Finally Fulfilling Wade's Rules: The C4v Symmetric Polycation Bi95+ in the Polar Structure of Bi18Sn7Br24 $=(\mathrm{Bi} 95+) 2[\mathrm{Sn7Br} 2410-]$

Bernhard Wahl, Michael Ruck

- To cite this version:

Bernhard Wahl, Michael Ruck. Finally Fulfilling Wade's Rules: The C4v Symmetric Polycation Bi95+ in the Polar Structure of $\operatorname{Bi} 18 \operatorname{Sn} 7 \mathrm{Br} 24=(\operatorname{Bi} 95+) 2[\operatorname{Sn7Br} 2410-]$. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2009, 636 (2), pp.337. 10.1002/zaac. 200900314 . hal-00524117

HAL Id: hal-00524117

https://hal.science/hal-00524117

Submitted on 7 Oct 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zeitschrift für Anorganische und

 Allgemeine Chemie
Finally Fulfilling Wade's Rules: The $C_{4 v}$ Symmetric Polycation $\mathrm{Bi}_{9}{ }^{5+}$ in the Polar Structure of $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}=\left(\mathrm{Bi}_{9}{ }^{5+}\right)_{2}\left[\mathrm{Sn}_{7} \mathrm{Br}_{24}{ }^{10-}\right]$

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie			
Manuscript ID:	zaac.200900314.R1			
Wiley - Manuscript type:	Article			
Date Submitted by the	Author:	11-Aug-2009	Complete List of Authors:	Wahl, Bernhard; Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie Ruck, Michael; Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie
---:	:---			
Keywords:	Bismuth, Cluster compounds, Electron counting rules, Polar structure, Pseudosymmetry			

Finally Fulfilling Wade's Rules: The $\boldsymbol{C}_{4 \mathrm{v}}$ Symmetric Polycation $\mathrm{Bi}_{9}{ }^{5+}$ in the Polar Structure of $\mathbf{B i}_{18} \mathbf{S n}_{7} \mathbf{B r}_{24}=\left(\mathbf{B i}_{9}{ }^{5+}\right)_{2}\left[\mathbf{S n}_{7} \mathbf{B r}_{24}{ }^{10-}\right]$

Bernhard Wahl ${ }^{[a]}$ and Michael Ruck** ${ }^{[a]}$
Dedicated to Professor Hans-Jörg Deiseroth on the Occasion of his $65^{\text {th }}$ Birthday

Keywords: Bismuth; Cluster compounds; Electron counting rules; Polar structure;
Pseudosymmetry
Running title: The $\mathrm{C}_{4 \mathrm{v}}$ Symmetric Polycation $\mathrm{Bi}_{9}{ }^{5+}$

Abstract

The bismuth-rich bromidostannate(II) $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}=\left(\mathrm{Bi}_{9}{ }^{5+}\right)_{2}\left[\mathrm{Sn}_{7} \mathrm{Br}_{24}{ }^{10-}\right]$ was crystallized from a melt of Bi, Sn and BiBr_{3}. X-ray diffraction on a single-crystal revealed a polar, tetragonal structure (space group 14 cm , no. 108) with lattice parameters $a=1323.70$ (5) pm and $c=1816.86(8) \mathrm{pm}$ at $110(5) \mathrm{K}$. In agreement with Wade's rules and quantum chemical calculations, the homonuclear nido-cluster $\mathrm{Bi}_{9}{ }^{5+}$ is a mono-capped square antiprism (point group $C_{4 \mathrm{v}}$). The anions of the bromidostannate(II) groups mainly comply with the pseudosymmetry of the space group $I 4 / \mathrm{mcm}$ and thereby affect substantial disorder of the $\mathrm{Sn}^{\text {II }}$ cations.

[a] Prof. Dr. M. Ruck, Dr. B. Wahl
Department of Chemistry and Food Chemistry,
Dresden University of Technology,
D-01062 Dresden, Germany
Fax: +49-351-463-37287
E-mail: michael.ruck@chemie.tu-dresden.de

Introduction

Among the post transition metal elements, numerous ligand-free polyhedral clusters typically polyanions of elements of groups 14 or 15 and polycations of elements of groups 15 or 16 - have been synthesized so far [1]. The formation of deltahedral metal clusters bears great resemblance to the cluster shapes found for boranes and hydroborates. Modifications of Wade's rules, which were originally developed for hydroboranes [2] help to understand the chemical bonding in these clusters [3]. Replacement of n B-H-exo bonds by n lone-pairs also results in $2 n+m$ skeletal electrons (SE), i.e. the optimal electron count for n-atomic closo ($m=$ 2), nido $(m=4)$, or arachno polyhedra $(m=6)$.

In fact these rules proved to be helpful in the interpretation of homoatomic bismuth polycations, where the $6 s$ electrons form the lone-pairs and only the $6 p$ electrons are used in cluster bonding. Electron count and cluster shape match for $\mathrm{Bi}_{5}{ }^{+}$(nido, 14 SE),[4] $\mathrm{Bi}_{5}{ }^{3+}$ (closo, 12 SE) [5], $\mathrm{Bi}_{6}{ }^{2+}$ (nido, 16 SE) [4, 6], $\mathrm{Bi}_{8}{ }^{2+}$ (arachno, 22 SE) [7], and $\mathrm{Bi}_{10}{ }^{4+}$ (arachno, 26 SE) [8]. Unfortunately, $\mathrm{Bi}_{9}{ }^{5+}$ seemed to be a persistent exception: For a nine-atomic cluster with 22 SE a nido cluster with the shape of a mono-capped square antiprism (symmetry $C_{4 \mathrm{v}}$) is expected. Instead, in about a dozen characterized compounds the $\mathrm{Bi}_{9}{ }^{5+}$ cluster was always found to have the conformation of a tri-capped trigonal prism [9], which is a closo polyhedron. Consequently, discussions about the suitability of the concept arouse. The compound $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}=\left(\mathrm{Bi}_{9}{ }^{5+}\right)_{2}\left[\mathrm{Sn}_{7} \mathrm{Br}_{24}{ }^{10-}\right]$ presented here is the first one featuring a $C_{4 \mathrm{v}}$ symmetric $\mathrm{Bi}_{9}{ }^{5+}$ cluster and thereby finally fulfills Wade's rules.

Experimental Section

Synthesis

Black square platelets of $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$ were synthesized by cooling stoichiometric mixtures of Bi (99.5 \%, Alfa Aesar, treated with hydrogen at $250{ }^{\circ} \mathrm{C}$ in order to remove oxygen impurities), Sn ($99.9+\%$, Chempur) and BiBr_{3} (99 \% Riedel-de Haën, sublimated three times from $220^{\circ} \mathrm{C}$ to ambient temperature) from 250 to $200^{\circ} \mathrm{C}$ within seven days. In humid air, $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$ decomposes within weeks. By-products, such as $\mathrm{Bi}_{6} \mathrm{Br}_{7}[9 \mathrm{c}]$ and the not yet published compound $\mathrm{Bi}_{37} \mathrm{Sn}_{47} \mathrm{Br}_{117}$, were also observed. The composition of a crystal, which had been previously identified by precession photographs, was checked by semi-quantitative EDX analysis on a scanning electron microscope (CamScan CS 44). The ratio $\mathrm{Bi}: \mathrm{Sn}: \mathrm{Br}$ corresponds within a maximum deviation of $4 \mathrm{At}-\%$ with the composition based on the crystal structure refinement. Traces of other elements were not detected.

X-ray Crystallography

A suitable single-crystal was selected by Buerger precession photographs (Zr-filtered Mo radiation). Intensity data were collected at $110(5) \mathrm{K}$ on an imaging plate diffractometer IPDSII (Stoe) with graphite-monochromatized $\operatorname{Mo} K_{\alpha}$ radiation. The microscopic description of the shape of the crystal was optimized on the basis of sets of equivalent reflections in the Laue class $4 / \mathrm{mmm}$ [10a]. Numerical absorption corrections were applied to the data [10b]. The structure was solved with direct methods in the polar space group 14 cm (no. 108) and refined using anisotropic displacement parameters for Bi and Br atoms [11]. The occupancy of the position Sn 1 refined to 25% and was then fixed, while anisotropic displacement parameters were introduced. For the in total fully occupied atoms Sn 2 and Sn 3 a split model was introduced. In the course of refinement the majority positions $\mathrm{Sn} 2 \mathrm{~A}, \mathrm{Sn} 2 \mathrm{~B}$, and Sn 3 A proved to have the same occupancy. Correspondingly also the minority positions $\operatorname{Sn} 2 \mathrm{C}, \mathrm{Sn} 2 \mathrm{D}$, and Sn 3 B were refined with a common occupation factor. Sn 2 atoms were refined with equal

$$
\text { Wiley- }{ }^{3}-\mathrm{vCH}
$$

isotropic, Sn 3 atoms with equal anisotropic displacement parameters. The examined crystal was an inversion twin with the domain ratio of $0.463: 0.537(9)$. Twin refinements in the maximal translationengleiche subgroups $I b a 2$ and $F m m 2$ as well as in $C c$ did not result in ordered structure models. For visualization of the structure, the program Diamond was used [12].
$\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}, M_{\mathrm{m}}=6510.31 \mathrm{~g} \mathrm{~mol}^{-1}$, tetragonal, $I 4 \mathrm{~cm}$ (no. 108), $T=110(5) \mathrm{K}, a=$ $1323.70(5) \mathrm{pm}, c=1816.86(8) \mathrm{pm}, V=3183.5(2) \cdot 10^{6} \mathrm{pm}^{3},(T=293(1) \mathrm{K}: a=1332.7(2)$ $\left.\mathrm{pm}, c=1842.9(4) \mathrm{pm}, V=3273(2) \cdot 10^{6} \mathrm{pm}^{3}\right), Z=2, \rho_{\text {calc }}=6.792 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo} K_{\alpha}\right)=67.3$ $\mathrm{mm}^{-1}, 2 \theta_{\max }=56.1^{\circ},-17 \leq h, k \leq 17,-23 \leq l \leq 23,12961$ measured reflections, 2024 unique reflections, $R_{\text {int }}=0.045, R_{\sigma}=0.022,78$ parameters, 1 restraint, extinction parameter $x=5(1)$. $10^{-5}, R_{1}\left(1976 F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)\right)=0.027, R_{1}\left(\right.$ all $\left.F_{\mathrm{o}}\right)=0.028, w R_{2}\left(\right.$ all $\left.F_{\mathrm{o}}{ }^{2}\right)=0.058$, GooF $=1.07$, residual electron density $+1.56 /-1.40 \mathrm{e} \cdot 10^{-6} \mathrm{pm}^{-3}$. Atomic parameters are listed in Table 1 , selected interatomic distances are gathered in Table 2. Further data, in the form of a CIF, have been deposited with the Fachinformationszentrum Karlsruhe, D-76344 EggensteinLeopoldshafen, Germany (E-mail address: crysdata@fiz-karlsruhe.de), as supplementary material no. CSD-420786, and can be obtained by contacting the FIZ quoting the article details and the CSD number.

Quantum Chemical Calculations

The atomic parameters of the $C_{4 \mathrm{v}}$ and the $D_{3 \mathrm{~h}}$ symmetric polycations were optimized in DFTB3LYP [13] or in MP2 calculations using the program Gaussian03 [14] along with an aug-ccpVTZ basis set [15]. The inner electrons of Bi were replaced using the core potentials ECPMDF60 [16]. The second derivative matrix of the B3LYP calculation was used in order to evaluate the nature of the stationary points. In case of $D_{3 h}$ symmetry, the negative frequencies that convert the cluster into the $C_{4 \mathrm{v}}$ conformation are observed.

Table 1. Wyckoff positions, occupancies, coordinates and (equivalent) isotropic displacement parameters of the atoms in $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$ at $110(5) \mathrm{K}$. $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalised U_{ij} tensor.

atom	W. p.	occup.	x	y	z	$U_{\text {eq }}, U_{\text {iso }}$
Bi1	$16 d$	1	$0.15370(3)$	$0.05946(3)$	$-0.08667(3)$	$272(1)$
Bi2	$16 d$	1	$0.07418(4)$	$0.16718(3)$	$0.05498(3)$	$265(1)$
Bi3	$4 a$	1	0	0	$0.16122(5)$	$265(2)$
Sn1	$8 c$	0.25	$0.2063(2)$	$0.2937(2)$	$0.2495(3)$	$232(9)$
Sn2A	$8 c$	$0.905(3)$	$0.4078(1)$	$0.0922(1)$	$0.2128(1)$	$157(4)$
Sn2B	$8 c$	$0.905(3)$	$0.3881(1)$	$0.1119(1)$	$0.2253(2)$	$157(4)$
Sn2C	$8 c$	$0.095(3)$	$0.382(3)$	$0.118(3)$	$0.257(4)$	$157(4)$
Sn2D	$8 c$	$0.095(3)$	$0.409(2)$	$0.091(2)$	$0.288(3)$	$157(4)$
Sn3A	$4 b$	$0.905(3)$	$1 / 2$	0	$0.46058(9)$	$215(4)$
Sn3B	$4 b$	$0.095(3)$	$1 / 2$	0	$0.539(2)$	$215(4)$
Br1	$8 c$	1	$0.10255(8)$	$0.39745(8)$	$0.35370(9)$	$204(3)$
Br2	$8 c$	1	$0.10986(9)$	$0.39014(9)$	$0.14478(9)$	$208(3)$
Br3	$16 d$	1	$0.18967(9)$	$0.1002(1)$	$0.25134(7)$	$302(3)$
Br4	$8 c$	1	$0.34302(8)$	$0.15698(8)$	$0.4312(1)$	$227(3)$
Br5	$8 c$	1	$0.34350(9)$	$0.15650(9)$	$0.0779(1)$	$239(3)$

Table 2. Selected interatomic distances (in pm) in $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$ at 110(5) K. Symmetry codes:
(i): x, y, z; (ii): $y,-x, z$; (iii): $-y, x, z$; (iv): $-x,-y, z$; (v): $1 / 2-y, 1 / 2-x, z$; (vi): $1-y, x, z$; (vii): $1-x$, $-y, z$; (viii): $1 / 2+x, y-1 / 2,1 / 2+z$; (ix): $1 / 2-x, 1 / 2-y, 1 / 2+z ;$ (x): $1 / 2-y, x-1 / 2,1 / 2+z$; (xi): $1 / 2+y, 1 / 2-x, 1 / 2+z$.

Results and Discussion

The Crystal Structure

The bismuth-rich bromidostannate(II) $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}=\left(\mathrm{Bi}_{9}{ }^{5+}\right)_{2}\left[\mathrm{Sn}_{7} \mathrm{Br}_{24}{ }^{10}\right]$ was crystallized from a melt of Bi, Sn and BiBr_{3}. X-ray diffraction on a single-crystal at 110 K revealed a tetragonal structure with polycations $\mathrm{Bi}_{9}{ }^{5+}$ that are separated by bromidostannate(II) groups (Figure 1). With the caps of all antiprismatic $\mathrm{Bi}_{9}{ }^{5+}$ clusters pointing in the same direction the crystal structure has a polar axis (space group $I 4 \mathrm{~cm}$). Beyond the crystallographic C_{4} symmetry, the polycation shows only marginal deviations from the point group $C_{4 \mathrm{v}}$ (equiv. $4 m m$). The observed interatomic distances $(d(\mathrm{Bi}-\mathrm{Bi})>308 \mathrm{pm})$ in the cluster agree quite well with those from the MP2 calculation (Tables 2 and 3). In a shell with $\mathrm{Bi}-\mathrm{Br}$ distances between 328 pm and $359 \mathrm{pm}, 24 \mathrm{Br}$ atoms surround each polycation (Figure 2). This cage of anions around the center of the polycation in $00 z$ (Wyckoff site $4 a$ in $I 4 \mathrm{~cm}$) exhibits the pseudosymmetry D_{4}, which corresponds to the point symmetry 422 of Wyckoff site $4 a$ in the space group I4/mcm. The proximity of the coordinates of Br 1 and Br 2 (resp. of Br 3 and Br 4) to the symmetry relation $x, y, 1 / 2-z$ can clearly be seen in Table 1 .

The Br atoms belong to the bromidostannate(II) part of the structure $(d(\mathrm{Sn}-\mathrm{Br}) \geq 256$ pm), which is subject to substantial disorder of the $\mathrm{Sn}^{\mathrm{II}}$ cations (Figure 3). This disorder seems to be caused by the pseudosymmetry: The $\operatorname{Sn} 3$ atom occupies two positions ($\mathrm{A}: \mathrm{B} \approx 10: 1$) that would be equivalent in the space group $I 4 / m c m(4 b, \overline{4} 2 m)$. In the case of an occupation of the $\operatorname{Sn} 3 \mathrm{~A}$ position, the Sn 2 A and Sn 2 B sites are favorable. The alternative is the combination of Sn 3 B with Sn 2 C and Sn 2 D . The coordinating Br anions react on the particular occupancies of the $\mathrm{Sn}^{\text {II }}$ cations by small shifts, which are included in the displacement factors. The same holds for the tetrahedrally coordinated Sn 1 cation sites, of which only one out of four is occupied (Remark: There is no analytical evidence nor chemical significance (average charge +0.5) for full occupancy by a lighter atom, e. g. Si from the silica ampoule). The not
resolved static displacements misleadingly affect unusually short $\mathrm{Sn} 1-\mathrm{Br}$ distances. The [$\left.\mathrm{Sn} 1 \mathrm{Br}_{4}\right]$-tetrahedron shares one edge and one corner with the pairs of edge-sharing ψ^{1} octahedra around Sn 2 (Figures 3 and 4). The fourth corner of the [$\left.\mathrm{Sn}_{1} \mathrm{Br}_{4}\right]$-tetrahedron forms the connection to the ψ^{2}-octahedron around $\operatorname{Sn} 3$. Taking the longer distances $(d(\mathrm{Sn}-\mathrm{Br})>360$ pm) into account, the coordination of Sn 3 is extended to [4+2], the coordination of Sn 2 to [5+2], and the previously isolated bromidostannate(II) groups appear to be linked into an open three-dimensional network.

The Issue of Cluster Shape

For $\mathrm{Sn}_{9}{ }^{4-}$, the question of nido or closo cluster has been controversially discussed for a long time [17]. Since the constitution of $\mathrm{Bi}_{9}{ }^{5+}$ is equal to $E_{9}{ }^{4-}(E=\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$, this discussion can be applied to all isoelectronic clusters. Yet for M_{9} clusters in general, and especially observed for $\mathrm{Sn}_{9}{ }^{4-}$ [18], the difference between cluster conformations with $C_{4 \mathrm{v}}$ or $D_{3 \mathrm{~h}}$ symmetry is admittedly small. The conversion from one to the other in solution takes place very fast, and even in solid state large displacement ellipsoids are observed in most cases, making a distinction between both conformers based on diffraction data difficult. This is not surprising since for $\mathrm{Sn}_{9}{ }^{4-}$ the difference in energy is less than $5 \mathrm{~kJ} / \mathrm{mol}$ [18]. Therefore Kloo et al. suggested that this question - nido or closo cluster / $C_{4 \mathrm{v}}$ or $D_{3 \mathrm{~h}}$ symmetry — is actually not up for discussion.

For nine-atomic bismuth polyhedra things are quite similar. However, all $\mathrm{Bi}_{9}{ }^{5+}$ clusters analyzed so far exhibit more or less $D_{3 h}$ symmetry. This can be exemplified regarding the parameters e (meaning edge lengths e_{1} to e_{6} of the equilateral triangles of the prism), h_{i} (heights $h_{1}=h_{2}=h_{3}$ for an ideal prism), and α_{i} (angles $\alpha_{1}=\alpha_{2}=\alpha_{3}$ for an ideal prism), see Figure 5 and literature [9c, 17] for comparison. As shown in Table 3 these are roughly fulfilled in all cases. For the family of compounds $\mathrm{Bi}\left(\mathrm{Bi}_{9}\right)\left[M X_{6}\right]_{3}(M=\mathrm{Zr}, \mathrm{Hf}, \mathrm{Nb} ; X=\mathrm{Cl}, \mathrm{Br})$
in particular, the deviation of the $C_{3 \mathrm{~h}}$ symmetric polyhedra from $D_{3 \mathrm{~h}}$ is very small [9]. Anyway, this approach does not consider the thermal movement of the cluster atoms.

Table 3. Characteristic parameters d, e, h and α (see Figure 5 for their definition) of previously characterized compounds containing the $\mathrm{Bi}_{9}{ }^{5+}$ cluster and those of the one presented here, as well as optimized parameters (MP2 calculation, aug-cc-pVTZ basis sets) of both ideal clusters in $D_{3 \mathrm{~h}}$ and $C_{4 \mathrm{v}}$.

compound	symmetry	e	$h_{1} / h_{2} / h_{3}$	$\alpha_{1} / \alpha_{2} / \alpha_{3}$
calculated $\mathrm{Bi}_{9}{ }^{5+}$	$D_{3 \mathrm{~h}}$	319 pm	373 pm	$18.3{ }^{\circ}$
$\mathrm{Bi}_{6} \mathrm{Br}_{7}[8 \mathrm{c}]$	$C_{\text {s }}$	$316(2 \times) / 332 / 326(2 \times) / 318 \mathrm{pm}$	372 (2×) / 392 pm	23.6 (2x) / 17.5 ${ }^{\circ}$
$\mathrm{Bi}_{6} \mathrm{Cl}_{7}$ [8a]	$C_{\text {s }}$	$317(2 \times) / 328 / 322(2 x) / 320 \mathrm{pm}$	371 (2x)/396 pm	$23.8(2 \times) / 16.2^{\circ}$
$\mathrm{Bi}_{14} \mathrm{Ag}_{3} \mathrm{Br}_{21}[8 \mathrm{k}]$	$C_{\text {s }}$	$326(2 \times) / 315 / 326(2 \times) / 315 \mathrm{pm}$	375 (2×)/357 pm	$18.2(2 \times) / 25.8^{\circ}$
$\mathrm{Bi}_{37} \mathrm{InBr}_{48}$ [8h]	C_{1}	314 / 328 / 327 / 314 / 329 / 328 pm	404 / 383 / 341 pm	13.6/18.2 / 29.6°
$\mathrm{Bi}_{10} \mathrm{Zr}_{3} \mathrm{Br}_{18}$ [8f]	$C_{3 \mathrm{~h}}$	325 pm	380 pm	$22.5{ }^{\circ}$
$\mathrm{Bi}_{10} \mathrm{Zr}_{3} \mathrm{Cl}_{18}[8 \mathrm{~g}]$	$C_{3 \mathrm{~h}}$	325 pm	374 pm	$22.1{ }^{\circ}$
$\mathrm{Bi}_{10} \mathrm{Hf}_{3} \mathrm{Cl}_{18}$ [8e]	$C_{3 \mathrm{~h}}$	324 pm	374 pm	$22.2{ }^{\circ}$
$\mathrm{Bi}_{10} \mathrm{Nb}_{3} \mathrm{Cl}_{18}[7 \mathrm{c}]$	$C_{3 \mathrm{~h}}$	324 pm	374 pm	$22.0{ }^{\circ}$
compound	symmetry	d_{1} / d_{2}		d_{3} / d_{4}
calculated $\mathrm{Bi}_{9}{ }^{5+}$	$C_{4 \mathrm{v}}$	447 pm		482 pm
$\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$	C_{4}	436 / 436 pm		4 / 484 pm

For a cluster with $C_{4 \mathrm{v}}$ symmetry, the diagonals d_{1} and d_{2} as well as d_{3} and d_{4} of the squares have to be equal, and each two segments must enclose 90°. Further on, ideally these squares are staggered by a rotation through 45° and the single cap is situated above the center of one square. A $D_{3 \mathrm{~h}} \rightarrow C_{4 \mathrm{v}}$ transformation is achieved by minimizing α_{1} to 0° (still leaving $\alpha_{2}=\alpha_{3}$), increasing h_{1} to obtain d_{1} (so that eventually $d_{1}=d_{2}$), and changing h_{2} and h_{3} and those e parameters in-between to produce the square where $d_{3}=d_{4}$.

In $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$ the atoms Bi1 (Wyckoff position 4a, site symmetry 4..), Bi2 and Bi 3 (both $16 d, 1$) generate the C_{4} symmetric $\mathrm{Bi}_{9}{ }^{5+}$ polycation. The displacement ellipsoids at $110(5) \mathrm{K}$ do neither suggest a marked librational movement nor hint to a conversion into the
$D_{3 \mathrm{~h}}$ conformation. As the according parameters clearly confirm (Table 3), the $\mathrm{Bi}_{9}{ }^{5+}$ cluster in $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$ almost matches point group $C_{4 \mathrm{v}}$ and thereby ideal nido conformation.

The performed quantum chemical calculations (MP2 / B3LYP) with aug-cc-pVTZ [15] basis sets and the ECP-MDF-60 [16] for $\mathrm{Bi}_{9}{ }^{5+}$ show a slightly higher energetic stability for the $C_{4 \mathrm{v}}$ symmetric cluster ($\Delta E=-3.3 /-2.7 \mathrm{~kJ} / \mathrm{mol}$). In B3LYP no imaginary frequencies were observed for $C_{4 \mathrm{v}}$ symmetry, while for $D_{3 \mathrm{~h}}$ the imaginary frequencies already indicate the conversion. These results of calculations conducted on a higher level of theory are in accordance with literature [19], but using only LANL-2DZ + PP basis sets $D_{3 \mathrm{~h}}$ seems to be stable in a MP2 calculation [20]. Anyway, all investigations confirm the low energy barrier between both conformations, and the comparatively small frequencies, which were obtained for the vibrations of the clusters, also point out that the potential energy hyper-surface is rather flat. Thus, the discussion is similar to the $\mathrm{Sn}_{9}{ }^{4-}$ case [18].

Regarding the centers of gravity of the atom positions, still there has to be a reason why in all known cases (approx.) $D_{3 \mathrm{~h}}$ symmetric $\mathrm{Bi}_{9}{ }^{5+}$ clusters are observed, the compound presented here being the only exception up to now, while for $E_{9}{ }^{4-}$ in contrast (approx.) $C_{4 \mathrm{v}}$ symmetry seems to be preferred [18]. In this regard, a closer look also has to be taken at van der Waals radii of both cluster metals as well as the packing of clusters and counter ions in the crystal structures, and especially at nature, charge and distance of coordinating atoms in the immediate vicinity of the clusters. But this is a rather delicate issue, because differences are mostly quite small and the influence of different packing or effects of charge distribution etc. can hardly be evaluated reasonably. So it can simply be stated that a tri-capped trigonal prism $\left(D_{3 \mathrm{~h}}\right)$ provides a more homogenous (spherical) contact surface whereas a mono-capped square antiprism $\left(C_{4 v}\right)$ due to the single cap offers one more outstanding part, which might be of importance here. Furthermore, in the majority of reported compounds with $E_{9}{ }^{4}$ clusters the interactions with the counter ions are weaker and more diffuse, especially when the cations are encased by cryptands.

On the side of the anionic structure part, $\mathrm{Sn}^{\mathrm{II}}$ is, compared to the halogenidometallates with $\mathrm{Bi}^{\mathrm{III}}, \mathrm{Zr}^{\mathrm{IV}}, \mathrm{Hf}^{\mathrm{IV}}$, or Nb^{V}, a weaker Lewis acid and favors smaller coordination numbers for the cations. Furthermore the lone-pair of $\mathrm{Sn}^{\mathrm{II}}$ is often found to be stereochemically active, which results in a hemispherical primary coordination (cf. Sn 2 or Sn 3). The polarizability and the flexibility of the bromidostannate(II) groups might be advantageous for the formation of $\mathrm{Bi}_{9}{ }^{5+}$ in the electronically (slightly) favorable $C_{4 \mathrm{v}}$ symmetry. Unfortunately this structural flexibility goes along with crystallographic problems [21]. In the not yet published compound $\mathrm{Bi}_{37} \mathrm{Sn}_{47} \mathrm{Br}_{117}=\left(\mathrm{Bi}_{9}{ }^{5+}\right)_{4}\left[\mathrm{BiSn}_{47} \mathrm{Br}_{117}{ }^{20-}\right]$, which also contains $C_{4 \mathrm{v}}$ symmetric $\mathrm{Bi}_{9}{ }^{5+}$ polycations (space group Pmmn, $a=3121.6(1), b=2136.1(1), c=1908.3(1) \mathrm{pm}$ at $110(5) \mathrm{K}, Z=2$) we found similar disorder of the bromidostannate(II) network.

Conclusions

With $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}=\left(\mathrm{Bi}_{9}{ }^{5+}\right)_{2}\left[\mathrm{Sn}_{7} \mathrm{Br}_{24}{ }^{10-}\right]$ the series of bismuth polycations that are stabilized by a Lewis acid has been expanded by the embedding into a matrix of halogenidostannate(II) anions. For the first time a $C_{4 \mathrm{v}}$ symmetric $\mathrm{Bi}_{9}{ }^{5+}$ polycation that is conform to the predictions of Wade's rules and to quantum chemical calculations is reported.

Acknowledgments

We are indebted to Prof. L. Kloo, KTH Stockholm, for intensive discussions, to Dr. E. Langer, TU Dresden, for the EDX measurements, and to DC A. Heerwig, TU Dresden, for experimental assistance. This work was supported by the Deutsche Forschungsgemeinschaft.

References

[1] R. B. King, P. von R. Schleyer, G. Linti, H. Schnöckel, W. Uhl, N. Wiberg, P. P. Power, I. Krossing, W. S. Scheldrick, in: Molecular Clusters of the Main Group Elements, M. Driess, H. Nöth (eds), Wiley-VCH, Weinheim 2004.
[2] a) K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1; b) D. M. P. Mingos, Acc. Chem. Res. 1984, 17, 311.
[3] M. Ruck, Angew. Chem. 2001, 113, 1222; Angew. Chem. Int. Ed. 2001, 40, 1182.
[4] a) M. Ruck, Z. Anorg. Allg. Chem. 1998, 624, 521; b) M. Ruck, S. Hampel, Polyhedron 2002, 21, 651.
[5] a) J. D. Corbett, Inorg. Chem. 1968, 7, 198; b) B. Krebs, M. Mummert, C. Brendel, J. Less-Common Met. 1986, 116, 159; c) S. Ulvenlund, K. Ståhl, L. Bengtsson-Kloo, Inorg. Chem. 1996, 35, 223; d) M. Lindsjö, A. Fischer, L. Kloo, Eur. J. Inorg. Chem. 2005, 670; e) A. N. Kuznetsov, B. A. Popovkin, K. Ståhl, M. Lindsjö, L. Kloo, Eur. J. Inorg. Chem. 2005, 4907; f) M. Ruck, F. Steden, Z. Anorg. Allg. Chem. 2007, 633, 1556.
[6] S. Hampel, M. Ruck, Z. Anorg. Allg. Chem. 2006, 632, 1150.
[7] a) R. M. Friedman, J. D. Corbett, Inorg. Chim. Acta 1973, 7, 525; b) B. Krebs, M. Hucke, C. J. Brendel, Angew. Chem. 1982, 94, 453; Angew. Chem. Int. Ed. 1982, 21, 445; c) J. Beck, T. Hilbert, Eur. J. Inorg. Chem. 2004, 2019; d) A. N. Kuznetsov, B. A. Popovkin, Z. Anorg. Allg. Chem. 2002, 628, 2179.
[8] a) M. Ruck, V. Dubenskyy, T. Söhnel, Angew. Chem. 2003, 115, 3086; Angew. Chem. Int. Ed. 2003, 42, 2978; b) M. Ruck, V. Dubenskyy, T. Söhnel, Z. Anorg. Allg. Chem. 2004, 630, 2458; c) B. Wahl, L. Kloo, M. Ruck, Angew. Chem. 2008, 120, 3996; Angew. Chem. Int. Ed. 2008, 47, 3932; d) B. Wahl, M. Ruck, Z. Anorg. Allg. Chem. 2008, 634, 2267; e) B. Wahl, M. Erbe, A. Gerisch, L. Kloo, M. Ruck, Z. Anorg. Allg. Chem. 2009, 635, 743.
[9] a) A. Hershaft, J. D. Corbett, Inorg. Chem. 1963, 2, 979; b) A. Hershaft, J. D. Corbett, J. Chem. Phys. 1962, 36, 551; c) H. von Benda, A. Simon, W. Bauhofer, Z. Anorg. Allg. Chem. 1978, 438, 53; d) J. Beck, C. J. Brendel, L. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, S. Ulvenlund, Chem. Ber. 1996, 129, 1219; e) R. M. Friedman, J. D. Corbett, Inorg. Chem. 1973, 12, 1134; f) A. N. Kuznetsov, A. V. Shevel'kov, S. I. Troyanov, B. A. Popovkin, Zh. Neorg. Khim. 1996, 41, 958; Russ. J. Inorg. Chem. 1996, 41, 920; g) A. N. Kuznetsov, A. V. Shevel'kov, B. A. Popovkin, Koord. Khim. 1998, 24, 919; Russ. J. Coord. Chem. 1998, 24, 861; h) M. Ruck, V. Dubenskyy, Z. Anorg. Allg. Chem. 2003, 629, 375; i) A. N. Kuznetsov, P. I. Naumenko, B. A. Popovkin, L. Kloo, Russ. Chem. Bull. 2003, 52, 2100; j) S. Hampel, P. Schmidt, M. Ruck, Z. Anorg. Allg. Chem. 2005, 631, 272; k) B. Wahl, M. Ruck, Z. Anorg. Allg. Chem. 2008, 634, 2873.
[10] a) X-SHAPE 1.06, Crystal Optimisation for Numerical Absorption Correction Program, Stoe \& Cie GmbH, Darmstadt 1999; b) X-RED32 1.01, Data Reduction Program, Stoe \& Cie GmbH, Darmstadt 2001.
[11] a) G. M. Sheldrick, SHELX97, Programs for crystal structure determination, Univ. of Göttingen, 1997; b) G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
[12] K. Brandenburg, Diamond 3.2, Crystal and Molecular Structure Visualization, Crystal Impact GbR, Bonn 2009.
[13] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[14] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
[15] K. A. Peterson, J. Chem. Phys. 2003, 119, 11099.
[16] B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 2000, 113, 2563.
[17] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
[18] J. Rosdahl, T. F. Fässler, L. Kloo, Eur. J. Inorg. Chem. 2005, 2888.
[19] A. N. Kuznetsov, L. Kloo, M. Lindsjö, J. Rosdahl, H. Stoll, Chem. Eur. J. 2001, 7, 2821.
[20] G. Day, R. Glaser, N. Shimomura, A. Takamuku, K. Ichikawa, Chem. Eur. J. 2000, 6, 1078.
[21] M. Ruck, Z. Kristallogr. 2000, 215, 148.

Figure 1. Crystal structure of $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$. Partially occupied positions $\mathrm{Sn} 2 \mathrm{~B}, \mathrm{Sn} 2 \mathrm{C}, \mathrm{Sn} 2 \mathrm{D}$, and Sn 3 B are omitted. Only one out of four shown tetrahedrally coordinated Sn 1 positions is occupied. The coordination polyhedra for Sn are restricted to bonds shorter than 300 pm . The ellipsoids represent 95% probability at 110 K .

Figure 2. The $C_{4 \mathrm{v}}$ symmetric $\mathrm{Bi}_{9}{ }^{5+}$ polycation in its D_{4} symmetric surrounding of 24 Br atoms. The ellipsoids represent 95% probability at 110 K .

Figure 3. Disorder in the bromidostannate(II) matrix of $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$. The most probable combination of occupancies ($\mathrm{Sn} 2 \mathrm{~A}, \mathrm{Sn} 2 \mathrm{~B}, \mathrm{Sn} 3 \mathrm{~A}$) is emphasized. $\mathrm{Sn}-\mathrm{Br}$ bonds shorter than 300 pm are drawn with solid lines; broken lines indicate distances longer than 360 pm . The ellipsoids represent 95% probability at 110 K .

Figure 4. Bromidostannate(II) matrix in the crystal structure of $\mathrm{Bi}_{18} \mathrm{Sn}_{7} \mathrm{Br}_{24}$. Partially occupied positions $\mathrm{Sn} 2 \mathrm{~B}, \mathrm{Sn} 2 \mathrm{C}, \mathrm{Sn} 2 \mathrm{D}$, and Sn 3 B are omitted. Only one out of four shown tetrahedrally coordinated Sn 1 positions is occupied. $\mathrm{Sn}-\mathrm{Br}$ bonds shorter than 300 pm are drawn with solid lines; broken lines indicate distances longer than 360 pm . The ellipsoids represent 95% probability at 110 K .

Figure 5. The $\mathrm{Bi}_{9}{ }^{5+}$ polycation in the two favored symmetries $D_{3 \mathrm{~h}}$ and $C_{4 \mathrm{v}}$ (atomic parameters taken from quantum chemical calculations). Letters d, e, h and α denote characteristic geometrical parameters (see Table 3):
$e \ldots$ edge length of the equilateral triangles of the trigonal prism.
$h_{\mathrm{i}} \ldots$ heights of the trigonal prism, with $h_{1}=h_{2}=h_{3}$.
$\alpha_{\mathrm{i}} \ldots$ dihedral angles, with $\alpha_{1}=\alpha_{2}=\alpha_{3}$. Only α_{1} is shown for the sake of clearness.
$d_{\mathrm{i}} \ldots$ diagonals of the antiprism squares, with $d_{1}=d_{2}$ and $d_{3}=d_{4}$ and each two enclosing an angle of 90°. The angle of tilt between both squares amounts to 45°, the capping atom is situated above the center of the square.

σ
-Bi
-Sn
-Br
$531 \times 562 \mathrm{~mm}(96 \times 96$ DPI)

Wiley-VCH

$531 \times 500 \mathrm{~mm}(96 \times 96$ DPI)

$C_{4 v}$

