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Signal Adaptive Spectral Envelope Estimation
for Robust Speech Recognition

Matthias Wölfel
Institut für Theoretische Informatik, Universität Karslruhe (TH), Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract

This paper describes a novel spectral envelope estimation technique which adapts to the characteristics of the observed signal.
This is possible via the introduction of a second bilinear transformation into warped minimum variance distortionless response
(MVDR) spectral envelope estimation. As opposed to the first bilinear transformation, however, which is applied in the time
domain, the second bilinear transformation must be applied in the frequency domain. This extension enables the resolution of the
spectral envelope estimate to be steered to lower or higher frequencies, while keeping the overall resolution of the estimate and the
frequency axis fixed. When embedded in the feature extraction process of an automatic speech recognition system, it provides for
the emphasis of the characteristics of speech features that are relevant for robust classification, while simultaneously suppressing
characteristics that are irrelevant for classification. The change in resolution may be steered, for each observation window, by the
normalized first autocorrelation coefficient.

To evaluate the proposed adaptive spectral envelope technique, dubbed warped-twice MVDR, we use two objective functions:
class separability and word error rate. Our test set consists of development and evaluation data as provided by NIST for the Rich
Transcription 2005 Spring Meeting Recognition Evaluation. For both measures, we observed consistent improvements for several
speaker-to-microphone distances. In average, over all distances, the proposed front–end reduces the word error rate by 4% relative
compared to the widely used mel-frequency cepstral coefficients as well as perceptual linear prediction.

Key words: Adaptive Feature Extraction, Spectral Estimation, Minimum Variance Distortionless Response, Automatic Speech Recognition,

Bilinear Transformation, Time vs. Frequency Domain

1. Introduction

Acoustic modeling in automatic speech recognition
(ASR) requires that a windowed speech waveform is re-
duced to a set of representative features which preserves
the information needed to determine the phonetic class
while being invariant to other factors. Those factors might
include speaker differences such as fundamental frequency,
accent, emotional state or speaking rate, as well as distor-
tions due to ambient noise, the channel or reverberation. In
the traditional feature extraction process of ASR systems,
this is achieved through successive feature transformations
(e.g. a spectral envelope and/or filterbank followed by
cepstral transformation, cepstral normalization and lin-
ear discriminant analysis) whereby all phoneme types are
treated equivalently.

Different phonemes, however, have different properties
such as voicing where the excitation is due to quasi-
periodic opening of the vocal cord or classification relevant
frequency regions [1–3]. While low frequencies are more

relevant for vowels, high frequencies are more relevant for
fricatives. It is thus a natural extension to the traditional
feature extraction approach to vary the spectral resolution
for each observation window according to some character-
istics of the observed signal. To improve phoneme classifi-
cation, the spectral resolution may be adapted such that
characteristics relevant for classification are emphasized
while classification irrelevant characteristics are attenu-
ated.

To achieve these objectives, we have proposed to ex-
tend the warped minimum variance distortionless response
(MVDR) through a second bilinear transformation [4]. This
spectral envelope estimate has two free parameters to con-
trol spectral resolution: the model order, which changes the
number of linear prediction coefficients, and the warp fac-
tor. While the model order allows the overall spectral reso-
lution to be changed, the warp factor enables the spectral
resolution to be steered to lower or higher frequency regions
without changing the frequency axis. Note that this is in
contrast to the previously proposed warped MVDR [5,6],
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wherein the warp factor has an influence on both the spec-
tral resolution and the frequency axis.

A note about the differences between the present publi-
cation and [4] is perhaps now in order. The present pub-
lication presents important background information which
had been discarded in the conference publication [4] be-
cause of space limitations including: A comparison of well
known and not so well known ASR front-ends on close and
distant recordings in terms of word error rate and class sep-
arability. The present publication also includes a detailed
analysis and discussion of phoneme confusability. In addi-
tion it fosters understanding by highlighting the differences
between warping in the time and frequency domain and in-
vestigating of the values of the steering function in relation
to single phonemes and phoneme classes.

The balance of this paper is organized as follows. A
brief review of spectral envelope estimation techniques
with a focus on MVDR is given in Section 2. The bilinear
transformation is reviewed in Section 3 where its prop-
erties in the time and frequency domains are discussed.
Section 4 introduces a novel adaptive spectral estima-
tion technique, dubbed warped-twice MVDR, and a fast
implementation thereof. A possible steering function, to
emphasize phoneme relevant spectral regions, is discussed
in Section 5. The proposed signal-adaptive feature extrac-
tion scheme is evaluated in Section 6. Our conclusions are
presented in the final section of this paper.

2. MVDR Spectral Envelope

In the feature extraction stage of speech recognition sys-
tems, particular characteristics of the spectral estimate are
required. To name a few: provide a particular spectral reso-
lution, be robust to noise, and model the frequency response
function of the vocal tract during voiced speech. To satisfy
these requirements, both non-parametric and parametric
methods have been proposed. Non-parametric methods are
based on periodograms, such as power spectra, while para-
metric methods such as linear prediction estimate a small
number of parameters from the data. Table 1 summarizes
the characteristics of different spectral estimation meth-
ods. Two widely used methods in ASR are mel-scale power
spectrum [7] and warped or perceptual linear prediction [8].

In order to overcome the problems associated with
(warped or perceptual) linear prediction, namely over-
estimation of spectral power at the harmonics of voiced
speech, Murti and Rao [9,10] proposed the use of min-
imum variance distortionless response (MVDR), which
is also known as Capon’s method [11] or the maximum-
likelihood method [12], for all-pole modeling of speech in
1997. They demonstrated that MVDR spectral envelopes
cope well with the aforementioned problem. Some years
later, in 2001, MVDR was applied to speech recognition
by Dharanipragada and Rao [13]. To account for the fre-
quency resolution of the human auditory system, we have
introduced warped MVDR [5,6]. It extends the MVDR

Table 1

Properties of spectral estimation methods.
PS = power spectrum; LP = linear prediction;

MVDR = minimum variance distortionless response
∗ no particular name is given in the work by Nakatoh et al.

Spectral Estimate Properties

detail resolution sensitive to pitch

PS exact linear, static very high

mel-scale PS [15] smooth mel, static high

LP [16,17] approx. linear, static medium

perceptual LP [8] approx. mel, static medium

warped LP [18,19] approx. mel, static medium

warped-twice LP∗ [20] approx. mel, adaptive medium

MVDR [9,10,13] approx. linear, static low

warped MVDR [6] approx. mel, static low

perceptual MVDR [14] approx. mel, static low

warped-twice MVDR approx. mel, adaptive low

approach by warping the frequency axis with a bilinear
transformation in the time domain.

In this section, we briefly review MVDR spectral estima-
tion. A detailed discussion of speech spectral estimation by
MVDR can be found in [10], with focus on speech recog-
nition and warped MVDR in [6], and with focus on robust
feature extraction for recognition in [14].

MVDR methodology

MVDR spectral estimation can be posed as a problem in
filterbank design, wherein the final filterbank is subject to
the distortionless constraint [21]:

The signal at the frequency of interest ωfoi must pass undis-
torted with unity gain.

Hfoi(ejωfoi) =
M∑

k=0

hfoi(k)e−jkωfoi = 1, (1)

where the impulse response hfoi(k) of the distortionless fi-
nite impulse responce filter of order M is specifically de-
signed to minimize the output power. Defining the fixed
frequency vector

v(ejω) = [1, e+jω, . . . , e+jMω]T (2)

allows the constraint to be rewritten in vector form as

vH(ejωfoi) · hfoi = 1, (3)

where (•)H represents the Hermitian transpose operator
and

hfoi = [hfoi(0), hfoi(1), . . . , hfoi(M)]T (4)

is the distortionless filter.
Upon defining the autocorrelation sequence

R[n] =
L−n∑
m=0

x[m]x[m− n] (5)
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of the input signal x of length L as well as the (M + 1) ×
(M + 1) Toeplitz autocorrelation matrix R whose (l, k)th

element is given by

Rl,k = R[l − k], (6)

it is readily shown that hfoi can be obtained by solving the
constrained minimization problem:

min
hfoi

hT
foi Rhfoi subject to vH(ejωfoi)hfoi = 1. (7)

The solution to this problem is given by [21]:

hfoi =
R−1 v(ejωfoi)

vH(ejωfoi)R−1 v(ejωfoi)
. (8)

This implies that hfoi is the impulse response of the distor-
tionless filter for the frequency ωfoi. The MVDR envelope of
the power spectrum of the signal P (ejω) at frequency ωfoi

is then obtained as the output of the optimized constrained
filter:

SMVDR(ejωfoi) =
1
2π

∫ π

−π

∣∣Hfoi(ejω)
∣∣2 P (ejω)dω. (9)

Although MVDR spectral estimation was posed as a distor-
tionless filter design for a given frequency ωfoi, the MVDR
spectrum can be represented in parametric form for all fre-
quencies [21]

SMVDR(ejω) =
1

vH(ejω)R−1v(ejω)
. (10)

Fast computation of the MVDR envelope

Assuming that the (M +1)×(M +1) Hermitian Toeplitz
correlation matrix R is positive definite and thus invert-
ible, Musicus [12] derived a fast algorithm to calculate the
MVDR spectrum from a set of linear prediction coefficients
(LPCs). The steps (i until iii) of Musicus’ algorithm [12]
are:

(i) Computation of the LPCs a
(M)
0···M of order M includ-

ing the prediction error variance εM

(ii) Correlation of the LPCs

µk =


1

εM

M−k∑
m=0

(M + 1− k − 2m)a(M)
m a

∗(M)
m+k , k ≥ 0

µ∗−k , k < 0
(11)

(iii) Computation of the MVDR envelope

SMVDR(ejω) =
1∑M

m=−M µme−jωm
. (12)

(iv) Scaling of the MVDR envelope
In order to improve robustness to additive noise it
has been argued in [6] to adjust the highest spectral
peak of the MVDR envelope to match to the highest
spectral peak of the power spectrum to get the so
called scaled envelope.
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Fig. 1. Mel-frequency (scale shown along left edge) can be approx-
imated by a bilinear transformation (scale shown along right edge)

demonstrated for a sampling rate of 16 kHz, αmel = 0.4595.

3. Warping — Time vs. Frequency Domain

In the speech recognition community it is well known
that features based on a non-linear frequency mapping im-
prove the recognition accuracy over features on a linear fre-
quency scale [7]. Transforming the linear frequency axis ω
to a non-linear frequency axis ω̃ is called frequency warping.
One way to achieve frequency warping is to apply a non-
linear scaled filterbank, such as a mel-filterbank, to the lin-
ear frequency representation. An alternative possibility is
to use a conformal mapping such as a first order all-pass fil-
ter, also known as a bilinear transformation [22,23], which
preserves the unit circle. The bilinear transformation is de-
fined in the z-domain as

z̃−1 =
z−1 − α

1− α · z−1
∀ − 1 < α < +1, (13)

where α is the warp factor. The relationship between ω̃ and
ω is non-linear as indicated by the phase function of the
all-pass filter [19]

arg
(
e−jω̃

)
= ω̃ = ω + 2 arctan

(
α sinω

1− α cos ω

)
. (14)

The mel-scale, which along with the Bark scale is one of
the most popular non-linear frequency mappings, was pro-
posed by Stevens et al. in 1937 [15]. It models the non-linear
pitch perception characteristics of the human ear and is
widely applied in audio feature extraction. A good approx-
imation of the mel-scale by the bilinear transformation is
possible, if the warp factor is set accordingly. The optimal
warp factor depends on the sampling frequency and can be
found by different optimization methods [24]. Fig. 1 com-
pares the mel-scale with the bilinear transformation for a
sampling frequency of 16 kHz.

Frequency warping by bilinear transformation can either
be applied in the time domain or in the frequency domain.
In both cases, the frequency axis is non-linearly scaled;
however, the effect on the spectral resolution differs for the
two domains. This effect can be explained as follows:
– Warping in the time domain modifies the values in the

autocorrelation matrix and therefore, in the case of linear

3
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0 842 6
Frequency (kHz)

751 3

Fig. 3. The plot of two warped-twice MVDR spectral envelopes

demonstrates the effect of spectral tilt. While the spectral tilt is
not compensated for the dashed line, it is compensated for the solid

line. It is clear to see that high frequencies are emphasized if no

compensation is applied.

prediction, more linear prediction coefficients are used,
for α > 0, to describe lower frequencies and less coeffi-
cients to describe higher frequencies.

– Warping in the frequency domain does not change the
spectral resolution as the transformation is applied after
spectral analysis. As indicated by Nocerino et al. [25],
a general warping transformation in the same domain,
such as the bilinear transformation, is equivalent to a
matrix multiplication

fwarp[n] = L(α)f [n],

where the matrix L(α) depends on the warp factor. It
follows that the values fwarp[n] on the warped scale are a
linear interpolation of the values f [n] on the linear scale.
In the case of linear prediction or MVDR, the prediction
coefficients are not altered as they are calculated before
the bilinear transformation is applied.

Fig. 2 demonstrates the effect of warping applied either
in the time or in the frequency domain on the spectral
envelope and compares the warped spectral envelopes with
the unwarped spectral envelope.

For clarity we briefly investigate the change of spectral
resolution, for the most interesting case, where the bilinear
transformation is applied in the time domain with warp fac-
tor α > 0. In this case we observe that spectral resolution
decreases as frequency increases. In comparison to the res-
olution provided by the linear frequency scale, α = 0, the
warped frequency resolution increases for low frequencies
up to the turning point frequency [26]

ftp(α) = ± fs

2π
arccos(α), (15)

where fs represents the sampling frequency. At the turn-
ing point frequency, the spectral resolution is not affected.
Above the turning point frequency, the frequency resolu-
tion decreases in comparison to the resolution provided by
the linear frequency scale. For α < 0, spectral resolution
increases as frequency increases.

As observed by Strube [18], prediction error minimiza-
tion of the predictors ãm in the warped domain is equiva-
lent to the minimization of the output power of the warped
inverse filter

Ã(z) = 1 +
M∑

m=1

ãmz̃−m(z) (16)

in the linear domain, where each unit delay element z−1 is
replaced by a bilinear transformation z̃−1. The prediction
error is therefore given by

E(ejω) = |Ã(ejω)|2P (ejω), (17)

where P (ejω) is the power spectrum of the signal. The total
prediction error power can be expressed as

σ2 =
∫ π

−π

E(ejω̃)dω̃ =
∫ π

−π

E(ejω) W 2(ejω)dω (18)

with

W (z) =
√

1− α2

1− αz−1
. (19)

The minimization of the prediction error σ2, however, does
not lead to minimization of the power, but minimization
of the power of the error signal filtered by the weighting
filter W (z), which is apparent from the presence of this
factor in (18). Thus, the bilinear transformation introduces
an unwanted spectral tilt. To compensate for this negative
effect, we apply the inverted weighting function∣∣∣W̃ (z̃) · W̃ (z̃−1)

∣∣∣−1

=

∣∣1 + α · z̃−1
∣∣2

1− α2
. (20)

The effect of the spectral tilt of the bilinear transformation
and the remedy by (20) are depicted in Fig. 3.

4. Warped-Twice MVDR Spectral Envelope

The use of two bilinear transformations, one in time do-
main and the other in frequency domain, introduces two
additional free parameters into the MVDR approach [4].
The first free parameter, the model order, is already deter-
mined by the underlying linear prediction model. Due to
the application of two bilinear transformations which ap-
ply two warping stages into MVDR spectral estimation, the
proposed approach is dubbed warped-twice MVDR. While
the model order varies the overall spectral resolution of the
estimate, which becomes apparent by comparing the dif-
ferent envelopes for model order 30, 60 and 90 in Fig. 4a,
the warp factors bend the frequency axis as already seen in
Section 3. Bending the frequency axis can be used to apply
the mel-scale or, when done on a speaker-dependent basis,
to implement vocal tract length normalization (VTLN), al-
though the latter is not used in the experiments described
in Section 6, as piece-wise linear warping leads to better
results [27].

As already mentioned in Section 1, our aim is to change
the spectral resolution while keeping the frequency axis
fixed. This becomes possible by compensating for the un-
wanted bending of the frequency axis, introduced by the
first warping stage in the time domain, by a second warp-
ing stage in the frequency domain. An example is given in
Fig. 4b.
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Frequency (kHz)
0 842 6 751 3

Frequency (kHz)
0 842 6751 3
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Frequency (kHz)
0 842 6751 3

No WarpingWarping in Time Domain Warping in Frequency Domain

0 842 6
Frequency (kHz)

751 3 0 842 6
Frequency (kHz)

751 3 0 842 6
Frequency (kHz)

751 3

(a) (b) (c)

Changed Resolution

Same Resolution

Same Resolution

Fig. 2. Warping in (a) time domain, (b) no warping and (c) warping in frequency domain. While warping in the time domain is changing the
spectral resolution and frequency axis, warping in frequency domain does not alter the spectral resolution but still changes the frequency axis.

0 842 6
Frequency (kHz)

751 3

Warp

(b)

0.3

0.6

0 842 6
Frequency (kHz)

751 3

Model Order

(a)

30

90

Fig. 4. The solid lines show warped-twice MVDR spectral envelopes with model order 60, α = 0.4595 and αmel = 0.4595 which, except for
the spectral tilt, are identical to a warped MVDR spectral envelope. Its counterparts with lower and higher (a) model order and (b) warp

factor α are given by dashed lines. The arrows point in the direction of higher resolution. While the model order changes the overall spectral
resolution at all frequencies, the warp factor moves spectral resolution to lower or higher frequencies. At the turning point frequency, the

resolution is not affected and the direction of the arrows changes.

Fast computation of the warped-twice MVDR envelope

A fast computation of the warped-twice MVDR enve-
lope of model order M is possible by extending Musicus’
algorithm. A flowchart diagram of the individual process-
ing steps is given in Fig. 5.

(i) Computation of the warped autocorrelation
coefficients R̃[0] · · · R̃[M + 1]

To compute warped autocorrelation coefficients, the
linear frequency axis ω has to be transformed to
a warped frequency axis ω̃ by replacing the unit
delay element z−1 with a bilinear transformation
(13). This leads to the warped autocorrelation coef-
ficients [28,19]
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Bilinear
Transformation

Autocorrelation

Compensation
for Spectral Tilt

Levinson-Durbin
Recursion

Correlation of
warped LPC

Warped-MVDR

Compensation
Warp Factor

Windowed Time Signal

Warped-Twice MVDR

Warp Factor

Bilinear
Transformation

Concatenated
Warp Factor

Fig. 5. Overview of warped-twice minimum variance distortionless
response. Symbols are defined as in the text.

R̃[n] =
L−n−1∑

m=0

x[m]yn[m] (21)

where yn[m] is the sequence of length L given by

yn[m] = α ·(yn[m−1]−yn−1[m])−yn−1[m−1] (22)

and initialized with y0[m] = x[m].
Note that we need to calculate M + 1 warped au-

tocorrelation coefficients (the additional coefficient is
used in the compensation step).

(ii) Calculation of the compensation warp factor
To fit the final frequency axis to the mel-scale, we need
to compensate for the first warping stage with value
α in a second warping stage with the warp factor

β =
α− αmel

1− α · αmel
. (23)

(iii) Compensation for the spectral tilt
To compensate for the distortion introduced by the
concatenated bilinear transformations with warp fac-
tors α and β, we first concatenate the cascade of warp-
ing stages into a single warping stage with the warp
factor

χ =
α + β

1 + α · β
. (24)

A derivation of (24) is provided in [29]. To get a flat
transfer function, we now apply the inverted weight-
ing function

∣∣∣W̃ (z̃) · W̃ (z̃−1)
∣∣∣−1

(25)

to the warped autocorrelation coefficients, which can
be realized as a second order finite impulse response
filter:

R̂[m] =
1 + χ2 + χ · R̃[m− 1] + χ · R̃[m + 1]

1− χ2
. (26)

(iv) Computation of the warped LPCs â
(M)
0···M including the

warped prediction error variance ε̂M

The warped LPCs can now be estimated using the
Levinson-Durbin recursion [30], by replacing the lin-
ear autocorrelation coefficients R with their warped
and spectral tilt compensated counterparts R̂.

(v) Correlation of the warped LPCs
The MVDR parameters µ̂−k can be related to the
LPC by

µ̂k =


1

ε̂M

M−k∑
m=0

(M + 1− k − 2m)â(M)
m â

∗(M)
m+k , k ≥ 0

µ̂∗−k , k < 0
(27)

(vi) Computation of the warped-twice MVDR envelope
The spectral estimate can now be obtained by

SW2MVDR(ejω) =
1∑M

m=−M µ̂m
ejω−β

1−β·ejω

. (28)

Note that the spectrum (28), if β is set appropri-
ately, is already resembling the non-linear frequency
axis as discussed in Section 3. In those cases it is
necessary to either:
(a) eliminate the non-linear spaced triangular filter-

bank as for example used in the extraction of
mel-frequency cepstral coefficients or perceptual
linear prediction coefficients, or

(b) replace the non-linear spaced triangular filter-
bank by a filterbank of uniform half-overlapping
triangular filters in order to provide feature re-
duction and additional spectral smoothing.

(vii) Scaling of the warped-twice MVDR envelope
To provide more robustness we match the warped-
twice MVDR envelope to the highest spectral peak
of the power spectrum.

Implementation Issues

Frequency warping including linear or non-linear VTLN
can be realized using filterbanks. Carefully adjusted, those
filterbanks can simulate the bilinear transformation in the
frequency domain. In the case of warped-twice MVDR spec-
tral estimation those filterbanks can be adjusted for each
individual frame according to the compensation warp fac-
tor β and the VTLN parameter. In practice it is sufficient to

6
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use a limited number of pre-calculated filterbanks; in this
way, warped-twice MVDR spectral estimation can be im-
plemented with only a very small overhead when compared
to warped MVDR spectral estimation.

5. Steering Function

To support automatic speech recognition, the free pa-
rameters of the warped-twice MVDR envelope have to be
adapted in such a way that classification relevant charac-
teristics are emphasized while less relevant information is
suppressed. Nakatoh et al. [20] proposed a method for steer-
ing the spectral resolution to lower or higher frequencies
whereby for every frame i, the first two autocorrelation co-
efficients were used to define the steering function

ϕi =
Ri[1]
Ri[0]

. (29)

The zero autocorrelation coefficient R[0] represents the av-
erage power while the first autocorrelation coefficient R[1]
represents the correlation of a signal. Thus ϕ has a high
value for voiced signals and a low value for unvoiced signals.
Fig. 6 gives the different values of the normalized first auto-
correlation coefficient ϕ averaged over all samples for each
individual phoneme. A clear separation between the frica-
tives and non-fricatives can be observed. Fricatives are con-
sonants produced by forcing air through a narrow channel
made by placing two articulators close together. The sibi-
lants are a particular subset of fricatives made by directing
a jet of air through a narrow channel in the vocal tract to-
wards the sharp edge of the teeth. Sibilants are louder than
their non-sibilant counterparts, and most of their acoustic
energy occurs at higher frequencies than by non-sibilant
fricatives. A detailed discussion about the properties of dif-
ferent phoneme classes can be found in [1].

To adjust for the sensitivity to the steering function the
factor γ is introduced, and the subtraction of the bias ϕ̄ =
1
I

∑
i ϕi (i.e., the mean over all values I in the training set)

keeps the average of α close to αmel. This leads to

αi = γ · (ϕi − ϕ̄) + αmel. (30)

The last equation is a slight modification of the original
formulation proposed by Nakatoh et al. As preliminary ex-
periments have revealed that the word accuracy is not very
sensitive to γ, we kept γ fixed at 0.1; values around 0.1
might lead to slightly, however, not significantly different
results. The influence of γ has been, in more detail, inves-
tigated in [20].

6. Evaluation

To evaluate the proposed warped-twice MVDR spectral
estimation and steering function against traditional front-
ends such as perceptual linear prediction (PLP) [8], mel
frequency cepstral coefficients (MFCC) [7] and more re-
cently proposed front-ends based on warped-twice LP or

warped MVDR spectral envelopes, we used NIST’s devel-
opment and evaluation data of the Rich Transcription 2005
Spring Meeting Recognition Evaluation [31]. The data has
been chosen as a test environment as it contains challeng-
ing acoustic environments on both close and distant speech
recordings. The development data, sampled at 16 kHz,
consists of 5 seminars with approximately 130 minutes of
speech. The evaluation data, also sampled at 16 kHz, con-
sists of 16 seminars with approximately 180 minutes of
speech. The data was collected under the Computers in the
Human Interaction Loop (CHIL) project [32] and contains
spontaneous, native and non-native speech.

We have used the Janus Recognition Toolkit (JRTk).
To train acoustic models only relatively little supervised
in-domain speech data is available. Therefore, we decided
to train the acoustic models on close talking channels of
meeting corpora and the Translanguage English Database
(TED) corpus [33], summing up to a total of approximately
100 hours of acoustic training material. After split and
merge training the acoustic model consisted of approxi-
mately 3,500 context-dependent codebooks with up to 64
diagonal covariance Gaussians each, summing up to a total
of 180,000 Gaussians.

Each front-end provided features every 10 ms (first and
second pass) or 8 ms (third pass). Spectral estimates have
been obtained by the Fourier transformation (MFCC),
PLP, warped MVDR, warped-twice LP and warped-twice
MVDR spectral estimation. While the Fourier transfor-
mation is followed by a mel-filterbank, warped MVDR,
warped-twice LP and warped-twice MVDR are followed
by a linear filterbank. The 30 (13 or 20 in the case of PLP)
spectral features have been truncated to 13 or 20 cepstral
coefficients after cosine transformation. After mean and
variance normalization, the cepstral features were stacked
(seven adjacent left and right frames providing either 195
or 300 dimensions) and truncated to the final feature
vector dimension of 42 by a multiplication with the opti-
mal feature space matrix (the linear discriminant analysis
matrix multiplied with the global semi-tied covariance
transformation matrix [34]).

To train a four-gram language model, we used cor-
pora consisting of broadcast news, proceedings of con-
ferences such as ICSLP, Eurospeech, ICASSP, ACL and
ASRU and talks in TED. The vocabulary contains ap-
proximately 23,000 words, the perplexity is 120 with an
out-of-vocabulary rate of 0.25%.

We compare the different front-ends on class separability
and word error rate (WER).

6.1. Class Separability

Class separability is a classical concept in pattern recog-
nition, usually expressed using a scatter matrix. We can
define
– the within-class scatter matrix (Sw)
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Fig. 6. Values of the normalized first autocorrelation coefficient by phonemes. Different phone classes group either for small values, e.g.

sibilants, unvoiced (italic) and fricatives (bold) or for high values, e.g. nasals.

Sw =
C∑

c=1

[
Nc∑

n=1

(xcn − µc)(xcn − µc)
T

]
, (31)

– the between-class scatter matrix (Sb)

Sb =
C∑

c=1

Nc(µc − µ)(µc − µ)T (32)

– and the total scatter matrix (St)

St = Sw + Sb =
C∑

c=1

[
Nc∑

n=1

(xcn − µ)(xcn − µ)T

]
, (33)

where Nc denotes the number of samples in class c, µc is
the mean vector for the cth class, and µ is the global mean
vector over all classes C.

We would like to derive feature vectors such that all vec-
tors belonging to the same class (e.g. phoneme) are close
together in feature space and well separated from the fea-
ture vectors of other classes (e.g. all other phonemes). This
property can be expressed using the scatter matrices; a
small within-class scatter and a large between-class scat-
ter stand for large class separability. Therefore, an approxi-
mate measure of class separability can be expressed by [35]

Dd = traced

{
Sw

−1Sb

}
, (34)

where traced is defined as the sum of the first d eigenvalues
λi of Sw

−1 · Sb (a d-dimensional subspace) and hence the
sum of the variances in the principal directions.

Comparing the class separability of different spectral es-
timation methods in Table 2 we first note that a higher
number of cepstral coefficients always results in a higher
class separability. Comparing the class separability, for 20
cepstral coefficients, on different front-ends we observe that
class separability increases from PLP, warped-twice LP,
warped MVDR, power spectrum to warped-twice MVDR.
The class separability is significantly lower for PLP and sig-
nificantly higher for warped-twice MVDR, while warped-
twice LP, warped MVDR and power spectrum have nearly
the same value.

On close talking microphone recordings in Table 3, we
observe that warped-twice MVDR provides features with
the highest separability on the development as well as the
evaluation set. Averaging development and evaluation set

the warped-twice MVDR is followed by warped MVDR,
warped-twice MVDR, power spectrum and PLP. On dis-
tant microphone recordings, where the distance between
speakers and microphones varies between approximately
one and three meters, the power spectrum has the highest
class separability on the development set. On the evaluation
set, warped-twice MVDR performs equally well as warped
MVDR, see Table 4. Averaging development and evaluation
set on the distant data the power spectrum provides the
highest class separability followed by warped-twice MVDR,
warped-twice LP, warped MVDR and PLP.

6.2. Word error rates

The WERs of our speech recognition experiments for
different spectral estimation techniques and recognition
passes are shown for close talking microphone recordings in
Table 3 and for distant microphone recordings in Table 4.
The first pass is unadapted while the second and third
pass are adapted on the hypothesis of the previous pass
using maximum likelihood linear regression (MLLR) [36],
constrained MLLR (CMLLR) [37] and VTLN [38].

Comparing the WERs of different spectral estimation
methods in Table 2 we observe that a higher number of
cepstral coefficients does not always result in a lower WER.
Power spectra, warped and warped-twice MVDR envelopes
tend to better performance with 20 cepstral coefficients
while PLP performs better with 13 cepstral coefficients.
The following discussion always refers to the lower WER.
In average warped-twice MVDR provides the lowest WER
followed by warped-twice LP and warped MVDR which
perform equally well. PLP has a lower WER on the first
and second pass which equals on the third compared to the
power spectrum. PLP provides the lowest feature resolution
which seems to be an advantage on the first pass, however,
after model adaptation the lower feature resolution seems
to be a disadvantage.

Investigating the WER on close microphone recordings,
Table 3, we observe that the warped-twice MVDR front-
end provides the best recognition performance, followed by
PLP and warped-twice LP which are equally off. Warped
MVDR ranks before the power spectrum which had the
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Table 3
Class separability and word error rates for different front-end types and settings on close microphone recordings

Spectrum Model Cepstra Class Separability Word Error Rate %

Test Set Train Develop Eval Develop Eval

Pass 1 2 3 1 2 3

power spectrum – 13 11.007 16.470 16.088 36.1 30.3 28.0 35.3 29.7 27.7

power spectrum – 20 11.620 17.929 16.299 36.0 29.7 27.7 37.2 31.3 28.4

PLP 13 13 10.699 17.110 15.152 34.7 29.3 27.2 34.2 29.6 27.1

PLP 20 20 11.029 18.059 16.068 34.7 29.5 27.7 34.9 30.3 27.9

warped MVDR 60 13 10.768 16.813 16.261 35.0 30.0 28.2 35.5 29.9 27.6

warped MVDR 60 20 11.337 18.022 16.614 34.5 29.1 27.3 35.3 29.6 27.3

warped-twice LP 20 13 10.772 17.038 16.254 35.3 30.5 28.5 36.2 29.8 27.1

warped-twice LP 20 20 11.333 17.864 16.436 34.4 29.5 27.4 37.1 29.4 26.8

warped-twice MVDR 60 13 10.893 17.673 16.456 34.5 29.5 27.5 34.1 29.2 27.0

warped-twice MVDR 60 20 11.473 18.510 16.818 34.1 28.8 26.8 35.4 29.0 26.3

Table 4
Class separability and word error rates for different front-end types and settings on distant microphone recordings

Spectrum Model Cepstra Class Separability Word Error Rate %

Test Set Train Develop Eval Develop Eval

Pass 1 2 3 1 2 3

power spectrum – 13 11.007 14.786 13.470 61.9 52.0 51.1 60.8 54.2 51.1

power spectrum – 20 11.620 15.806 13.944 59.8 50.4 48.9 61.0 55.0 51.7

PLP 13 13 10.699 15.121 12.917 60.7 51.8 50.5 59.9 53.4 51.8

PLP 20 20 11.029 15.399 12.975 59.8 52.1 50.2 59.6 54.4 52.7

warped MVDR 60 13 10.768 13.836 13.885 62.9 53.7 52.0 60.7 52.8 50.7

warped MVDR 60 20 11.337 14.487 14.161 60.9 51.2 49.7 59.6 51.7 49.5

warped-twice LP 20 13 10.772 14.524 13.393 62.8 53.8 52.1 61.1 54.5 50.9

warped-twice LP 20 20 11.333 15.119 13.803 58.9 50.8 49.3 59.9 53.0 50.2

warped-twice MVDR 60 13 10.893 14.895 13.901 63.1 53.6 51.6 60.7 52.7 49.3

warped-twice MVDR 60 20 11.473 15.380 14.116 60.3 51.1 49.8 59.9 50.4 47.9

lowest recognition performance.
On distant microphone recordings, Table 3, the warped-

twice MVDR front-end shows robust performance and has,
in average, the lowest WER. On the development set, how-
ever, the power spectrum has the lowest WER. In average
the warped-twice MVDR is followed by warped MVDR,
then warped-twice LP, thereafter the power spectrum due
to a weak performance on the evaluation set and PLP on
the last place.

The reduced improvements of the warped-twice MVDR
in comparison to the warped MVDR on distant recordings
can be explained by the fact that, in comparison to close
talking microphone recordings, the range of the values ϕi

over all i is reduced. Therefore, the effect of spectral resolu-
tion steering is attenuated and consequently warped-twice
MVDR envelopes behave more similarly to warped MVDR
envelopes.

6.3. Phoneme Confusability

We investigate the confusability between phonemes by
calculating the minimum distances, on the final features,
between different phoneme pairs. In order to account for the
range of variability of the sample points in both phoneme
classes Ωp and Ωq, expressed by the covariance matrices Σp

and Σq, we extend the well known Mahalanobis distance
by a second covariance matrix

Dp,q =
√

(µp − µq)T (Σp + Σq)
−1 (µp − µq).

Here µp denotes the sample mean of phoneme class Ωp and
µq denotes the sample mean of phoneme class Ωq respec-
tively.

As the comparison of the confusion matrix itself would
be impractical, we limit our investigations on the compar-
ison of the distance between the nearest phoneme to a
given phoneme for different spectral estimation techniques
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Table 5
Nearest phoneme distance for different phonemes (ordered by ϕ) and spectral estimation methods.

phoneme S SH CH Z JH ZH F TH T K · · · OW OY W UW XL NG N XN M XM

ϕ 0.51 0.55 0.60 0.62 0.73 0.78 0.80 0.81 0.85 0.89 · · · 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98

spectrum power spectrum

nearest Z CH JH S CH JH T T TH P · · · XL OW B UH L N M N N L

distance 2.41 1.56 0.81 2.27 1.36 1.55 2.36 2.04 1.75 2.33 · · · 3.19 3.55 3.04 2.97 2.94 3.32 2.83 3.59 3.04 4.88

spectrum warped MVDR

nearest Z CH JH S CH JH T T TH P · · · XL AY B UH L N M N N XL

distance 2.32 1.56 0.86 2.21 1.65 1.49 2.26 2.03 1.74 2.36 · · · 3.49 3.8 3.29 3.19 3.18 3.52 3.01 3.65 3.3 5.07

spectrum warped-twice LP

nearest Z CH JH S CH JH K T TH P · · · XL OW B UH L N M N N XL

distance 2.46 1.58 0.87 2.26 1.78 1.5 2.38 2.09 1.72 2.37 · · · 3.22 3.47 3.06 2.93 2.96 3.36 2.77 3.57 3.03 4.97

spectrum warped-twice MVDR

nearest Z CH JH S CH JH T T TH P · · · XL OW B UH L N M N N XL

distance 2.43 1.6 0.85 2.24 1.75 1.58 2.35 2.08 1.74 2.35 · · · 3.26 3.59 3.1 2.99 3 3.36 2.83 3.56 3.12 5.02

Table 2

Average class separability and average word error rates for different
front-end types and sanity checks
MO: model order, CC: number of cepstral coefficients, CS: class

separability

Spectrum MO CC CS Word Error Rate %

Pass 1 2 3

power spectrum – 13 15.204 48.5 41.6 39.5

power spectrum – 20 15.995 48.5 41.6 39.2

PLP 13 13 15.075 47.4 41.0 39.2

PLP 20 20 15.625 47.3 41.6 39.6

warped MVDR 60 13 15.199 48.5 41.6 39.6

warped MVDR 60 20 15.821 47.6 40.4 38.5

warped-twice LP 20 13 15.302 48.9 42.1 39.6

warped-twice LP 20 20 15.806 47.6 40.7 38.4

warped-twice MVDR 60 13 15.731 48.1 41.3 38.9

warped-twice MVDR 60 20 16.206 47.4 39.8 37.7

as plotted in Tabel 5. Note that the PLP front-end is ex-
cluded from this analysis as it, due to a different scale,
can not be directly compared. By comparing the nearest
phoneme pairs over different phonemes and spectral esti-
mation methods we observe that different spectral repre-
sentations result in slightly different phoneme pairs. In ad-
dition we observe that, in average, phonemes with a small
value of ϕ are easier confused (smaller distance) with other
phonemes than phonemes with a high ϕ value. This can be
explained by the energy of the different phoneme classes
where the phoneme classes belonging to small ϕ values con-
tain less energy and are thus stronger distorted by back-
ground noise.

Comparing the power spectrum with the warped MVDR
envelope we observe that the power spectrum tends to
provide lower confusability for lower ϕ values and higher

confusability for higher ϕ values. The warped-twice LP
and warped-twice MVDR envelopes have a similar distance
structure over ϕ, with in average larger distances for the
warped-twice MVDR envelopes. While the warped-twice
MVDR envelope, compared to the warped MVDR enve-
lope, provides a lower confusability for small values of ϕ,
the confusability is higher for larger values of ϕ. While the
warped MVDR envelope is not capable to provide a lower
confusability over the whole range of ϕ in comparison to the
power spectrum, the warped-twice MVDR envelope pro-
vides, in average, a lower confusability over the whole range
of ϕ in comparison to the power spectrum.

7. Conclusion

We have introduced warped-twice MVDR spectral es-
timation by extending warped MVDR estimation with a
second bilinear transformation. With these extensions, it
is possible to steer spectral resolution to lower or higher
frequencies while keeping the overall resolution of the esti-
mate and the frequency axis fixed. We have demonstrated
one possible application in the front-end of a speech-to-
text system by steering the resolution of the spectral en-
velope to classification relevant spectral regions. The pro-
posed framework showed consisted improvements in terms
of class separability and WER on a large vocabulary speech
recognition task on close talk as well as on distant speech
recordings. Further improvements might be expected by a
more suitable steering function.
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