

for K ≥ 0 whereas NC(K) = 0 for K < 0.

Theorem 6 states that there cannot be too good codes among the asymptotically

optimal ones. Our proof relies on additional lemmas and will be published

elsewhere.

4 Entropy as self-information

Equation (15) illustrates that the concept of entropy as self-information

H(A) := I(A; A) arises naturally when the additivity of conditional informa-

tion is considered. For a real variable Y , however, H(Y ) should not be confused

with the differential entropy defined h(Y ) = −
∫

p(y) log p(y)dλ(y), where λ

is the Lebesgue measure and p = dP (Y ∈ ·)/dλ. Although the appropriate

difference of differential entropies for two real variables equals mutual infor-

mation by equality (4), usually h(Y ) 6= H(Y ). For instance, h(Y ) < ∞ for

a Gaussian variable Y (Cover and Thomas, 1991, Theorem 9.4.1). In the same

case, H(Y ) = ∞ according to a known result, stated here in a slightly stronger

form.

Theorem 7 H(A) = ∞ unless A is purely atomic.

Remark: A less formal proof of a weaker statement is given by Pinsker (1964,

Section 2.4), viz. the Translator’s Remarks on pp. 25–27. We say that a field

14
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B is purely atomic if there exists an atom E ⊂ B for every B ∈ B such that

P (B) > 0. On the other hand, B is called nonatomic if it has no atoms. Set E

is called an atom with respect to B and P if E ∈ B, P (E) > 0, and for every

F ∈ B we have P (E ∩ F ) = 0 or P (E \ F ) = 0.

Proof: Any measure P on A can be written as the sum of a purely atomic

measure and a nonatomic measure, supported on disjoint sets Ωa, Ωn ∈ A re-

spectively (Johnson, 1970, Theorem 2.1). Moreover, Ωn can be partitioned

into sets A1, A2, ..., Ak ∈ A such that P (Ai) = P (Ωn)/k for each k ∈ N

(cf. Billingsley, 1979, Exercise 2.17(d)). Hence H(A) ≥ H([Ωa, A1, ..., Ak]) =

−P (Ωa) log P (Ωa) − ∑
i P (Ai) log P (Ai) ≥ P (Ωn) log k. If A is not purely

atomic then P (Ωn) > 0 and thus H(A) = ∞.—This proof is due to Richard

Bradley, private communication. �

Theorem 7 corresponds to a clear intuition, namely that the binary expansion

of a random real variable Y =
∑∞

k=1 2−kZk, uniformly distributed on [0, 1], is

a sequence of independent uniformly distributed random binary digits Zk. Hence

we obtain that H(Y ) =
∑∞

k=1 H(Zk|Z1:k−1) =
∑∞

k=1 H(Zk) =
∑∞

k=1 log 2 = ∞

by additivity and continuity of conditional information.

Treating a continuous real variable as a sequence of independent bits is very

natural when the probability space is generated by a discrete stochastic process.

In the following final example, the term ‘fair-coin process’ will stand for a binary

process (Zk)k∈N ∼ IID with P (Zk = 0) = P (Zk = 1) = 1/2.

Definition 2 A process (Xi)i∈Z is called an uncountable description process

(UDP) if there exist functions (fnk)n,k∈N and a fair-coin process (Zk)k∈N such

that limn P (fnk(Xp+1:p+n) = Zk) = 1 for all p ∈ Z.

For instance, let Xi := (Ki, ZKi) assume values in N × {0, 1}, where variables

(Zk)k∈N are probabilistically independent from (Ki)i∈Z ∼ IID and P (Ki = k) >

15
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0 for all k ∈ N. If we let

fnk(x1:n) :=





0 if xi = (k, 0) for some i ∈ {1, ..., n},

1 if xi = (k, 1) for some i ∈ {1, ..., n},

2 else,

then P (fnk(Xp+1:p+n) = Zk) = 1 − [1 − P (Ki = k)]n. Thus (Xi)i∈Z is a UDP.

It seems intuitive that limn I(X−n:0; X1:n) = ∞ for any UDP since an infinite

sequence of bits (Zk)k∈N can be learned given either the past or the future of

(Xi)i∈Z. The proof of this proposition that we give below uses the generalized

Shannon information measures and connects Definition 2 with nonatomicity of

a shift-invariant sub-σ-field.

Let us recompile an entropic analogue of Theorem 1. By symmetry to Bn ↑

B, we shall use notation Bn ↓ B for B1 ⊃ B2 ⊃ ... ⊃ B and ⋂
n∈N Bn = B.

Theorem 8 Let A, B, and Bn be subfields of J .

(i) H(A) = 0 if and only if A is trivial, i.e, if P (A) ∈ {0, 1} for all A ∈ A;

(ii) H(A|B1) ≥ H(A|B2) if B1 ⊂ B2;

(iii) H(A|Bn) ↓ H(A|B) for Bn ↑ B and finite A;

(iv) H(A|Bn) ↑ H(A|B) for Bn ↓ B;

(v) H(A|B) = 0 if and only if A ⊂ σ(B).

Proof: Property (i) follows trivially from the analogical property for finite

fields. Property (ii) was proved by Billingsley (1965, Identity (C3) in Section

12) for finite A and it can be extended to infinite A immediately, as well.

Whereas property (iii) was proved by Billingsley (1965, Theorem 12.1) using

the martingale and dominated convergence theorems, (iv) can be established for

finite A likewise through the martingale convergence in the opposite direction

(Doob, 1953, Chapter 8, Theorem 4.3). In the following, (iv) may be generalized

16



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

to infinite A by noticing that there always exist such finite fields An ↑ A′ ⊂ A

that H(An|Bn) ↑ H(A|B) and H(An|Bn) ≤ H(A|Bn) ≤ H(A|B).

It remains to prove (v). Equality H(A|B) = 0 is equivalent to P (A||B) ∈

{0, 1} almost surely for all A ∈ A. On the other hand, it is straightforward that

P (A||B) ∈ {0, 1} holds if and only if A ∈ σ(B). Firstly, notice that P (A||B) for

A ∈ σ(B) equals almost surely the indicator function of set A. To prove the

converse, construct set B := {ω ∈ Ω : P (A||B) = 1} ∈ B. By the definition of

conditional probability and that of B, probabilities P (A), P (A ∩ B), and P (B)

equal all
∫

B P (A||B)dP . Thus P (A△B) = 0 and hence A ∈ σ(B). �

Via the properties (iii) and (v), we can link the convergence of finitely-valued

random variables with inclusion of fields:

Lemma 4 Let X be a finite-valued variable. Consider fields Yn ↑ Y. The

following statements are equivalent:

(i) limn P (X = Xn) = 1 for some Yn-measurable finite-valued variables Xn;

(ii) limn H(X |Yn) = 0;

(iii) H(X |Y) = 0;

(iv) X is σ(Y)-measurable;

Remark: The assumption that X assumes finitely many values is important.

Consider an X that takes values in natural numbers and has H(X) = ∞. Let

Yk = 1 for X ≥ k and Yk = 0 else. We have H(X |Y1:n) = ∞ since H(X) =

H(X |Y1:n) + H(Y1:n) and H(Y1:n) ≤ n log 2. Nevertheless, H(X |(Yn)n∈N) = 0.

Proof: Statements (ii) and (iii) are equivalent by Theorem 8(iii), whereas (iii)

and (iv) are equivalent by Theorem 8(v). It remains to prove that (i) is equiv-

alent to (ii). Without loss of generality, let X assume values in {1, 2, ..., N }.

It is obvious that condition (ii) follows from (i) by the Fano inequality

H(X |Yn) ≤ H(X |Xn) ≤ η(P (X = Xn)) + [1 − P (X = Xn)] log(N − 1) (Yeung,
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2002, Theorem 2.47), where η is given by

η(p) = −p log p − (1 − p) log(1 − p), p ∈ (0, 1)

and η(0) = η(1) = 0 to assure continuity. To prove the converse, define the value

of random variable Xn as as the smallest x such that P (X = x||Yn) ≥ P (X =

x′ ||Yn) for x′ = 1, 2, ..., N . We have P (X = Xn||Yn) ≥ 1/N . By concavity of η,

η(p) ≥ η(q)
1 − p

1 − q
+ η(1)

p − q

1 − q
= η(q)

1 − p

1 − q

for p ∈ [q, 1]. In particular,

H(X |Yn) = H(X, Xn|Yn) ≥ E [η(P (X = Xn||Yn))]

≥ η(1/N)
1 − 1/N

· [1 − P (X = Xn)].

Thus (ii) implies (i). �

Hence uncountable description processes enjoy such a characterization:

Theorem 9 Let F be the shift-invariant σ-field defined in Section 3. A sta-

tionary process (Xi)i∈Z is a UDP if and only if σ(F ) contains a nonatomic

sub-σ-field. Moreover, in the case of a UDP, variables Zk are σ(F )-measurable.

Proof: Assume first that (Xi)i∈Z is a UDP. By Lemma 4, each variable

Zk is σ(G∞:∞)-measurable and thus there exists a function gk measurable

U such that gk((Xk)k∈Z) = Zk almost surely. Consider the distribution

µ = P ((Xk)k∈Z ∈ ·) and functions gnk((xk)k∈Z) = fnk(x1:n). By the definition

of a UDP, limn µ(T ignk = gk) = 1, i ∈ Z, and hence limn µ(gnk = T −igk) = 1

by stationarity of (Xi)i∈Z. The latter implies gk = T −igk µ-almost everywhere

and thus Zk are σ(F )-measurable for all k. Construct the σ(F )-measurable

variable Y =
∑

k∈N 2−kZk. The distribution of Y is Lebesgue measure on [0, 1].

The Lebesgue measure is nonatomic so σ(F ) contains a nonatomic sub-σ-field.

As for the converse, take (Xi)i∈Z with a nonatomic F0 ⊂ σ(F ). For any
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A ∈ F0 and x ∈ [0, P (A)] there exists B ∈ F0 such that B ⊂ A and P (B) = x.

Obviously, this property can be used to define a family of nested sets Aw ∈ F0

indexed by binary words w ∈ {0, 1}∗ such that Aλ = Ω for the empty word

λ, Awa ⊂ Aw, and P (Aw0) = P (Aw1) = P (Aw)/2. For each k ∈ N define Zk

as the characteristic function of set Bk =
⋃

w∈ {0,1}k Aw0. Sequence (Zk)k∈N

is a fair-coin process. By Lemma 3, Zk are also σ(G1:∞)-measurable. Hence,

by Lemma 4, limn P (fnk(X1:n) = Zk) = 1 for some functions fnk. Finally,

stationarity of (Xi)i∈Z and σ(F )-measurability of Zk imply that the probabilities

P (fnk(Xp+1:p+n) = Zk) do not depend on p. So (Xi)i∈Z is a UDP. �

By Theorems 1(iv), 7, and 9, we have H(F ) = ∞ for every UDP. As a con-

sequence, the excess entropy is E = I(G− ∞:0; G1:∞) ≥ H(F ) = ∞. The proof

of Theorem 9 may be easily adjusted to show directly that E = ∞ also in the

nonstationary case. Uncountable description processes are quite different to

ergodic processes, which satisfy H(F ) = 0 by Theorem 8(i).
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