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Abstract

In automatic speech recognition applications, due to significant differences in voice
characteristics, adults and children are usually treated as two population groups, for
which different acoustic models are trained. In this paper, age-independent acous-
tic modeling is investigated in the context of large vocabulary speech recognition.
Exploiting a small amount (9 hours) of children’s speech and a more significant
amount (57 hours) of adult speech, age-independent acoustic models are trained
using several methods for speaker adaptive acoustic modeling. Recognition results
achieved using these models are compared with those achieved using age-dependent
acoustic models for children and adults, respectively. Recognition experiments are
performed on four Italian speech corpora, two consisting of children’s speech and
two of adult speech, using 64k word and 11k word trigram language models. Meth-
ods for speaker adaptive acoustic modeling prove to be effective for training age-
independent acoustic models ensuring recognition results at least as good as those
achieved with age-dependent acoustic models for adults and children.
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1 Introduction

It is well known that when an automatic speech recognition system trained on
adult speech is employed to recognize children’s speech, performance decreases
drastically, especially for younger children (Burnett and Fanty, 1996; Wilpon
and Jacobsen, 1996; Potamianos et al., 1997; Das et al., 1998; Claes et al.,
1998; Giuliani and Gerosa, 2003). Characteristics of speech such as pitch, for-
mant frequencies and segmental durations have been shown, in fact, to be
related to the age of the speaker (Huber et al., 1999; Lee et al., 1999). For
recognition of children’s speech, age-specific acoustic models (AMs) trained
on speech collected from children of the target age, or age group, should be
adopted to ensure good recognition performance (Wilpon and Jacobsen, 1996;
Hagen et al., 2003; Nisimura et al., 2004). However, training age-specific acous-
tic models is costly as it requires collecting an adequate amount of training
data for each target age or age group. Furthermore, in languages other than
American English, there is a relative scarcity of large, publicly-available cor-
pora of children’s speech (Hagen et al., 2003; Batliner et al., 2005). Therefore,
as a first approximation, children are often treated as an homogeneous popu-
lation group and group-specific acoustic models are trained with speech from
children of all ages (Potamianos and Narayanan, 2003; Giuliani et al., 2006).

However, even in the case of adequate amounts of age-specific training data,
recognition performance reported for children is usually significantly lower
than that reported for adults and it improves as the children’s age in-
creases (Wilpon and Jacobsen, 1996; Li and Russell, 2002; Potamianos and
Narayanan, 2003; Hagen et al., 2003). This correlates well with studies show-
ing that intra- and inter-speaker spectral variability decrease as age increases
(Lee et al., 1999; Gerosa et al., 2006b). Furthermore, experiments of human
perception of speech from children aged 6-11 show that the human word recog-
nition error rate increases as the age of the child decreases (D’Arcy and Russell,
2005). All these results suggest that automatic recognition of children’s speech
is more difficult than recognition of adult speech especially when addressing
younger children.

In recent years, research issues, such as vocal tract length normalization,
speaker adaptive training, language modeling and pronunciation variation
modeling have been investigated for improving children’s speech recogni-
tion (Li and Russell, 2002; Narayanan and Potamianos, 2002; Potamianos
and Narayanan, 2003; Stemmer et al., 2003; Giuliani and Gerosa, 2003; Ha-
gen et al., 2003; Giuliani et al., 2004), however all these issues still require
systematic studies.

On the other hand, for adults, variations in voice characteristics due to speaker
age are much less evident than for children. As a consequence, for adults, recog-
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nition performance is less correlated with age, at least for ASR applications
addressing speakers in the age range 18-70 (Wilpon and Jacobsen, 1996).

Due to the significant difference in voice characteristics, in ASR applications
adults and children are usually treated as two different population groups,
for which different AMs are trained. In this work, we investigate a new ap-
proach, considering adults and children between 7 and 13 as a single popula-
tion of speakers. Age-independent acoustic models are trained by exploiting
a small amount (9 hours) of children’s speech and a more significant amount
(57 hours) of adult speech, for a total of 66 hours of speech. Recognition per-
formance achieved using these models is compared with that achieved using
group-specific acoustic models for children and adults. The aim is to train age-
independent acoustic models able to perform well on both adult and children’s
speech.

Using age-independent AMs conventionally trained on a mixture of adult and
children’s speech results in a performance decrease with respect to using group-
specific AMs. In fact, because of the increased inter-speaker acoustic variabil-
ity caused by the very different characteristics of adult and children’s speech,
parameters of the age-independent models do not well reflect phonetically rel-
evant acoustic variation present in the training data, providing limited mod-
eling accuracy for each individual speaker. In this work, to cope with the high
inter-speaker variability, speaker adaptive acoustic modeling is investigated by
adopting three methods: vocal tract length normalization (VTLN) (Welling
et al., 1999; Giuliani et al., 2006), speaker adaptive training (SAT) (Gales,
1998), and constrained MLLR based speaker normalization (CMLSN) (Giu-
liani et al., 2006).

Evaluation of ASR performance is conducted on four Italian read speech cor-
pora, two composed of children’s speech and two composed of adult speech,
using 64k word and 11k word trigram language models. Two of these are par-
allel speech corpora consisting of the same set of sentences read by adults
and children, respectively. This allows us to compare recognition performance
achieved for adults and children on two corpora that are homogeneous in terms
of linguistic content and signal quality.

This paper is organized as follows. First, the speech corpora used in this work
are described in Section 2. Section 3 summarizes results of analysis of temporal
and spectral characteristics of adult and children’s speech. Section 4 briefly
introduces the adopted speaker adaptive acoustic modeling methods. Recog-
nition experiments are described in Section 5 and final remarks are reported
in Section 6 which concludes the paper.
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2 Speech corpora

Five Italian speech corpora were used in this work. Three of these corpora
consist of children’s speech: the ChildIt corpus, the SpontIt corpus and the
Tgr-child corpus. The other two corpora consist of adult speech: the IBN
corpus and the Tgr-adult corpus.

The ChildIt corpus (Giuliani and Gerosa, 2003) is an Italian task-independent,
speech database that consists of clean utterances read by children from 7 to
13, with a mean age of 10 years. About 10 hours of speech were collected from
171 children. Each child read 58 or 65 sentences, depending on his/her grade,
selected from electronic texts of literature for children. Each speaker read a
different set of sentences. Speech was acquired at 16 kHz, with 16 bit accuracy,
using a Shure SM10A head-worn microphone. The ChildIt corpus was parti-
tioned into a training set and a test set for speech recognition experiments.

The SpontIt corpus is a task-independent Italian speech database that con-
sists of clean spontaneous speech from 21 children aged between 8 and 12,
with a mean age of 10 years. These 21 speakers were different from the 171
speakers in the ChildIt corpus. Each child was interviewed by an adult about
his/her preferred books, TV shows, hobbies, sports, etc. Recordings were per-
formed with a digital audio tape recorder using an head-worn Shure SM10A
microphone. Audio signals were then down-sampled from 48 kHz to 16 kHz,
with 16 bit accuracy. The SpontIt corpus was used in addition to ChildIt for
acoustic model training.

The IBN speech corpus was used for training the automatic broadcast
news (BN) transcription system developed at ITC-irst 1 for the Italian lan-
guage (Bertoldi et al., 2001; Brugnara et al., 2002). It’s mainly composed of
speech from several radio and television news programs. The IBN corpus was
partitioned into a training set, consisting of 57h:07m of speech, and a test set,
consisting of 6 radio news programs and two television news programs, for a
total of 49 minutes and 36 minutes of speech, respectively. The IBN train-
ing set includes also two small task-independent corpora called APASCI and
SPEEDATA. The APASCI corpus (Angelini et al., 1994) is a task-independent,
high quality, acoustic-phonetic Italian database. Recordings were performed
in quiet rooms using a digital audio tape recorder and a high-quality close-
talk microphone. Audio signals were acquired at 48 kHz sampling frequency
and then down-sampled to 16 kHz with 16 bit accuracy. Only a portion of
APASCI corpus, consisting of speech from 124 speakers (for an overall dura-
tion of 5h:38m), was exploited in this work for speech analysis purposes and
acoustic model training. The SPEEDATA corpus (Ackermann et al., 1997) is

1 Now FBK-irst.
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a corpus designed and collected by ITC-irst with criteria very similar to those
adopted for APASCI and containing about 5h:48m of speech.

Two parallel corpora, called Tgr-adult and Tgr-child, containing the same set
of sentences uttered by adults and children, were also designed for testing. By
exploiting manual segmentation and word transcription, the sentences in the
IBN test set suitable to be read by children were identified and grouped into
lists of about 20 sentences each. These sentences were selected among those
judged well-pronounced by transcribers of the IBN corpus and characterized
by good acoustic conditions. Each of the 30 children between ages 8 and 12
that were involved in the data collection was asked to read one of these lists.
Children were allowed to repeat the same sentence more than once, and just
the last repetition was stored. The Tgr-adult corpus is the subset of the IBN
test set corresponding to the sentences selected for children.

Tables 1 and 2 summarize the characteristics of the speech corpora used in
this work for training and testing, together with some characteristics of the
language models (LMs) used.

training set IBN ChildIt SpontIt

speaking style planned/spont. read spont.

signal quality clean clean clean

sampling frequency 16 kHz 16 kHz 16 kHz

language Italian Italian Italian

speaker age >20 7-13 8-12

no. speakers >1000 129 21

recording hours 57h:07m 7h:47m 1h:20m

Table 1
Characteristics of speech corpora used for acoustic model training.

We have to point out that the set of sentences read by a specific child in the
Tgr-child corpus was usually pronounced by several speakers in the IBN test
set, as is evident by the number of speakers in the two corpora reported in
Table 2. In fact, it was not possible to extract a sufficient number of suitable
sentences with an even distribution over adult speakers. This caused a certain
difference in experimental conditions. In practice, in experiments in which, at
the recognition stage, the system is adapted to the incoming test data, the
amount of data available plays a role in the grade of adaptation achieved. For
each adult speaker in the Tgr-adult corpus, system adaptation was performed
on all the speech available in the IBN test set while performance was reported
only for utterances included into the Tgr-adult corpus described above. How-
ever, this experimental difference was considered acceptable.
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test set IBN Tgr-adult Tgr-child ChildIt

speaking style planned/spont. planned read read

signal quality clean/noisy clean clean clean

sampling freq. 16 kHz 16 kHz 16 kHz 16 kHz

language Italian Italian Italian Italian

speaker age Adult Adult 8-12 7-13

no. speakers 95 76 30 42

no. utterances 1045 570 570 1680

word occurrences 14478 6575 6575 15355

rec. dictionary size 64000 64000 64000 11000

perplexity 204 180 180 900

OOV rate 1.6% 1.0% 1.0% 0.0%

Table 2
Characteristics of speech corpora used for recognition experiments.

3 Age-dependencies in speech acoustic characteristics

A lot of research work has been devoted to the analysis of children’s speech in
order to achieve a better understanding of its characteristics. In (McGowan
and Nittrouer, 1988; Nittrouer and Whalen, 1989; Lee et al., 1999; Narayanan
and Potamianos, 2002; Gerosa et al., 2007), it was shown that acoustic and
linguistic characteristics of children’s speech are widely different from those
of adults. Furthermore, these studies also show that characteristics of chil-
dren’s speech vary rapidly as a function of age due to the anatomical and
physiological changes occurring during a child’s growth and because children
become more skilled in coarticulation with age. Below we summarize some
of the main results, reported in literature, concerning analysis of adult and
children’s speech.

Phone duration In literature it is reported that, in planned/read speech,
adults and older children tend to show shorter durational patterns than
younger children. In (Lee et al., 1999), mean duration of vowels was mea-
sured for American English speech uttered by children from 5 to 17 years of
age. A significant decrease in duration as age increases was observed up to age
15. In (Gerosa et al., 2007) a similar study was conducted on Italian speech
using the ChildIt corpus, achieving similar results (reported here in Figure 1).
Observing Figure 1 we can note a decrease of almost 30% in phone duration
between age 7 and age 13.
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Fig. 1. Mean duration of phones (msec) per age computed on the ChildIt training
set. For comparison purposes, the mean phone duration for adults, computed on
the IBN training set, is also reported. Vertical bars denote inter-speaker variability
(standard deviation) (Gerosa et al., 2007).

In (Gerosa et al., 2006a) phone duration was measured on spontaneous speech.
The observed decrease in duration with age was smaller than for read speech,
but it was still significant.

Age-dependent variation in phone duration introduces variabilities that may
affect ASR performance. In the case of adults speakers, it is well known that
for speakers speaking much faster than the average of the training population,
a low ASR performance is achieved (Pallett et al., 1992; Mirghafori et al.,
1996). When testing on children’s speech with acoustic models trained on adult
speech, the mismatch in duration variation is so large that it may significantly
affect recognition performance.

Formant frequencies Studies on morphology and development of the vocal
tract (Fitch and Giedd, 1999) reveal that during childhood there is a steady
gradual lengthening of the vocal tract as the child grows while a concomi-
tant decrease in formant frequencies occurs (Huber et al., 1999). While for
females there is a gradual continuous growth of vocal tract through puberty
into adulthood, for males during puberty there is a disproportional growth of
vocal tract, which lowers formant frequencies, together with an enlargements
of the glottis, which lowers the pitch. As a consequence, adult males show a
longer, about 10% on average, vocal tract than adult females.

The above mentioned results are essentially confirmed by analysis of formant
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frequency positions carried out in (Lee et al., 1999), for American English
speech, and in (Gerosa et al., 2007), for Italian speech. On children’s speech,
a progressive and significant decrease of frequency position as age increases
was observed for the fundamental frequency and the the first three formants.
After age 13, formant frequency values were found significantly higher for fe-
male speakers than for male speakers. Before this age it is not clear if the
difference in formant frequencies between male and female speakers are sta-
tistically significant. Pitch and formant frequencies reach adult-like values for
children of age 15. This is in contrast with the developmental model pre-
sented in (Goldstein, 1980) for which the vocal tract is assumed to continue
its growth beyond age 15 until age 20. The source of this discrepancy is still
not fully understood. Observed spectral variations explain well why, when an
automatic speech recognition system trained on adult speech is used to recog-
nize children’s speech, recognition performance decreases drastically (Burnett
and Fanty, 1996; Wilpon and Jacobsen, 1996; Claes et al., 1998; Giuliani and
Gerosa, 2003).

Spectral variability It is well known that intra- and inter-speaker variabil-
ity are an important source of errors in automatic speech recognition systems.
In (Lee et al., 1999) it is shown, for American English, that spectral variabil-
ity in children’s vowel sounds is much higher than in adult speech. Increased
variability in formant frequencies results in greater overlap among phonemic
classes for children than for adult speakers, and makes the speech classifi-
cation problem inherently more difficult. This study was later extended to
consonants in (Gerosa et al., 2006b), obtaining similar results to the ones ob-
tained for vowels. In (Gerosa et al., 2007) the effect of inter-speaker spectral
variability was measured on the ChildIt corpus, the distance between probabil-
ity distributions modeling vowel sounds for different age groups was measured.
The average distance for children aged 7-9 was about 25% lower than the av-
erage distance measured for adults, indicating more of an overlap between
vowel distributions in the acoustic space. The high inter-speaker variability
that characterizes children’s speech suggests that the use of speaker adaptive
acoustic modeling techniques has a great potential for application in cases
when training acoustic models on children’s speech, or on a mixture of adult
and children’s speech.

Human perception of children’s speech In literature, a decrease of au-
tomatic speech recognition performance is usually reported for younger chil-
dren compared to older ones. This decrease in performance is often ascribed
to the increased inter- and intra-speaker acoustic variability caused by the
age-related factors discussed in this section.

To ascertain whether similar performance degradation also applies to human
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perception of children’s speech, in (D’Arcy and Russell, 2005) human per-
ceptual experiments were carried out by considering read clean speech from
children between 6 and 11. Results of these experiments show that the hu-
man word recognition error rate increases as the age of the child decreases,
confirming that recognition of children speech is a challenging task, especially
when targeting younger children.

4 Acoustic modeling

This section presents solutions that were investigated to cope with acous-
tic variability mainly introduced by speaker-specific factors. The investigated
solutions include cepstral mean and variance normalization, speaker adaptive
acoustic modeling techniques, for acoustic models based on continuous density
hidden Markov models (HMMs), and unsupervised speaker adaptation.

4.1 Cepstral mean and variance normalization

In this work, each speech frame was parameterized into a 39-dimensional ob-
servation vector composed of 13 mel frequency cepstral coefficients (MFCCs)
plus their first and second order time derivatives. Cepstral mean subtraction
was performed on static features on an utterance-by-utterance basis. In the
following, this acoustic front-end is denoted as MFCC39.

Two additional acoustic front-ends were considered by performing mean and
variance normalization, on a speaker-by-speaker basis, in two different ways.
In one case, after generating the MFCCs, mean subtraction and variance
normalization was performed before computing first and second order time
derivatives. We will denote this set of acoustic features as MFCC39-MVN13.
Alternatively, mean and variance normalization was applied to all 39 unnor-
malized acoustic features. We will denote this latter set of acoustic features as
MFCC39-MVN39. Mean and variance normalization was performed by forcing
each acoustic feature to have zero mean and unit variance over the speaker’s
data. The aim was to reduce acoustic variations induced by speaker specific
factors, acquisition channel, and environment.

4.2 Speaker adaptive acoustic modeling

Speaker adaptive acoustic modeling aims at reducing or compensating for
acoustic variations induced by different characteristics of each training and
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testing speaker. In this work we investigate speaker adaptive acoustic model-
ing through three acoustic feature transformation approaches: VTLN; a vari-
ant of the SAT algorithm proposed by Gales (Gales, 1998); and CMLSN, a
related method to SAT. Speaker adaptively trained models are typically used
in a two-pass decoding scheme in which the output of a first decoding pass,
employing conventionally trained acoustic models, is used as a supervision for
normalization/adaptation purposes before a second decoding pass.

VTLN Vocal tract length normalization aims at reducing inter-speaker
acoustic variability due to vocal tract length (and shape) variations among
speakers by warping the frequency axis of the speech power spectrum (Lee and
Rose, 1996; Wegmann et al., 1996; Eide and Gish, 1996). In VTLN, typical
issues are the estimation of a proper frequency scaling factor for each speaker,
or utterance, and the implementation of the frequency scaling during speech
analysis. A well known method for estimating the scaling factor is based on
a grid search over a discrete set of possible scaling factors by maximizing the
likelihood of warped data given a current set of acoustic models (Lee and Rose,
1996). Normalization can be performed on the test data only or both on the
training and test data. Frequency scaling is performed by warping the power
spectrum during signal analysis or, for filter-bank based acoustic front-end,
by changing the spacing and width of the filters while keeping the spectrum
unchanged (Lee and Rose, 1996).

In this work, VTLN was performed on a speaker-by-speaker basis both on the
training and test data. Frequency warping was implemented by changing the
spacing and width of the filters in the mel filter-bank while keeping the speech
spectrum unchanged. To cope with the problem of accommodating filters near
the band edge, a piecewise linear warping function of the frequency axis of the
mel filter-bank was adopted. During training the reference acoustic models
for scaling factor selection were speaker independent (SI) triphone HMMs
with 1 Gaussian per state, trained on unwarped data. During testing, scaling
factor selection was instead performed with respect to the HMMs, trained on
warped data, used for the final decoding step. In all cases a grid search over 21
warping factors evenly distributed, with step 0.02, in the range 0.80-1.20, was
performed. The training and recognition procedures adopted for implementing
VTLN were very similar to those proposed in (Welling et al., 1999) and are
described in detail in (Giuliani et al., 2006).

SAT The variant of the SAT algorithm proposed by Gales (Gales, 1998)
was used in this work. This variant makes use of an affine transformation, es-
timated through constrained maximum likelihood linear regression (MLLR),
for mapping acoustic observations of each training and testing speaker, instead

10



ACCEPTED MANUSCRIPT 
 

of adapting model parameters (Anastasakos et al., 1996). Transformation pa-
rameters are estimated with the aim of reducing the acoustic mismatch be-
tween speaker’s data and the reference models. With this method, a set of SI
continuous density HMMs is first fully trained on unnormalized data and then
used as seed models. Then, the parameters of speaker-specific affine transfor-
mations and the parameters of the Guassian densities are jointly estimated by
way of an iterative procedure which alternates estimation of transformations
with respect to the current models and estimation of model parameters on the
data normalized with the current transformations.

The resulting normalized models are used for decoding on normalized test
data. Before decoding, data of each test speaker are normalized through the
application of an affine transformation iteratively estimated adopting a pro-
cedure similar to the one used in training, except that in this case model
parameters are not updated.

CMLSN The CMLSN method performs speaker normalization by trans-
forming the acoustic observation vectors by means of speaker-specific affine
transformations, estimated through constrained MLLR. However, in contrast
to the variant of SAT proposed by Gales in (Gales, 1998), speaker-specific
transformations are estimated with the aim of reducing the acoustic mismatch
of the speaker data with respect to a set of target HMMs which is different
from the HMM set to be used for recognition. With this method, in fact, the
structure of the target and recognition models are determined independently.
For example, in this work target models are triphone HMMs with a single
Gaussian density per state. However, in (Stemmer et al., 2005) it was shown
that a Gaussian mixture model can be effectively used as a target model lead-
ing to a text-independent speaker normalization technique.

First, target models are trained on unnormalized data. Data of each training
speaker are then normalized by means of an affine transformation estimated
through constrained MLLR with respect to the target models. After training
data have been transformed, recognition models are trained from scratch by
using a conventional training procedure. At the recognition stage, speaker data
are normalized with respect to target models before decoding with recognition
models trained on normalized data.

A potential advantage over the SAT method (Gales, 1998) is that inter-speaker
acoustic variability is reduced before making any decision or performing any
training step. In the SAT method, in fact, an adaptive training scheme is
added on top of a conventional training procedure. We argue that during
the conventional training of the SI seed models, inter-speaker variability has
already affected parameter estimation and therefore SAT can only alleviate
its effect. Furthermore, the state tying determined during the conventional

11
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training procedure can not be changed during the SAT iterations, while in the
CMLSN method state tying is determined by exploiting normalized acoustic
data. For a detailed discussion of the differences between the SAT and the
CMLSN methods the reader is referred to (Stemmer et al., 2005).

4.3 Unsupervised speaker adaptation

When a two-pass decoding scheme was adopted, unsupervised speaker adap-
tation was performed by adapting means and variances of Gaussian densities
through MLLR (Leggetter and Woodland, 1995). Two regression classes were
defined and the associated transformation matrices were estimated through
three MLLR iterations exploiting the data of each speaker. Full transformation
matrices were used for transforming the means, while diagonal transformation
matrices were used for transforming the variances.

5 Recognition experiments

In this section, results of several speech recognition experiments are reported.
These experiments concern recognition of adult and children’s speech with
group-specific acoustic models, trained separately on adult speech and chil-
dren’s speech, and with age-independent acoustic models, trained on a mixture
of adult and children’s speech.

5.1 Experimental setup

For acoustic models we employed state-tied, cross-word triphone HMMs. Out-
put distributions associated with HMM states were modeled with mixtures
of up to 8 diagonal covariance Gaussian densities. In all acoustic model sets
trained, “silence” was modeled with a single state HMM. In addition, we
trained a number of models for common extra linguistic phenomena, such
as human noises (breathing, lip smacks, etc.), non-verbal sounds and filled
pauses.

Two language models were estimated and used in speech recognition exper-
iments reported in this paper. For experiments on the IBN, Tgr-child, and
Tgr-adult test sets, the language model was the 64k word trigram language
model adopted by the broadcast news transcription system developed at ITC-
irst for the Italian language (Bertoldi et al., 2001). The second language model,
used for recognition experiments on the ChildIt test set, was an 11k word tri-
gram language model estimated on a corpus of newspaper articles. The word

12
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dictionary was composed of the words occurring in the training and test sets
of the ChildIt corpus. The perplexity and the out-of-vocabulary (OOV) rate
computed on the test sets are reported in Table 2. The high perplexity shown
by the 11k word trigram language model on the ChildIt test set is explained
by the fact that the statistics estimated on the training text corpus, composed
of newspaper articles, do not well reflect the statistics of the ChildIt test set,
extracted from literature for children.

To assess methods for speaker adaptive acoustic modeling, recognition exper-
iments were carried out adopting a two-pass decoding scheme, assuming all
the data of each test speaker was available in one block. For this purpose, we
exploited the manual annotation of the speaker identity, as well as the manual
segmentation in utterances. The decoder was run twice, and the word tran-
scriptions generated with the first decoding pass were used as a supervision for
speaker normalization/adaptation purposes before the second decoding pass
took place.

5.2 Preliminary experiments

We trained two sets of SI, tied state, cross-word triphone HMMs for chil-
dren and adults, respectively. AMs for children were trained using the ChildIt
training set and the SpontIt corpus — about 9 hours of speech — result-
ing in about 1700 independent states and 13200 Gaussian densities. Adult
HMMs were trained using the IBN training set — about 57 hours of speech
— resulting in about 6700 independent states and 53860 Gaussian densities.
Table 3 reports the results achieved by performing a single recognition pass
with group-specific acoustic models for adults and children.

Test Set

HMM set IBN Tgr-adult Tgr-child ChildIt

Adult HMMs (57h) 16.1 10.4 37.2 41.0

Adult HMMs (9h) 18.8 12.9 32.5 36.8

Child HMMs (9h) 54.4 45.4 14.2 14.4

Table 3
Recognition results (% WER) obtained with acoustic models trained on adults and
children by performing a single decoding pass.

Looking at the results on Tgr-adult and Tgr-child corpora, we note that un-
der matched conditions recognition performance for adults is much better than
that for children: 10.4% WER compared with 14.2% WER, respectively. How-
ever, we point out that much more training data were used for adults than for
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children (i.e. 57 hours vs 9 hours) and therefore the performance gap could be
partially filled by just having more training data from children.

To measure the influence of the amount of training data, a contrasting ex-
periment was carried out by training a set of adult HMMs using only 9h of
speech selected from the IBN training set. Recognition results on the 4 test
sets using these AMs are also reported in Table 3, row “Adult HMMs (9h)”.
On the IBN and Tgr-adult test sets 18.8% and 12.9% WER were achieved,
respectively. We can conclude that when using the same amount of training
data the difference in performance in matched conditions between adult and
children’s speech, measured on the Tgr-adult and Tgr-child corpora, is only
of about 10% relative - 12.9% WER compared to 14.2% WER. The HMM set
trained on 9 hours of adult speech performs better than the HMM set trained
on all adult data (57 hours) when used to recognize children’s speech. This is
probably due to the composition of the training data selected.

Results of Table 3 show that, as expected, under unmatched conditions (for ex-
ample, in the case of children’s speech recognized with acoustic models trained
on adult speech), recognition results are much worse than those achieved under
matched conditions. This is mainly due to different characteristics of adult and
children’s voices (Wilpon and Jacobsen, 1996; Potamianos and Narayanan,
2003; Lee et al., 1999; Gerosa et al., 2006b).

We investigated the impact of performing mean and variance normalization
of acoustic features by adopting the two acoustic front-ends described in Sec-
tion 4.1, denoted as MFCC39-MVN13 and MFCC39-MVN39. These experi-
ments were motivated by the fact that the analysis on phone duration, pre-
sented in Section 3, revealed that adults and children in the speech corpora
used in this work presented a very different mean phone duration. It can be
hypothesized that the effect of the speaking rate is mostly concentrated on the
first and second order time derivatives of the MFCCs (Martinez et al., 1998),
therefore performing mean and variance normalization of dynamic features
could be useful to compensate for very different speaking rates.

Several sets of HMMs were trained for adults and children, by exploiting the
acoustic observations generated by the different acoustic front-ends. Recogni-
tion results, achieved with a single decoding pass, are reported in Table 4. As
a reference, results obtained using the standard front-end (“MFCC39”) are
also reported.

We note that mean and variance normalization carried out on all acoustic fea-
tures (“MFCC39-MVN39”) ensures systematic benefits with respect to adopt-
ing the standard acoustic front-end. Improvement in recognition performance
was validated using the matched-pair sentence test (Gillick and Cox, 1989) to
ascertain whether the observed results were inconsistent with the null hypoth-
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esis that the output of two systems were statistically identical. Considered
significance levels were .05, .01 and .001. In case of unmatched training and
testing conditions the improvement is statistically significant for all test sets,
with p < .001 for the ChildIt, Tgr-child and IBN test sets, and p < .05 for
the Tgr-adult test set. In the case of matched conditions, the improvement is
significant for the IBN and ChildIt test sets(with p < .05) and not significant
for the Tgr-child and Tgr-adult test sets. Normalizing just the static acoustic
features (“MFCC39-MVN13”) is less effective and consistent.

Therefore, the following recognition experiments were carried out performing
mean and variance normalization on all acoustic features. Word level tran-
scriptions corresponding to recognition results reported in rows “MFCC39-
MVN39” were exploited in two-pass recognition experiments as supervision
for adaptation/normalization purposes, before performing the second decod-
ing pass.

Test Set

HMM set Feature Set IBN Tgr-adult Tgr-child ChildIt

Adult MFCC39 16.1 10.4 37.2 41.0

HMMs MFCC39-MVN13 15.7 10.2 36.4 42.5

MFCC39-MVN39 15.6 10.1 33.3 39.9

Child MFCC39 54.5 45.4 14.2 14.4

HMMs MFCC39-MVN13 56.0 48.1 14.1 14.0

MFCC39-MVN39 51.2 44.1 13.8 13.9

Table 4
Recognition results (% WER) obtained with acoustic models trained on adults and
children and by adopting different acoustic front-ends.

5.3 Adaptive acoustic modeling

We trained for both adults and children three HMM sets using the VTLN,
CMLSN and SAT training methods summarized in Section 4, with the aim of
reducing the effect of inter-speaker acoustic variability and improving recogni-
tion performance. All HMM sets trained on the same group of speakers had a
number of parameters similar to the one of the corresponding baseline HMMs.

In the experiments reported below, in addition to speaker normalization, unsu-
pervised static speaker adaptation of acoustic models was performed before the
second decoding pass. Speaker adaptation was performed by adapting means
and variances of Gaussian densities through MLLR as described in Section 4.3.
Figure 2 reports recognition results obtained on the four test sets by using
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acoustic models trained by way of the VTLN, CMLSN and SAT methods. For
comparison purposes, results achieved with baseline HMMs and unsupervised
static speaker adaptation (“Two-pass Baseline”) are also reported.

Fig. 2. Recognition results (% WER) obtained using HMMs trained on adult speech
(“Adult HMMs”) and children’s speech (“Child HMMs”) with three speaker adaptive
acoustic modeling methods.

By comparing results achieved by the two-pass baseline with corresponding
results reported in Table 4 (rows “MFCC39-MVN39”), it can be noted that
the WER reduction achieved by unsupervised AM adaptation is tangible,
especially in the case of unmatched conditions. Furthermore, performing un-
supervised adaptation of speaker adaptively trained AMs results in improved
performance.

When comparing speaker adaptive acoustic modeling methods, we can see
that the CMLSN method outperforms the VTLN method in both matched and
unmatched conditions. In matched conditions this improvement is statistically
significant for the IBN (with p < .01), Tgr-child (with p < .05), and ChildIt
(with p < .01) test sets, while it is not significant for the Tgr-adult test set.
In unmatched conditions (see “Tgr-child” and “ChildIt” bars in the “Adult
HMMs” part of the Figure) the difference in performance between the CMLSN
and the VTLN methods is significant for the Tgr-child test set (p < .05) and
not significant for the ChildIt test set.

SAT and CMLSN give similar results on Tgr-adult and Tgr-child corpora,
while on IBN and ChildIt test sets using CMLSN ensures an improvement
in performance. This improvement was found significant with p < .01 for the
IBN test set, with p < .001 for the ChildIt test set in unmatched conditions,
and with p < .01 for the ChildIt test set in matched conditions. We point out
that the recognition results achieved on the Tgr-child and ChildIt test sets
using models trained on adult data using VTLN, CMLSN, and SAT are still
worse than those achieved by the baseline models trained on children’s speech.
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Finally, it can be noted that, when the CMLSN method is adopted, in matched
conditions the gap between recognition performance achieved on the Tgr-adult
test set, 8.6% WER, and the Tgr-child test set, 10.9% WER, is about 27%
relative.

5.4 Age-independent acoustic modeling

The use of age-independent acoustic models was investigated by training on
a mixture of speech data collected from adults and children of different ages.
Our goal was to develop a set of acoustic models able to ensure good recog-
nition performance for adult and child speakers. The use of adult speech for
reinforcing the training data in the case of a dearth of children’s speech has
been investigated in several papers (Wilpon and Jacobsen, 1996; Steidl et al.,
2003). However, simply adding adult data to the child training data always
resulted in a degradation in recognition performance for child speakers due to
the acoustic mismatch between the voices of adults and those of children.

In this work, we started from an experimental condition in which much more
training data were available for adults than for children. However we didn’t
want to sacrifice any training data available for adults in order to balance
training data between adults and children, as we were also interested in main-
taining good recognition performance for adults. Moreover this represents a
very common experimental condition, as for all languages in the past much
more data for adults were collected than for children.

Using 66 hours of speech, a cross-word triphone HMM set with 7320 tied
states and about 58800 Gaussian densities was trained. In addition to these
baseline models, three HMM sets were trained on the same data, using the
VTLN, CMLSN, and SAT training procedures. Figure 3 reports recognition
results achieved on the four test sets with the models trained on adult and
children’s speech. As before, at the recognition stage, in addition to speaker
normalization, unsupervised static MLLR model adaptation was performed
before the second decoding pass.

By comparing results reported in Figure 3 with those reported in Figure 2, it is
clear that simply training with mixed data results in a decrease in performance
for both adults and children (compare results for “Two-pass Baseline”). On
the other hand, speaker adaptive acoustic modeling with mixed data proves
to be very effective. In fact, recognition results achieved on the IBN, Tgr-
adult, Tgr-child and ChildIt test sets using age-independent HMMs trained
adopting the CMLSN method, 12.5%, 8.5%, 10.2%, 10.7% WER respectively,
are similar to those achieved on the same test sets with the group-specific
HMMs for adults and children reported in Figure 2, 12.3%, 8.6%, 10.9% and
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Fig. 3. Recognition results (% WER) obtained using HMMs trained on adult and
children’s speech data, with and without speaker adaptive acoustic modeling methods.

10.6% WER, respectively.

5.5 Combination of methods

We investigated the improvement that could be further gained by combining
methods for speaker adaptive acoustic modeling. In particular we investigated
the combination of VTLN with SAT, and of VTLN with CMLSN. In fact,
while in CMLSN and SAT no assumption is made about the nature of the
acoustic mismatch between the data of different speakers, the VTLN method
is conceived to reduce spectral differences induced specifically by variations in
vocal tract length. So, these methods could have some additive effects.

Figure 4 reports the results achieved with the second decoding pass using
HMMs trained by applying the two combinations of speaker adaptive acoustic
modeling methods (“VTLN+SAT” and “VTLN+CMLSN”). For comparison
purposes, results achieved with two-pass baseline systems are also reported.
Results on all the four test sets confirm the effectiveness of speaker adaptive
acoustic modeling methods. For example by considering group-specific mod-
els for adults, the baseline system guarantees a 9.3% WER on the Tgr-adult
test set. In contrast, we can achieve an 8.2% WER by cascading methods
for speaker adaptive acoustic modeling (“VTLN+CMLSN”). By considering
group-specific models for children, the baseline system guarantees a 12.0%
WER on the Tgr-child test set, compared with a 10.5% WER achieved by cas-
cading methods for speaker adaptive acoustic modeling (“VTLN+CMLSN”).

By comparing results reported in Figure 4 with those reported in Figure 2
and Figure 3, it can be noted that results achieved by cascading the VTLN
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Fig. 4. Recognition results (% WER) on the 4 test sets obtained using HMMs trained
on adult speech, on adult and children’s speech, and on children’s speech with and
without speaker adaptive acoustic modeling methods.

method with the CMLSN and SAT methods are always equal to or better
than those achieved using one of the normalization methods alone.

Most importantly, age-independent HMMs, trained by cascading methods for
speaker adaptive acoustic modeling, ensure performance aligned with that
achieved by age-specific acoustic models trained with the same methods (com-
pare results for “VTLN+CMLSN” in Figure 4).

6 Conclusions

In this paper, age-independent acoustic modeling has been addressed with the
aim of developing acoustic models able to perform well on speakers of all ages.
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Recognition experiments were carried out exploiting four test sets composed
of Italian speech, including two parallel test corpora made of repetitions of
the same sentences read by adults and 8-12 year-old children. This allowed
direct comparison between results achieved on adult and children’s speech in
the context of a large-vocabulary (64k words) speech transcription task.

Speaker adaptive acoustic modeling was investigated through the use of the
VTLN, CMLSN, and SAT methods and their combinations. These methods
proved to be effective when used to train group-specific acoustic models for
adults and children. In matched conditions, we obtained WER relative reduc-
tions, with respect to the baseline systems, between 8.6% and 12.5%.

More importantly, speaker adaptive acoustic modeling proved to be effec-
tive when applied to train age-independent acoustic models by exploiting
speech from adult and child speakers. Recognition results achieved using age-
independent acoustic models were, in fact, aligned with those achieved using
the group-specific HMMs for adults and children. Developing acoustic models
able to perform well on speakers of all ages can be important in application
scenarios in which speech recognition technology is applied to recognize speech
from speakers of unknown age such as automatic transcription of audio-visual
documents (for example, TV programs) and voice interactive services over
the telephone line. It may also reduce the need of collecting large amounts of
training data from speakers of each age group.

Furthermore, on the parallel corpora consisting of the same sentences read
by adults and children, the WER achieved for children, 10.2%, was only 24%
(relative) higher than the WER achieved for adult, 8.2%, thus demonstrating
that for the age-range considered, 8-12 years, large vocabulary recognition of
read children’s speech is a feasible task.
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