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Abstract. The category of all modules over a reductive complex Lie algebra
is wild, and therefore it is useful to study full subcategories. For instance, Bern-
stein, Gelfand and Gelfand introduced a category of modules which provides a
natural setting for highest weight modules. In this paper, we define a family
of categories which generalizes the BGG category and we classify the simple
modules for a subfamily. As a consequence, we show that some of the obtained
categories are semisimple.

1. Introduction

The problem of understanding the restriction of a module over an algebra or a
group to a given subalgebra or subgroup is referred to as a branching problem.
Branching rules play an important part in representation theory and in physics
(e.g. Clebsch-Gordon coefficients). Of great importance to us is the special case
of dual pairs. Here one considers a Lie algebra g and a pair of Lie subalgebras
(a, b) which are mutual commutants. Then the natural question is to understand
the restriction of a (simple) g-module to the Lie algebra a ⊕ b. Such branching
rules where obtained first by R. Howe in the case of the metaplectic group and
the so-called Weil representation [13, 14]. Since then, many mathematicians have
continued Howe’s study of the Weil representation and extended it to others Lie
groups or Lie algebras (e.g. [27, 26, 18, 19]).

Even though we now know many examples, the problem of finding branching
rules is highly non trivial. It is even harder if one wants to study non highest
weight modules (Note that the Weil representation is from the infinitesimal point
of view a highest weight module). To prove some branching rules for a general
(simple) weight module, we need to impose some extra conditions. In [18], Jian-
Shu Li studies the restriction of the minimal representation of E7 to the dual pair
(A1, F4). To give a formula in this case, his first step was to use a branching
rule from E7 to E6 which is a Levi subalgebra of E7 containing the subalgebra F4

appearing in the dual pair.
Motivated by this example, we would like to study the following problem. Let g

be a reductive finite dimensional Lie algebra over C. Let l be a Levi subalgebra of
g.

Problem P(l): Can we find all the simple weight g-modules M such that the
restriction of M to l splits into a direct sum of simple highest weight l-modules?
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In this article we give a partial answer to this question (and explain why it is
only a partial answer). Our strategy is to add more conditions on the modules M
having the above property. More specifically we introduce a family of categories
taking into account the above property and some cuspidality condition (see the
definition 3.3). We then study these categories and their simple modules. In some
cases we give a complete description of the simple modules and show that the
category is semisimple.

The article is organized as follows. In section 2, we recall some facts about weight
modules and their classification. In the third section, we give the definition of our
family of categories and give some non trivial examples. In the fourth section, we
state and prove a classification result (Theorem 4.29). Finally in the last section
we prove that (some of) our categories are semisimple (Corollaries 5.6, 5.10 and
5.11).

Conventions: All the Lie algebras considered in this paper are finite dimen-
sional and defined over C. We shall denote by N = {0, 1, 2, . . .} the set of non
negative integers and by Z the set of all integers. We denote by δi,j the Kronecker
δ-symbol.

This article is a part of the author’s thesis [29]. The main results were announced
in [30]

2. Weight modules

The study of the modules over a given Lie algebra lead the mathematicians
to explore various categories. The category of all finite dimensional modules was
studied first and then it was enlarged to obtain the so-called BGG category O
which gave rise later on to the notion of weight modules. Before we state some
definitions and review the main results about these modules, some notations are
introduced.

Let g denote a reductive Lie algebra and U(g) denote its universal enveloping
algebra. Let h be a fixed Cartan subalgebra and denote by R the corresponding set
of roots. For α ∈ R, we denote by gα the root space for the root α. More generally
for S ⊂ R we denote by gS the direct sum of the root spaces for the various α ∈ S.
For S ⊂ R we denote by 〈S〉 the set of all roots which are linear combination of
elements of S. As a particular case, given a basis Φ of R, we consider θ ⊂ Φ and
the set of roots 〈θ〉. We then consider R± the set of positive (resp. negative) roots
with respect to Φ and 〈θ〉± = 〈θ〉 ∩ R±. We define the following subalgebras of g :

lθ = h ⊕ g〈θ〉, n±
θ = gR±−〈θ〉± .

The subalgebra pθ = lθ ⊕ n+
θ is called the standard parabolic subalgebra associ-

ated to θ and lθ is the standard Levi subalgebra associated to θ. The latter is a
reductive algebra. Its semisimple part is denoted by l′θ. If θ = ∅, then l∅ = h and
we simply write n+ instead of n+

∅ .
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2.1. The category of weight modules. We denote by Mod(g) the category of
all g–modules. This category is very wild and therefore we will investigate some full
subcategories of Mod(g) for which we can describe the simple modules. The first
well known subcategory of Mod(g) is the full subcategory of finite dimensional

modules Fin(g). It was studied by É. Cartan, H. Weyl, W. Killing and many
others. This category turns out to be semisimple: every finite dimensional module
splits into a direct sum of simple modules. Moreover, we can completely describe
the simple objects of this category: they are all the simple highest weight modules
with integral dominant highest weight.

We now turn to a bigger category. The category of weight modules.

Definition 2.1. A module M is a weight module if it is finitely generated, and
h–diagonalizable in the sense that

M = ⊕λ∈h∗ Mλ, where Mλ = {m ∈ M : H · m = λ(H)m, ∀ H ∈ h},

with weight spaces Mλ of finite dimension. We will denote by M(g, h) the full
subcategory of Mod(g) consisting of all weight modules.

Remark 2.2. Note that we require finite dimensional weight spaces in our defini-
tion, which is not always the case in the literature. This category also appears as
a particular case of several other categories (e.g. [24, 25] or [7, 10]).

This category has several 〈〈 good 〉〉 properties, for instance we have the following:

Proposition 2.3 (Fernando [8, thm 4.21]). The category M(g, h) is abelian, noe-
therian and artinian.

Before trying to get a better understanding of this category, we will need more
concepts that we shall review now.

Definition 2.4. Let a be any subalgebra of g. A module M is a-finite if

∀ m ∈ M, dim(U(a)m) < ∞.

In the 70′s, Bernstein, Gelfand and Gelfand enlarged the category Fin(g) to in-
clude all highest weight modules [2]. More precisely, they introduced the following
category:

Definition 2.5. The category O is the full subcategory of M(g, h) whose objects
are n+-finite.

This category is quite well understood now. The complete list of simple mod-
ules in O is known and there are also important results about projective objects,
resolutions. . . We refer the reader to [16] and the references therein.

In the 80′s, several subcategories of category O where defined and investigated
by Rocha-Caridi, the so-called parabolic versions of O. We recall here a definition.

Definition 2.6. Let p be a parabolic subalgebra of g and write p = l ⊕ n for a Levi
decomposition of p. The category Op is the full subcategory of O whose objects M
satisfy the following condition:
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As a l-module, M splits into a direct sum of simple finite dimensional modules.

The classification of simple modules in Op and results about projective objects
were obtained by Rocha-Caridi in [28]. See also [16]. Note that this is a category
in which a certain kind of restriction condition is required.

The next step to understand simple weight modules is the notion of generalised
Verma modules. We recall here some well known facts about these modules.

Let p be a parabolic subalgebra of g. Let p = l ⊕ n be a Levi decomposition
of p. Given a l–module M , one can construct a p–module structure on M by
letting n act trivially. For such a module M we define the generalised Verma
module V (p, M) := U(g)⊗U(p) M. Conversely, given any g–module V we define the
l–module V n := {v ∈ V | n · v = 0}. We then have the following:

Proposition 2.7.

(1) Let M be a weight l-module. Then V (p, M) is a weight g-module
(2) If M is a simple l–module, the module V (p, M) is indecomposable and ad-

mits a unique maximal submodule K(p, M) and a unique simple quotient
L(p, M).

(3) Assume M is a simple l–module. Then the image of 1 ⊗ M in L(p, M) is
isomorphic to M as l-modules.

(4) If V is a simple g–module such that V n 6= {0}, then V ∼= L(p, Ln).
(5) Assume M is a simple l–module. Let pr be the projection from V (p, M) onto

1 ⊗ M given by the decomposition of V (p, M) into weight spaces. Then the
module K(p, M) can be characterized as follows:

K(p, M) = {v ∈ V : ∀ u ∈ U(n), pr(u · v) = 0}.

Proof. We refer to [8, proposition 3.8] for a proof.
�

The module L(p, M) will be called the simple g–module induced from (p, M).
We refer to [6, 21] for a more detailed discussion about generalised Verma modules.

To give the classification of simple weight modules, we need one more ingredient:
the so–called cuspidal modules.

Definition 2.8. Let M be a weight module. A root α ∈ R is said to be locally
nilpotent with respect to M if any non zero X ∈ gα acts by a locally nilpotent
operator on the whole module M . It is said to be cuspidal if any non zero X ∈ gα

acts injectively on the whole module M .

We denote by RN(M) the set of locally nilpotent roots and by RI(M) the set
of cuspidal roots. We shall simply denote them by RN and RI when the module
M is clear from the context. Then we have the following:

Lemma 2.9 (Fernando, [8, lemma 2.3]). For a simple weight module M , R =
RN ⊔ RI .
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Definition 2.10. Let S ⊂ R. A weight module is called S-cuspidal if S ⊂ RI .
When S = R, it is simply called cuspidal.

Remark 2.11. If M is a simple cuspidal weight module, then all its weight spaces
have the same dimension and for all α ∈ R and any non zero X ∈ gα, X acts
bijectively on M .

Set RN
s = {α ∈ RN : −α ∈ RN }, RN

a = RN \ RN
s . We define RI

s and RI
a the

same way. Recall the following theorem:

Theorem 2.12 (Fernando [8, theorem 4.18], Futorny [9]). Let M be a simple
weight module. Then there are a parabolic subalgebra p of g with a Levi decompo-
sition p = l ⊕ n, and a simple cuspidal l-module C such that M ∼= L(p, C).

Remark 2.13. More precisely there are a basis Φ of R and a subset θ ⊂ Φ such

that 〈θ〉 = RI
s and R+ \ 〈θ〉+ ⊂ RN . Then Mn

+
θ is a simple cuspidal lθ-module and

M ∼= L(pθ, Mn+
θ ).

The theorem of Fernando reduces the classification of simple weight g–modules to
the classification of simple cuspidal weight modules for reductive Lie algebras. By
standard arguments this reduces to the classification of simple cuspidal modules for
simple Lie algebras. A first step towards this classification is given by the following
theorem:

Theorem 2.14 (Fernando [8, theorem 5.2]). Let g be a simple Lie algebra. If M
is a simple cuspidal g–module, then g is of type A or C

The classification of simple cuspidal modules was then completed in two steps. In
the first step Britten and Lemire classified all simple cuspidal modules of degree 1
(see [5]), where deg(M) = supλ∈h∗ {dim(Mλ)}. We will come back to these modules
later on as they will play an important part in our study. Then Mathieu gave the
full classification of simple cuspidal modules of finite degree by introducing the
notion of a coherent family (see [20]).

2.2. The case of sl2. In this section, we review the classification of weight modules
for g = sl2. We shall fix an sl2-triple (X−, H, X+). We therefore have the following
relations:

[H, X±] = ±2X±, [X+, X−] = H.

Recall that the degree of a weight module M is

deg(M) = sup{dim(Mλ), λ ∈ h∗}.

Proposition 2.15. Let M be a simple weight sl2-module. Then deg(M) = 1.

Proof. Recall that Ω = 1
2
H2 + H + 2X−X+ is in the center of the universal en-

veloping algebra of sl2. Therefore, M being simple, Ω acts as a scalar operator.
On the other hand, as M is a weight module, H acts on each weight space by
some constant (the weight). Therefore, on each weight space, X−X+ acts by some
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constant. From this, we conclude that U(g)0, the commutant of CH , acts by some
constant on each weight space. But, since M is simple, given two non zero vec-
tors v and w in the same weight space, there should exist some element u ∈ U(g)
sending v to w. The fact that v and w have the same weight forces u to be in the
commutant of CH . From the above we know that u acts by some constant. This
forces v and w to be proportional and therefore the corresponding weight space is
1-dimensional. This completes the proof.

�

Now we recall the construction of simple cuspidal g-modules. Let a = (a1, a2) ∈
C2. Assume that a1 and a2 are not integers. We construct then a vector space as
follows. For each k ∈ Z, we define a vector x(k). The vector space generated by
these (formal) elements is denoted by N(a). We put the following action of g on
N(a):







H · x(k) = (a1 − a2 + 2k)x(k),
X+ · x(k) = (a2 − k)x(k + 1),
X− · x(k) = (a1 + k)x(k − 1).

It is now easy to see that N(a) is a simple cuspidal g-module. It turns out that
any simple cuspidal sl2-module is of this form (see [5]).

2.3. The category of cuspidal modules. The category of all cuspidal modules
has been intensively studied since Mathieu’s classification result. We will not try
to recall all the known results here. We refer the reader to [11, 12, 23, 22] for
details.

In the last part of this article we will be interested in extension between modules.
We review now some facts about that. Given two weight g-modules M and N , one
wants to find all the weight modules V such that the sequence 0 → N → V →
M → 0 is exact. This problem can be solved by using cocycles. We recall its
definition:

Definition 2.16. Let M and N be two weight modules. A cocycle from M to N is
a linear map c : g → HomC(M, N) such that: For every m ∈ M , we have

c([X, Y ])(m) = [c(X), Y ](m) + [X, c(Y )](m),

where the bracket in the right hand side is the commutator in HomC(M, N), for
instance [c(X), Y ](m) = c(X)(Y · m) − Y · (c(X)(m)).

Given a cocyle c from M to N , one can construct a g-module structure on
V := N ⊕M as follows: For any X ∈ g, define X ·(n, m) := (X ·n+c(X)(m), X ·m).
Then it is easy to see that endowed with this structure V fits into an exact sequence
0 → N → V → M → 0. Moreover, for every exact sequence 0 → N → V → M →
0 there is a cocycle c from M to N such that V is isomorphic (as a vector space) to
N⊕M with the g-module structure given as above. Besides, such an exact sequence
splits exactly when there is a linear map φ : M → N such that c(X) = [X, φ] for
all X ∈ g. Such a cocycle is called a coboundary.
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The case when g = sl2 is particularly simple. It is given in the following:

Proposition 2.17 (Grantcharov, Serganova [12, example 3.3]). Let M and N be
simple cuspidal sl2–modules. If M 6∼= N , then every cocycle from M to N is a
coboundary. If M = N , then up to a coboundary, every cocycle c from M to N
has the following form: c(H) = 0 = c(X−) and c(X+) = b × (X−)

−1
where b ∈ C.

Remark 2.18. Note that as M is a simple cuspidal module, X− (and X+) acts
bijectively on M . Thus the operator X− has an inverse which we denote by (X−)−1.

The general case for sln is more complicated. As we will not need it, we do not
mention it here (see [12, 22]). On the other hand we will need the case of sp2n. We
recall the following:

Theorem 2.19 (Britten, Khomenko,Lemire, Mazorchuk [4, thm 1]). The category
of cuspidal sp2n-module is semisimple.

This theorem means that every cocycle between two simple cuspidal sp2n-modules
is a coboundary.

3. The category OS,θ

In all this section, g denote a reductive Lie algebra and h a fixed Cartan subal-
gebra. We also denote by R the set of roots of (g, h).

3.1. General definition. The general definition requires some subsets of R. We
first recall some basic definitions. Given a subset S of R we denote Ss its symmetric
part: Ss = S ∩ −S and Sa its antisymmetric part: Sa = S \ Ss.

Definition 3.1 (see [3]). A subset S of R is symmetric if S = −S ; it is closed if
the conditions α ∈ S, β ∈ S, α + β ∈ R imply α + β ∈ S. A parabolic subset of
R is a closed subset P such that P ∪ −P = R. A Levi subset of R is a closed and
symmetric subset of R.

Remark 3.2. Note that if P is a parabolic subset, Ps is a Levi subset. In this
case we call Ps the Levi part of P . The antisymmetric part Pa of P should also be
referred to as the unipotent part of P .

Given a Levi subset S, we denote lS := h ⊕ gS. Given a parabolic subset P , we
denote n+

P := gPa
and pP := lPs

⊕ n+
P . For any subset S of R, we denote QS the

lattice generated by S.

Definition 3.3. Let S and T be two Levi subsets of R such that QS ∩ QT = 0. Let
P be a parabolic subset containing S ∪ T and let B be a basis of T . We denote by
OP,S,T,B the full subcategory of the category of weight g-modules M such that

(1) The module M is S-cuspidal,
(2) As a lT -module, M splits into a direct sum of simple B-highest weight mod-

ules,
(3) The module M is Pa-finite.
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Remark 3.4. The condition QS ∩ QT = 0 may seem strange. In fact, if this
condition is not fulfilled then the corresponding category (defined the same way)
would only consist of the zero module.

Let T be some Levi subset of R. Obviously, any simple weight g-module having
the restriction property P(lT ) would be in such a category. It suffices to choose
S = RI

s(M), B to be the basis corresponding to the restriction property of M and
P = R. Of course, it could happen that some smaller choice for P is also possible.
But this situation is in some sense the basic one, as asserted in the following

Proposition 3.5. Let (P, S, T, B) be as in definition 3.3. Assume Pa 6= ∅. Then
every simple g-module M in OP,S,T,B is of the form L(p, N) where p = lPs

⊕ gPa

and N is a simple module in OPs,S,T,B(lPs
).

Proof. Apply proposition 2.7 to the module M and to the parabolic algebra p =
lPs

⊕ gPa
. Here the third condition in the definition 3.3 ensures that MgPa 6= {0}.

�

3.2. Particular case. Unfortunately, the general case of category OP,S,T,B does
not seem easy to study. Thus, in the sequel we would be interested in a particular
case of this general definition. For sake of clarity, we write down explicitly its
definition. Let us fix a basis Φ of R.

Definition 3.6. Let θ ⊂ S ⊂ Φ. We denote by OS,θ(g) or simply by OS,θ the full
subcategory of the category of weight g-modules M such that

(1) The module M is 〈S \ θ〉-cuspidal,
(2) As a lθ-module, M splits into a direct sum of simple highest weight modules,
(3) The module M is n+

S -finite.

In other terms, we have OS,θ = O〈S〉∪R+,〈S\θ〉,〈θ〉,θ. Of course, not every category
OP,S,T,B is of this latter form. In what follows we shall refer to the first property as
the cuspidality condition and to the second one as the restriction condition.

Note that if S = θ = ∅, then we recover the usual category O of Bernstein-
Gelfand-Gelfand. More generally, when S = θ we get a generalisation of the
category Op

S of Rocha-Caridi. Indeed, remember that category Op
S also requires

that the lS-highest weight modules have finite dimension. We shall see later on
that we could not impose such a strong condition on our category (see proposition
3.7). Finally if θ = ∅ and S = Φ then we recover the category of all cuspidal
modules.

3.3. First properties. Let us now examine the first easy properties that carry
the categories OS,θ. We have the following:

Proposition 3.7. Let θ ⊂ S ⊂ Φ. Then:

(1) The category OS,θ is abelian, noetherian and artinian.
(2) The multiplicities of the lθ–modules appearing in the decomposition of a

module M ∈ OS,θ are finite.
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(3) Assume there exists α ∈ S \ θ and β ∈ θ such that α + β ∈ R. Then the
simple lθ–modules in the decomposition of any simple module in OS,θ are of
infinite dimension.

(4) The simple modules in OS,θ(g) are of the form L(pS, N) where N is a simple
module in OS,θ(lS).

Proof. (1) Thanks to proposition 2.3, we only need to check that the cate-
gory OS,θ is stable by finite direct sums, taking submodules and quo-
tients. Everything here is obvious except the cuspidality condition for a
quotient. Therefore, let M be in OS,θ and N be a proper submodule of
M . We prove that M/N satisfies the cuspidality condition. First note
that ⊕λ (Mλ + N)/N is a weight space decomposition of M/N . Note also
that (Mλ + N)/N ⊕ Nλ = Mλ. Let α ∈ 〈S \ θ〉 and let X be a non
zero vector in gα. By the cuspidality condition for M and N , we have
dim(Nλ) = dim(X · Nλ) and dim(Mλ) = dim(X · Mλ). Therefore, we have
dim((Mλ + N)/N) = dim(X · ((Mλ + N)/N). For this to hold for any λ it
is necessary that X acts injectively on (Mλ + N)/N .

(2) This is an immediate consequence of the fact that the weight spaces are
finite dimensional.

(3) By the cuspidality condition we have α ∈ RI
s . If there were in the decom-

position of M a finite dimensional lθ-module then any root in 〈θ〉 should
be locally nilpotent. Thus we would have β ∈ RN

s . This together with the
hypothesis α + β ∈ R contradicts [1, lem 4.7].

(4) This is a particular case of proposition 3.5.
�

Remark 3.8. From (4) in the above proposition, we see that one should first study
the category OΦ,θ. However note that (4) does not imply that any simple module
induced from a simple module in some OS,θ(lS) is in the category OS,θ(g).

3.4. The modules of degree 1. So far, we have not shown that at least some new
category OS,θ is non trivial. We will do this now by exhibiting very special modules.
These are the infinite dimensional modules of degree 1. They were introduced and
classified by Benkart, Britten and Lemire in [1]. In particular such modules only
exist for Lie algebras of type A or C. Let us review their construction.

3.4.1. Modules over the Weyl algebra. Let N be a positive integer. Recall that
the Weyl algebra WN is the associative algebra generated by the 2N generators
{qi, pi, 1 ≤ i ≤ N} submitted to the following relations:

[qi, qj] = 0 = [pi, pj], [pi, qj] = δi,j · 1,

where the bracket is the usual commutator for associative algebras.
Define a vector space as follows. Fix some a ∈ C

N . Let

K = {k ∈ Z
N : if ai ∈ Z, then ai + ki < 0 ⇐⇒ ai < 0}.
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Now our vector space W (a) is the C-vector space whose basis is indexed by K. For
each k ∈ K, we fix a vector basis x(k). Define an action of WN by the following
recipe:

qi · x(k) =

{

(ai + ki + 1)x(k + ǫi) if ai ∈ Z<0

x(k + ǫi) otherwise
,

pi · x(k) =

{

x(k − ǫi) if ai ∈ Z<0

(ai + ki)x(k − ǫi) otherwise

Then we have:

Theorem 3.9 (Benkart,Britten,Lemire [1, thm 2.9]). Let a ∈ C
N . Then W (a) is

a simple WN -module.

3.4.2. Type A case. In this section only, g denotes a simple Lie algebra of type A.
We shall construct weight g-modules of degree 1 by using the previous construction.
We realize the Lie algebra g inside some WN . Let N − 1 be the rank of g. Then,
we can embed g into WN as follows: to an elementary matrix Ei,j we associate the
element qipj of WN . This is easily seen to define an embedding of g into WN . Let
K0 = {k ∈ K :

∑N
i=1 ki = 0}. Let N(a) be the subspace of W (a) whose basis is

indexed by K0. Then we have the following:

Theorem 3.10 (Benkart,Britten,Lemire [1, thm 5.8]).

(1) The vector subspace N(a) of W (a) is a simple weight g–module of degree 1.
Moreover, N(a) is cuspidal if and only if ai 6∈ Z for all i ∈ {1, . . . , N}.

(2) Conversely if M is an infinite dimensional simple weight g–module of degree
1, then there exist a = (a1, . . . , aN) ∈ CN , and two integers j and l such
that

• ai = −1 for i = 1, . . . , j − 1,
• ai ∈ C \ Z for i = j, . . . , l,
• ai = 0 for i = l + 1, . . . , N,
• and the module M is isomorphic to N(a).

Denote be Φ the standard basis for the root system of g with respect to the stan-
dard Cartan subalgebra h. Let a ∈ CN such that a = (−1, . . . , −1

︸ ︷︷ ︸

j

, aj+1, . . . , am, 0, . . . , 0
︸ ︷︷ ︸

l

)

where l + m = N and m > j + 1. Let θa ⊂ Φ be given by the non-circled simple
roots of the following Dynkin diagram:

u u u ui i
ej ej+1 em−1 em

︸ ︷︷ ︸

Aj

︸ ︷︷ ︸

Am−1−j

︸ ︷︷ ︸

Al
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For the commodity of the reader, we explicit the action of h and of X±ei
on

N(a):






Hei
· x(k) = (ki − ki+1)x(k), i = 1, . . . , j − 1

Hej
· x(k) = (−1 − aj+1 + kj − kj+1)x(k)

Hei
· x(k) = (ai − ai+1 + ki − ki+1)x(k), i = j + 1, . . . , m − 1

Hem
· x(k) = (am + km − km+1)x(k)

Hei
· x(k) = (ki − ki+1)x(k), i ≥ m + 1

Xei
· x(k) = kix(k − ǫi+1 + ǫi), i = 1, . . . , j − 1

Xej
· x(k) = kj(aj+1 + kj+1)x(k − ǫj+1 + ǫj)

Xei
· x(k) = (ai+1 + ki+1)x(k − ǫi+1 + ǫi), i = j + 1, . . . , m − 1

Xei
· x(k) = ki+1x(k − ǫi+1 + ǫi), i ≥ m

X−ei
· x(k) = ki+1x(k − ǫi + ǫi+1), i = 1, . . . j − 1

X−ej
· x(k) = x(k − ǫj + ǫj+1)

X−ei
· x(k) = (ai + ki)x(k − ǫi + ǫi+1), i = j + 1, . . . , m

X−ei
· x(k) = kix(k − ǫi + ǫi+1), i ≥ m + 1

Now we will prove the following:

Theorem 3.11. The module N(a) is a simple object of the category OΦ,θa
. More-

over, the highest weight vectors for the action of lθa
are the linear combination of

the x(0, . . . , 0, k1, . . . , km, 0, . . . , 0) where ki ∈ Z are such that
∑

i ki = 0.

Proof. From the explicit action of g, we easily derive that N(a) is a weight g-
module which is 〈Φ \ θa〉-cuspidal. Using once again the action of g, one checks
that the vectors x(0, . . . , 0, k1, . . . , km, 0, . . . , 0) are lθa

-highest weight vectors and
that every lθa

-highest weight vector is a linear combination of these vectors.
Then we show that each of these vectors generate a simple lθa

-module. Indeed,
we already know that it generates an indecomposable module (since it is a high-
est weight module). To show it is simple we only have to show that it does not
contain any other highest weight vector (since a submodule of a highest weight
module is again a highest weight module). As we already know the complete list
of highest weight vectors in N(a) we just have to check that the lθa

-module gen-
erated by x(0, . . . , 0, k1, . . . , km, 0, . . . , 0) cannot contain the lθa

-module generated
by x(0, . . . , 0, k′

1, . . . , k′
m, 0, . . . , 0) for (k1, . . . , km) 6= (k′

1, . . . , k′
m). Assume it is not

the case. Then the action of the center of lθa
should be the same on these two

vectors and the l′θa
-weight of x(0, . . . , 0, k′

1, . . . , k′
m, 0, . . . , 0) should be smaller than

that of x(0, . . . , 0, k1, . . . , km, 0, . . . , 0). These two conditions can only be fulfilled
in case (k1, . . . , km) = (k′

1, . . . , k′
m). This contradiction completes the proof.

�

Remark 3.12. In fact the module N(a) is in general an object of several categories
OS,θ.

3.4.3. Type C case. In this section only, g denotes a simple Lie algebra of type C.
We shall construct weight g-modules of degree 1 in the same way as above. So we
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need to realize the Lie algebra g inside some WN . Let N be the rank of g. Then,
spanC{qipj , pipj, qiqj , 1 ≤ i, j ≤ N} is a subalgebra of WN isomorphic to g. More

specifically, the Cartan subalgebra is given by span
(

{qipi − qi+1pi+1, i = 1, . . . , n − 1} ∪ {qnpn + 1
2
}

the n−1 weight vectors corresponding to the short simple roots are given by qipi+1

with i = 1, . . . , n−1, and the weight vector corresponding to the long simple root is
given by 1

2
q2

n. Note that this is not the same kind of embedding as for Lie algebras
of type A.

Let K0̄ = {k ∈ K :
∑N

i=1 ki ∈ 2Z}. Let M(a) be the subspace of W (a) whose
basis is indexed by K0̄.Then we have the following:

Theorem 3.13 (Benkart,Britten,Lemire [1, thm 5.21]).

(1) The vector subspace M(a) of W (a) is a simple weight g–module of degree
1. Moreover, M(a) is cuspidal if and only if ai 6∈ Z for all i ∈ {1, . . . , N}.

(2) Conversely if M is an infinite dimensional simple weight g–module of de-
gree 1, then there exist two integers l and m with l + m = N and a =
(−1, . . . , −1
︸ ︷︷ ︸

l

, a1, . . . , am) such that M ∼= M(a). Moreover, if m > 1 then

a1, . . . , am are non integer complex numbers, and if m = 1 then a1 is either
a non integer complex numbers or equals to −1 or −2.

Denote be Φ the standard basis for the root system of g with respect to the
standard Cartan subalgebra h. Let a ∈ CN such that a = (−1, . . . , −1

︸ ︷︷ ︸

l

, al+1, . . . , an)

where 0 < l < n. Let θa ⊂ Φ be given by the non-circled simple roots of one of the
following Dynkin diagram (according to l = n − 1 or l < n − 1):

u u u u ui
e1 e2 en

<
︸ ︷︷ ︸

An−1

︸︷︷︸

A1

u u u u ui i i i
el el+1 en

<
︸ ︷︷ ︸

Al

︸ ︷︷ ︸

Cn−l
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For the commodity of the reader, we explicit the action of h and of X±ei
on

M(a) for both cases:






Hei
· x(k) = (ki − ki+1)x(k), i = 1, . . . , l − 1

Hel
· x(k) = (−1 − al+1 + kl − kl+1)x(k)

Hei
· x(k) = (ai − ai+1 + ki − ki+1)x(k), i = l + 1, . . . , n − 1

Hen
· x(k) = (an + kn + 1

2
)x(k)

Xei
· x(k) = kix(k − ǫi+1 + ǫi), i = 1, . . . , l − 1

Xel
· x(k) = kl(al+1 + kl+1)x(k − ǫl+1 + ǫl)

Xei
· x(k) = (ai+1 + ki+1)x(k − ǫi+1 + ǫi), i = l + 1, . . . , n − 1

Xen
· x(k) = 1

2
x(k + 2ǫn)

X−ei
· x(k) = ki+1x(k − ǫi + ǫi+1), i = 1, . . . l − 1

X−el
· x(k) = x(k − ǫl + ǫl+1)

X−ei
· x(k) = (ai + ki)x(k − ǫi + ǫi+1), i = l + 1, . . . , n − 1

X−en
· x(k) = −1

2
(an + kn)(an + kn − 1)x(k − 2ǫn)

Now we claim the following:

Theorem 3.14. The module M(a) is a simple object of the category OΦ,θa
. More-

over, the highest weight vectors for the action of lθa
are the linear combinations of

the x(0, . . . , 0, k1, . . . , km) where ki ∈ Z are such that
∑

i ki ∈ 2Z.

Proof. The proof goes along the same line as the proof of theorem 3.11.
�

Remark 3.15. Here again, the module M(a) is in general on object of several
categories OS,θ.

3.4.4. Degree 1 modules and cuspidality. We shall now give one more property for
the modules N(a) and M(a). We continue with the notations above. Note first
that the action of lΦ\θa

stabilizes the vector space consisting of all the lθa
-highest

weight vectors. Thus this vector space has a structure of lΦ\θa
–module, which is

cuspidal and one can also show it is simple by using the explicit action of lΦ\θa
. In

fact, we do better:

Proposition 3.16. The modules N(a) and M(a) splits into a direct sum of simple
cuspidal lΦ\θa

-modules.

Proof. Let us prove the proposition for N(a). From theorem 3.11 we already know
that the action of lΦ\θa

on N(a) is cuspidal. Let x(k) ∈ N(a). Consider the lΦ\θa
–

module V (k) generated by x(k). Let X ∈ lΦ\θa
be a weight vector of weight α.

Then X · x(k) is again a weight vector in V (k) which is non zero since the action
of X is cuspidal. On the other hand, if Y ∈ lΦ\θa

is a vector of weight −α, then
Y · (X · x(k)) is a non zero vector (since the action of Y is injective) having the
same weight as x(k). As N(a) is a degree 1 module, Y · (X · x(k)) should then be
a non zero scalar multiple of x(k). This proves that V (k) is simple. But N(a) is
generated as a vector space by the various x(k). Thus the proposition is proved.
The proof is of course the same for M(a).
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�

4. Classification of the simple modules in OΦ,θ

In this part, we assume that g is a simple Lie algebra. We fix a Cartan
subalgebra h and denote by R the corresponding root system. We also fix a basis Φ
of simple roots of R. The aim of this section is the study of the various categories
OΦ,θ where θ ⊂ Φ. Note that if θ = Φ, then this category reduces to the semi-simple
category whose objects are the direct sum of simple highest weight g-modules. On
the other hand, if θ = ∅, then we get the category of cuspidal modules. Therefore,
in what follows we shall always assume that ∅ 6= θ 6= Φ.

Let L be a simple module in OΦ,θ. Then using Fernando’s theorem 2.12, we see
that L ∼= L(pΦ\θ, C) where C is a simple cuspidal lΦ\θ-module. Thus to understand
the simple module in OΦ,θ it suffices to know which of the above modules L(pΦ\θ, C)
satisfy the restriction condition of the category OΦ,θ. In the sequel, we shall write p

instead of pΦ\θ, l instead of lΦ\θ, n instead of n+
Φ\θ, and L(C) instead of L(pΦ\θ, C).

We shall also need to consider the generalized Verma module V (C) := V (pΦ\θ, C).
We shall denote by p : V (C) → L(C) the natural projection and by K(C) the
kernel of this projection.

Before going further, let us state the main results we are going to prove. As we
already mention, we want to find the conditions that the l-module C must fulfill
in order that L(C) be in category OΦ,θ, that is in order that L(C) satisfies the
restriction condition. We shall prove the following results:

Theorem 4.1. Let L(C) be a simple module in OΦ,θ. Then C is a simple cuspidal
l-module of degree 1.

Theorem 4.2. Let g be a simple Lie algebra not of type C. Assume L(C) is a
simple module in OΦ,θ. Then the semisimple part of the algebra l is a sum of ideals
of type A.

Theorem 4.3. Let L(C) be a simple module in OΦ,θ. Then the semisimple part
of the algebra l is simple of type A or C.

Theorem 4.4. Let g be a simple Lie algebra. Let θ ⊂ Φ with θ 6= Φ and θ 6= ∅.
Assume the pair (g, Φ \ θ) does not belong to table 2.Then we have:

(1) There exists a non trivial module in OΦ,θ if and only if g is isomorphic
to An and l′Φ\θ to Am with m < n or if g is isomorphic to Cn and l′Φ\θ is
isomorphic to either the subalgebra sl2 generated by the unique long simple
root or to Ck.

(2) For these pairs (Φ, θ), the simple modules in OΦ,θ are modules of degree
1 except when g is of type An for n > 2 and l′Φ\θ is isomorphic to the
sl2-algebra generated by one of the extreme simple roots.

4.1. Proof of Theorems A, B, and C.
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4.1.1. Proof of Theorem A. We now proceed to the proof of theorem A. This will
require several lemmas. First of all, recall some facts about the action of g on V (C).
If X ∈ l, then X ·(1⊗v) = 1⊗(X ·v) for any v ∈ C. If X ∈ n+ then X ·(1⊗v) = 0
for any v ∈ C. More generally, for X ∈ n+, we have X · (w ⊗ v) = (ad(X)(w)) ⊗ v
for any v ∈ C and any w ∈ U(g). Finally remark that l+θ ⊂ n+. We will use these
facts throughout this part without any further comments.

Lemma 4.5. Let L(C) be a simple module in OΦ,θ. Let v ∈ C be a weight vector.
Then the vector p(1⊗v) ∈ L(C) is a non zero weight vector and generates a simple
highest weight lθ–module.

Proof. According to proposition 2.7, p is an isomorphism from 1⊗C onto its image.
Thus, p(1 ⊗ v) 6= 0. This vector is obviously a weight vector. Moreover, we have
l+θ ⊂ n+. Therefore, the lθ–module generated by p(1 ⊗ v) in L(C) is a highest
weight module. As such, it is indecomposable. On the other hand, the lθ–module
L(C) is semisimple by the restriction condition of the category OΦ,θ. So the lθ–
module generated by p(1 ⊗ v) should be semisimple too. But we have seen that it
is indecomposable. Hence it must be simple, as asserted.

�

Lemma 4.6. Let L(C) be a simple module in OΦ,θ. Let α ∈ 〈Φ \ θ〉+. Let β =
(β1, . . . , βi) ∈ (〈θ〉+)i such that α + β1 + · · · + βk ∈ R for any k ≤ i. Let v ∈ C be
a weight vector. Then p(X−(α+β1+···+βi) ⊗ v) 6= 0 and we have:

p(X−(α+β1+···+βi) ⊗ v) ∈ U(l−θ )−(β1+···+βi) · p(1 ⊗ X−αv).

In particular, if i = 1 and β1 is a simple root, then there exists η(v) ∈ C non zero
such that

p(X−α−β1 ⊗ v) = η(v)X−β1 · p(1 ⊗ X−αv).

Proof. Set w := Xβ1 · · · Xβi
∈ U(l+θ ). The adjoint action of w on X−(α+β1+···+βi)

gives a non zero multiple of X−α (we can of course express explicitly this multiple by
means of structure constants). Thus the action of w on X−(α+β1+···+βi) ⊗ v ∈ V (C)
gives a non zero multiple of 1 ⊗ X−αv.

Now the cuspidality condition for −α ∈ 〈Φ \ θ〉 ensures that X−αv 6= 0. Using
proposition 2.7, this implies that p(X−(α+β1+···+βi) ⊗ v) 6= 0. On the other hand,
we have seen that w · p(X−(α+β1+···+βi) ⊗ v) is a non zero multiple of p(1 ⊗ X−αv).
According to lemma 4.5, p(1⊗X−αv) generates a simple highest weight lθ–module.
Now the restriction condition for L(C) implies that U(lθ) · p(X−(α+β1+···+βi) ⊗ v)
is semisimple. As it is generated by one element and should contain the simple
module U(lθ)p(1 ⊗ X−αv), then it as to be simple and equal to this latter. By
comparing the weights we deduce from this fact that

p(X−(α+β1+···+βi) ⊗ v) ∈ U(l−θ )−(β1+···+βi) · p(1 ⊗ X−αv).

If i = 1 and β1 is a simple root, then U(l−θ )−β1 = CX−β1. This completes the proof
of the lemma.

�
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Lemma 4.7. Let L(C) be a simple module in OΦ,θ. Let α ∈ 〈Φ \ θ〉+ be such
that there exists β ∈ θ with α + β ∈ R. Let v ∈ C be a weight vector. Then
XαX−αv ∈ Cv.

Proof. Consider u := X−α−β ⊗ v ∈ V (C). From the previous lemma applied to α
and β = β, there is a non zero complex number η such that

p(u) =ηp(X−β ⊗ X−αv).(1)

Apply then Xα+β ∈ n+ to equation (1). We get:

p(Hα+β ⊗ v) =ηp([Xα+β, X−β] ⊗ X−αv).

Let λ ∈ h∗ denote the weight of v. Let c′ denote the non zero structure constant
such that [Xα+β, X−β] = c′Xα ∈ l. Then the above equation becomes:

λ(Hα+β)p(1 ⊗ v) =ηc′p(1 ⊗ XαX−αv).

Since η and c′ are non zero, we get

p(1 ⊗ (κv) − 1 ⊗ (XαX−αv)) = 0,

with κ =
λ(Hα+β)

ηc′ . As p is an isomorphism from 1 ⊗ C onto C, we deduce that

1 ⊗ (κv) − 1 ⊗ (XαX−αv) = 0

and therefore that
κv − XαX−αv = 0.

Hence XαX−αv = κv ∈ Cv as asserted.
�

Lemma 4.8. Let N be a weight g–module. Let α, γ ∈ R be such that

(1) α + γ ∈ R and α − γ 6∈ R.
(2) XαX−αv ∈ Cv and XγX−γv ∈ Cv, for any weight vector v ∈ N .

Then Xα+γX−α−γv ∈ Cv, for any weight vector v ∈ N .

Proof. There are two non zero structure constants c and d such that cXα+γ =
[Xα, Xγ] and dX−α−γ = [X−α, X−γ]. Thus, in the universal enveloping algebra we
get:

cdXα+γX−α−γ = (XαXγ − XγXα)(X−αX−γ − X−γX−α).

Let us develop this expression. Since α − γ 6∈ R by our hypothesis, the vectors Xα

and X−γ commute as well as X−α and Xγ. Thus, we obtain

cdXα+γX−α−γ =XαX−αXγX−γ − XαXγX−γX−α

− XγXαX−αX−γ + XγX−γXαX−α.

Let us apply this expression to the weight vector v. We find:

cdXα+γX−α−γ · v =(XαX−α)(XγX−γ · v) − Xα(XγX−γ)(X−α · v)

− Xγ(XαX−α)(X−γ · v) + (XγX−γ)(XαX−α · v).



RESTRICTION AND CATEGORY O 17

Thanks to our second hypothesis we must have

XαX−α(X−γv) ∈ CX−γv and XγX−γ(X−αv) ∈ CX−αv.

From this, we deduce the lemma.
�

Lemma 4.9. Let N be a weight g–module. Let α, γ ∈ R be such that

(1) α + γ ∈ R, 2α + γ ∈ R and α − γ 6∈ R.
(2) XαX−αv ∈ Cv and XγX−γv ∈ Cv, for any weight vector v ∈ N .

Then X2α+γX−2α−γv ∈ Cv, for any weight vector v ∈ N .

Proof. There is a non zero structure constant c such that cX2α+γ = [Xα, [Xα, Xγ]].
The proof is now analogous to the previous one.

�

Lemma 4.10. Let N be a weight g–module. Let α, γ ∈ R be such that

(1) α + γ ∈ R, 2α + γ ∈ R, 3α + γ ∈ R and α − γ 6∈ R.
(2) XαX−αv ∈ Cv and XγX−γv ∈ Cv, for any weight vector v ∈ N .

Then X3α+γX−3α−γv ∈ Cv, for any weight vector v ∈ N .

Proof. There is a non zero structure constant c such that cX3α+γ = [Xα, [Xα, [Xα, Xγ]]].
The proof is now analogous to the previous one.

�

Lemma 4.11. Let N be a simple weight g–module. Assume that for any α ∈ R
and any weight vector v ∈ N , we have XαX−αv ∈ Cv. Then N is a module of
degree 1.

Proof. Let v ∈ N be a weight vector. We shall prove that U(g)0v ⊂ Cv (where
U(g)0 is the commutant of h in U(g)). Since v is a weight vector we have by
definition U(h)v ⊂ Cv. But we know that the algebra U(g)0 is generated by U(h)
and some monomials of the form u = X1 · · · Xk with k ∈ N and Xi ∈ g±β for
some simple root β ∈ R. Such a monomial belongs to U(g)0 if and only if the
multiplicity of each simple root β in u is equal to that of −β. Note in particular
that the integer k should then be even.

Let us show that u · v ∈ Cv by induction on k. For k = 0, we have u = 1 and so
u · v = v. For k = 2, we have either u = XβX−β or u = X−βXβ for some simple
root β. In the first case, we have u · v ∈ Cv by our hypothesis. In the second case,
we notice that u = XβX−β − Hβ. Thus we also get here that u · v ∈ Cv.

Assume then that u′ · v ∈ Cv for any monomial u′ of degree less than k and any
weight vector v. Let u = X1 · · · Xk be a monomial of degree k. Note that for any
i, Xi · · · Xk · v is again a weight vector. Therefore, if u contains a submonomial
Xj · · · Xi−1 belonging to U(g)0 then our induction hypothesis implies that

X1 · · · Xj−1(Xj · · · Xi−1)(Xi · · · Xk · v) ∈ CX1 · · · Xj−1(Xi · · · Xk · v).
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Since u ∈ U(g)0 then X1 · · · Xj−1Xi · · · Xk ∈ U(g)0 and we can apply once again
our induction hypothesis to deduce that u · v ∈ Cv.

Thus it suffices to show that u does contain a submonomial belonging to U(g)0.
Assume it is not the case. Without lake of generality we can suppose that X1 ∈ g+β

for some simple root β. Let i1 be the first integer greater than 1 such that Xi1

belongs to a root space associated to a simple root. For any integer 1 < j < i1,
the vector Xj commutes with Xi1 except if the weight of Xj is the opposite of that
of Xi1 . But if such a vector occurs then we would have a submonomial (of degree
2) of u belonging to U(g)0 contrary to our assumption. Thus we can suppose that
i1 = 2.

We then look at i2, the first integer greater than 2 such that Xi2 belongs to a
root space associated to a simple root. The same reasoning shows that we can
suppose that i2 = 3. From this kind of reasoning we deduce that we can suppose
that the first k/2 vectors belong to root spaces associated to simple roots. Let β
be the simple root such that Xk/2 ∈ gβ . Necessarily, the last k/2 vectors belong to
root spaces associated with negative roots. Moreover, among these vectors there
is at least one belonging to g−β. Let i be the smallest integer such that Xi ∈ g−β.
Then for any k/2 < j < i, Xj commutes with Xk/2. Therefore we can find in
u a submonomial, Xk/2Xi, belonging to U(g)0, contrary to our assumption. This
proves that u always contain a submonomial belonging to U(g)0. Hence we have
shown that u · v ∈ Cv.

So we have U(g)0v ⊂ Cv. Lemire’s correspondence [17] gives then the lemma.
�

Proof. (theorem 4.1) Thanks to lemma 4.11, it suffices to prove that for any α ∈
〈Φ \ θ〉 and any weight vector v ∈ C, we haveXαX−αv ∈ Cv. Since XαX−α −
X−αXα ∈ h for any α, it suffices to prove it only for positive α.

Let us fix some weight vector v ∈ C. Let α ∈ 〈Φ\θ〉+. If there is β ∈ θ such that
α + β ∈ R, then lemma 4.7 applied to β and α gives XαX−αv ∈ Cv. Otherwise,
let α′ ∈ 〈Φ \ θ〉+ be such that

• α + α′ ∈ R and α − α′ 6∈ R,
• ∃ β ∈ θ, β + α′ ∈ R and β + α′ + α ∈ R.

Such a root α′ does exist since the sets Φ \ θ and θ form a partition of the Dynkin
diagram of (g, h) which is connected. Lemma 4.7 applied to β and α′ on one hand
and to β and α′ + α on the other hand gives Xα′X−α′v ∈ Cv and Xα+α′X−α−α′v ∈
Cv.

Now if 2α′ + α 6∈ R, lemma 4.8 applied to −α′ and α′ + α gives XαX−αv ∈ Cv.
If 2α′ +α ∈ R and 3α′ +α 6∈ R, then notice that β +2α′ +α ∈ R. So we can apply
lemma 4.7 to β and 2α′ + α to get X2α′+αX−(2α′+α)v ∈ Cv and then lemma 4.9 to
the roots −α′ and 2α′ +α to obtain XαX−αv ∈ C. If 2α′ +α ∈ R and 3α′ +α ∈ R,
then β + 2α′ + α ∈ R and β + 3α′ + α ∈ R. Therefore we apply lemma 4.7 to β
and 2α′ + α ∈ R and to β and 3α′ + α ∈ R to get X2α′+αX−(2α′+α)v ∈ Cv and
X3α′+αX−(3α′+α)v ∈ Cv. Now 4α′ + α 6∈ R (see for instance [15, table 1 p.45]).
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Thus lemma 4.10 applied to −α′ and 3α′ + α implies XαX−αv ∈ Cv. Hence we
show that we always have XαX−αv ∈ Cv. The theorem is thus proved.

�

4.1.2. Proof of theorem B. We now proceed to the proof of theorem B:

Theorem 4.12. Assume g is not of type C. Let L(C) be a simple module in OΦ,θ,
then the semisimple part of the algebra l is a sum of ideals of type A.

Proof. Thanks to theorem 2.14, it suffices to show that l′ cannot have an ideal of
type C. If l′ does contain an ideal of type C then g is of type Bn (for n ≥ 3) or F4

and the Dynkin diagram of g contains the following piece:

u u ui i
β α2 α1

>

Let then v ∈ C be a weight vector. Consider u := p(X−α2−β ⊗ v) ∈ L(C). As β
is a simple root, lemma 4.6 implies that there is a non zero complex number η(v)
such that u = η(v)p(X−β ⊗ X−α2v). Apply the vector Xβ+α2+2α1 to this equality.
We get:

p([Xβ+α2+2α1 , X−α2−β] ⊗ v) =η(v) × p([Xβ+α2+2α1 , X−β] ⊗ X−α2v).

But [Xβ+α2+2α1 , X−α2−β] = 0. Moreover, there exists a non zero structure constant
c such that [Xβ+α2+2α1 , X−β] = cXα2+2α1 ∈ l. Therefore:

0 =η(v)cp(1 ⊗ Xα2+2α1X−α2v).

Now the cuspidality condition for L(C) implies that Xα2+2α1X−α2v 6= 0 and thus
p(1 ⊗ Xα2+2α1X−α2v) 6= 0. This contradicts η 6= 0 and the proof is completed.

�

4.1.3. Proof of theorem C. Now we turn to the proof of theorem C:

Theorem 4.13. Let L(C) be a simple module in OΦ,θ. Then the semisimple part
of the algebra l is simple, of type A or C.

Proof. Assume this is not the case. For simplicity, we suppose then that l′ is a sum
of two simple ideals of type A or C. We shall denote these ideals by l1 and l2. Set
Si for the root basis of (li, h ∩ li) deduced from Φ \ θ.

Let v ∈ C be a weight vector. Let α ∈ S1, α′ ∈ S2 and β1, . . . , βk ∈ θ such that
α+β1 + · · ·+βk +α′ ∈ R. We will suppose that the simple roots βi are all distinct.
Consider u := X−(α+β1+···βk) ⊗ v ∈ V (C). Lemma 4.6 implies that p(u) 6= 0 and
that

p(u) ∈ U(l−θ )−(β1+···+βk)p(1 ⊗ X−αv).

But the adjoint action of Xα+β1+···+βk+α′ on U(l−θ )−(β1+···+βk) is trivial (since it is
trivial on every vector of the form X−(βi+···+βj) for 1 ≤ i ≤ j ≤ k). Thus the action
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of Xα+β1+···+βk+α′ on p(u) must be trivial too. This action is given by:

Xα+β1+···+βk+α′ · p(u) =p([Xα+β1+···+βk+α′ , X−(α+β1+···βk)] ⊗ v).

There is a non zero structure constant c such that

[Xα+β1+···+βk+α′ , X−(α+β1+···βk)] = cXα′ ∈ l.

We get then

Xα+β1+···+βk+α′ · p(u) =cp(1 ⊗ Xα′v).

The cuspidality condition for L(C) ensures that Xα′v 6= 0 and so p(1 ⊗ Xα′v) 6= 0.
This is a contradiction with Xα+β1+···+βk+α′ · p(u) = 0.

�

4.1.4. A first reduction. We end this section by showing that for some (Φ, θ) the
simple module L(C) cannot be in OΦ,θ. This will use lemma 4.6 and the possibility
of considering large positive roots.

Type Φ \ θ
Bn (n > 3) {ei}, i 6= 1

Bn {ei, . . . , ei+k}, i + k < n, i ≥ 1, k > 1
Cn {ei}, i < n
Cn {ei, . . . , ei+k}, i + k < n, k > 1
F4 {ei}
F4 {e1, e2} or {e3, e4}
Dn Ak, k > 1
Dn {ei}, i 6∈ {1, n − 1, n}
E Ak, except {e1} or {e6} for E6, and {e7} for E7

G2 {e1} or {e2}

Table 1. A first reduction

Theorem 4.14. Let (Φ, θ) be in table 1. Let L(C) be a simple module. Then L(C)
is not in category OΦ,θ. Consequently the category OΦ,θ is trivial.

Proof. Assume on the contrary that L(C) is in OΦ,θ.

• Suppose we can find in the Dynkin diagram of g the following piece:

u ui
β1 α

>

Let v be a weight vector in C. Apply lemma 4.6 to α and β = (β1).
Since β1 is a simple root, there is a non zero complex number η(v) such
that u = η(v)p(X−β1 ⊗ X−αv). Apply now the vector Xβ1+2α ∈ n+ to this
equality. We get:

p([Xβ1+2α, X−α−β1] ⊗ v) =η(v)p([X2α+β1, X−β1] ⊗ X−αv).
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But [X2α+β1, X−β1] = 0. So we have p([Xβ1+2α, X−α−β1] ⊗ v) = 0. More-
over there is a non zero structure constant c such that the following holds:
[Xβ1+2α, X−α−β1] = cXα. Thus we have cp(1 ⊗ Xαv) = 0. As C is cuspidal,
the action of Xα on v is non zero. Therefore p(1 ⊗ Xαv) 6= 0. This is a
contradiction. From this reasoning the theorem is proved for the following
cases in table 1: (Bn, {en}), (Cn, {en−1, . . . , ei}) with i ≤ n − 1, (F4, {e3}),
(F4, {e3, e4}).

• Suppose we can find in the Dynkin diagram of g the following piece (with
k > 0):

u u u u ui
γ βk−1 βkα β1

>

We use the same method as above, applying lemma 4.6 to α and β =
(γ, β1 + . . . + βk, β1 + . . . + βk). Set u := p(X−γ−α−2β1−...−2βk

⊗ v). Lemma
4.6 gives then u 6= 0 and u ∈ p(U(l−θ )−γ−2(β1+···+βk) ⊗ X−αv). Let us apply
to u the vector Xγ+2α+2β1+···+2βk

∈ n+. First note that the adjoint action of
Xγ+2α+2β1+···+2βk

on U(l−θ )−γ−2(β1+···+βk) is trivial. Therefore we must have:

p([Xγ+2α+2β1+···+2βk
, X−(γ+α+2β1+···+2βk)] ⊗ v) = 0.

But now there a non zero structure constant c such that

[Xγ+2α+2β1+···+2βk
, X−(γ+α+2β1+···+2βk)] = cXα.

Thus we should have cp(1 ⊗ Xαv) = 0. The cuspidality of the module C
implies that Xαv 6= 0 and so we have p(1 ⊗ Xαv) 6= 0. This is a contradic-
tion. From this reasoning the theorem is proved for the following cases in
table 1: (Bn, {ei}) pour i < n, (F4, {e2}), (F4, {e1}).

• Suppose we can find in the Dynkin diagram of g the following piece (with
k > 0):

u u u u uii
α2 βk−1 βkα1 β1

>

We apply lemma 4.6 to the vector u = p(X−α1−2β1−...−2βk
⊗ x(b)) with

α = α1 and β = (β1 + . . . + βk, β1 + . . . + βk). We get u 6= 0 and u ∈
U(g)−2β1−...−2βk

. Apply the vector Xα2+2α1+2β1+···+2βl
∈ n+ to this. We then

obtain the same contradiction as above. From this reasoning the theorem
is proved for the following cases in table 1: (Bn, {ei, . . . , ei+k}) (i + k < n)
et (F4, {e1, e2}).

• All the remaining cases are proved with the same method, by applying
lemma 4.6 to a well chosen vector. We omit the details.

�

4.2. Type A case.
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4.2.1. Case l′ = sl2 (I). We consider here the following case: g = An and Φ \ θ =
{e1} (or {en}) which corresponds to the Dynkin diagram:

u u ui
α β1 βn−1

Let L(C) be a simple module in the category OΦ,θ. In this case, l′ = A1.
Therefore the module C is of the form C = N(a1, a2) with a1 and a2 two non
integer complex numbers, and the center of l acts as scalar operators on C. Set
A = a1 + a2. For the commodity of the reader, we recall that C is generated by
vectors x(k) for k ∈ Z, and the action of l′ on x(k) is given by the following recipe:







Hα · x(b) = (a1 − a2 + 2k)x(k)
Xα · x(b) = (a2 − k)x(k + 1)

X−α · x(b) = (a1 + k)x(b − 1)

Lemma 4.15. We have p(X−β1−α ⊗x(k)) = c+a1+k
a2−k+1

p(X−β1 ⊗x(k−1)), where c = 0
or c = −1 − A.

Proof. Set u = p(X−β1−α ⊗ x(k)). As X−α · x(b) = (a1 + k)x(k − 1) and a1 6= 0,
lemma 4.6 applied to α and β = (β1)) ensures that there is a non zero complex
number η(k) such that

u = η(k)p(X−β1 ⊗ x(k − 1)).(2)

On the other hand, 2Hβ1 + Hα is in the center of l. Therefore it acts on C by
some constant. Let c(k) denotes the action of Hβ1 on x(k). Then we must have
2c(k) + (a1 − a2 + 2k) = cte. Thus we have c(k) = c + a2 + k for some constant c.
Apply Xβ1 and Xβ1+α to equation (2). We obtain the following equations:

{

p([Xβ1, X−β1−α] ⊗ x(k)) = η(k)p([Xβ1, X−β1] ⊗ x(k − 1))
p([Xβ1+α, X−β1−α] ⊗ x(k)) = η(k)p([Xβ1+α, X−β1] ⊗ x(k − 1))

Now we have the following structure constants:

[Xβ1, X−β1−α] = X−α, [Xβ1+α, X−β1] = Xα.

Hence we get:
{

(a1 + k)p(1 ⊗ x(k − 1)) = η(k)c(k − 1)p(1 ⊗ x(k − 1))
(c(k) + a1 − a2 + 2k)p(1 ⊗ x(k)) = η(k)(a2 − k + 1)p(1 ⊗ x(k))

Since p(1 ⊗ x(k − 1)) 6= 0 and p(1 ⊗ x(k)) 6= 0, we deduce that:
{

a1 + k = η(k)c(k − 1)
(c(k) + a1 − a2 + 2k) = η(k)(a2 − k + 1)

The solution of this system is:

c = 0 or c = −1 − A and η(k) =
c + a1 + k

a2 − k + 1
.

�
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The previous lemma together with theorem 3.11 allow us to state a classification
result for g = A2 :

Corollary 4.16. Assume g = A2. Let θ ⊂ Φ be such that Φ \ θ = {e1}. Then
M is a simple module in OΦ,θ if and only if M is isomorphic to some N(a′

1, a′
2, 0)

with a′
1, a′

2 ∈ C \ Z.

Proof. Let M be a simple module in OΦ,θ. As we already mentioned we have
M = L(C) for some cuspidal module C = N(a1, a2). Now, using lemma 4.15 we see
that the action of U(g)0 on the vector x(0) is the same as the action of U(g)0 on the
vector x(0, 0, 0) ∈ N(a1, a2, 0) if c = 0 or on the vector x(0) ∈ N(−1−a2, −1−a1, 0)
if c = −1−A. Therefore we conclude from Lemire’s correspondence [17] that these
modules are isomorphic. Conversely theorem 3.11 ensures that these modules are
objects in the category OΦ,θ.

�

Unfortunately, our method is rather inefficient to treat the general case, which
seems to be more complicate. As an example we treat the case of A3 in appendix
A.

4.2.2. Case l′ = sl2 (II). Here we consider the case Φ \ θ = {el}, with 1 < l < n.
Hence the Dynkin diagram of g = An contains the following piece:

u u ui
γ1 α β1

Let L(C) be a simple module in the category OΦ,θ. In this case, l′ = A1.
Therefore the module C is of the form C = N(a1, a2) with a1 and a2 two non
integer complex numbers, and the center of l acts as scalar operators on C. Set
A = a1 + a2. Remark that Hα + 2Hβ1 and Hα + 2Hγ1 are in the center of lΦ\θ.
Denote by c(k) and c′(k) the respective actions of Hβ1 and Hγ1 on x(k). As in
lemma 4.15, we get c(k) = c + a2 + k and c′(b) = c′ + a2 + k where c and c′ are
equal either to 0 or to −1 − A.

Lemma 4.17. With the notations as above we have c + c′ + A+ 1 = 0 and cc′ = 0.

Proof. Consider v := p(X−γ1−α−β1 ⊗ x(k)). Lemma 4.6 applied to α and β =
(β1, γ1) implies that there is a non zero complex number η(k) such that

v =η(k)p(X−β1X−γ1 ⊗ x(k − 1)).(3)

Apply Xγ1+α+β1 to equation (3). We get:

p([Xγ1+α+β1 , X−γ1−α−β1 ] ⊗ x(k)) =η(k)p (([Xγ1+α+β1 , X−β1]X−γ1

+X−β1[Xγ1+α+β1, X−γ1 ]) ⊗ x(k − 1)) .
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On the other hand we have the following:

[Xγ1+α+β1 , X−γ1−α−β1] =Hβ1+α+γ1 = Hβ1 + Hα + Hβ1

[Xγ1+α+β1 , X−β1] =Xγ1+α

[Xγ1+α+β1 , X−γ1] = − Xβ1+α.

Thus we obtain:

p((Hβ1 + Hα + Hβ1) ⊗ x(k)) =η(k)p((Xα+γ1X−γ1 − X−β1Xα+β1) ⊗ x(k − 1)).

But now [Xα+γ1, X−γ1 ] = −Xα and Xα+β1 ∈ n+. Hence:

(4) (c + c′ + a2 + a1)p(1 ⊗ x(k)) = −η(k)(a2 − k + 1)p(1 ⊗ x(k)).

Applying now Xα+β1 to equation (3), we get:

p(X−γ1 ⊗ x(k)) = η(k)(a2 − k + 1)p(X−γ1 ⊗ x(b)).

Since p(X−γ1 ⊗x(b)) 6= 0 by lemma 4.5, we deduce that η(k)(a2 −k +1) = 1. Then
equation (4) gives c + c′ + A + 1 = 0. Since c and c′ are equal either to 0 or to
−1 − A, we conclude that cc′ = 0 except if c = c′ = −1 − A. But in this case the
equation c + c′ + A + 1 = 0 gives −1 − A = 0 and therefore c = c′ = 0.

�

From now on, we will assume that c = 0 and c′ = −1 − A. First we have the
following corollary, whose proof is analogous to the proof of corollary 4.16 (and is
thus omitted).

Corollary 4.18. Assume g = A3. Consider θ ⊂ Φ such that Φ \ θ = {e2}. Then
M is a simple module in the category OΦ,θ if and only if M is isomorphic to some
N(−1, a1, a2, 0) with a1, a2 ∈ C \ Z.

From now on we assume that n > 3. Hence we have the following Dynkin
diagram:

u u uu ui
γ2 α β1γ1 β2

The vectors Hβi
and Hγj

for i and j greater than 1 are in the center of l. Denote
by di and d′

j their action on C. We show:

Lemma 4.19. With notations as above, we have di = 0 = d′
j for any i > 1 and

j > 1.

Proof. We prove the lemma for the di’s. Assume the lemma does not hold. Let i
be the first integer such that di 6= 0. Consider v := p(X−(γ1+α+β1+···+βi) ⊗ x(k)).
Lemma 4.6 applied to α and β = (γ1, β1 + · · · + βi) gives v 6= 0 and

v ∈ p(U(l−θ )−γ1−β1−...−βi
⊗ x(k − 1)).

Since X−γ1 commutes with the X−βi
’s, we have

U(l−θ )−γ1−β1−...−βi
= X−γ1U(l−θ )−β1−...−βi

.
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Thus we get:

v =
∑

σ∈Si

ησp(X−γ1X−σ(β1) · · · X−σ(βi) ⊗ x(k − 1)).(5)

Apply the vectors Xα+β1+···+βi
and Xγ1+α+β1+···+βi

to equation (5). Remark that

Xα+β1+···+βi
· p(X−γ1X−σ(β1) · · · X−σ(βi) ⊗ x(k − 1)) = 0

except if σ = σ0 := (i, i − 1, . . . , 1). Indeed [Xα+β1+···+βi
, X−βj

] = 0 except if j = i
and in this latter case we have [Xα+β1+···+βi

, X−βi
] = Xα+β1+···+βi−1

. Therefore we
obtain:

(6) Xα+β1+···+βi
· p(X−γ1X−σ0(β1) · · · X−σ0(βi) ⊗ x(k − 1)) =

p(X−γ1Xα ⊗ x(k − 1)) = (a2 − k + 1)p(X−γ1 ⊗ x(k)).

Remark also that

Xγ1+α+β1+···+βi
· p(X−γ1X−σ(β1) · · · X−σ(βi) ⊗ x(k − 1)) = 0 except if σ = σ0,

and in this latter case we have

Xγ1+α+β1+···+βi
· p(X−γ1X−σ0(β1) · · · X−σ0(βi) ⊗ x(k − 1)) = −p(1 ⊗ Xαx(k − 1)).

So we get:

(7) Xγ1+α+β1+···+βi
· p(X−γ1X−σ(β1) · · · X−σ(βi) ⊗ x(k − 1))

= −(a2 − k + 1)p(1 ⊗ x(k)).

On the other hand we have the following:

[Xα+β1+···+βi
, X−(γ1+α+β1+···+βi)] = X−γ1

and

[Xγ1+α+β1+···+βi
, X−(γ1+α+β1+···+βi)] = Hγ1 + Hα + Hβ1 + · · · + Hβi

.

Therefore we are left with the following equations:
{

p(X−γ1 ⊗ x(k)) = ησ0(a2 − k + 1)p(X−γ1 ⊗ x(k)),
(c′ + a1 + c + a2 + di)p(1 ⊗ x(k)) = −ησ0(a2 − k + 1)p(1 ⊗ x(k)).

Since p(X−γ1 ⊗x(b)) 6= 0 according to lemma 4.5, we deduce from that ησ0(b2+1) =
1 and di = 0. This contradicts our assumption.

�

We have now the following corollary, whose proof is analogous to the proof of
corollary 4.16 (and is thus omitted).

Corollary 4.20. Let g = An. Let θ ⊂ Φ such that Φ\θ = {el} for some 1 < l < n.
Then the simple module M is in the category OΦ,θ if and only if M is isomorphic
to some N(−1, . . . , −1, a′

1, a′
2, 0, . . . , 0) with a′

1, a′
2 ∈ C \ Z.
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4.2.3. Case l′ = sll+1, with l > 1. We show the following:

Theorem 4.21. Let g = An. Let 1 < l < n. Let θ ⊂ Φ such that Φ \ θ is a
connected subset of Φ with cardinality l. A simple module M is in the category
OΦ,θ if and only if it is isomorphic to some N(−1, . . . , −1, a1, . . . , al+1, 0, . . . , 0)
with a1, . . . , al+1 ∈ C \ Z.

Proof. Let L(C) be a simple module in OΦ,θ. We know then that C is a simple
cuspidal l-module of degree 1. Here l′ = Al. Therefore C is a the form C =
N(a1, . . . , al+1) with ai ∈ C \ Z. Assume first that the Dynkin diagram of g

contains the following piece:

u u ui i
β1α1 αl

︸ ︷︷ ︸

Al=l′

Then the vector Hα1 +2Hα2 +· · ·+lHαl
+(l+1)Hβ1 is in the center of l. Its action

on C must be constant. Denote by c(k) the action of Hβ1 on x(k) ∈ C. We get
(a1+k1−a2 −k2)+2(a2+k2−a3 −k3)+· · ·+l(al+kl−al+1−kl+1)+(l+1)c(k) = cte.
Since k1+· · ·+kl+1 = 0 we obtain c(k) = c+al+1+kl+1 for some complex number c.
Consider now u := p(X−αl−β1 ⊗x(k)). Note that X−αl

x(k) = (al +kl)x(k−ǫl +ǫl+1)
and Xαl+αl−1

x(k) = (al+1 + kl+1)x(k − ǫl+1 + ǫl−1). Apply now lemma 4.6 to u.
There is a non zero complex number η(k) such that

u = η(k)p(X−β1 ⊗ x(k − ǫl + ǫl+1)).(8)

Apply the vectors Xβ1 and Xαk−1+αk+β1 to the equation (8). We get

(9) (al + kl)p(1 ⊗ x(k − ǫl + ǫl+1)) = η(k)c(k − ǫl + ǫl+1)p(1 ⊗ x(k − ǫl + ǫl+1)),

(al + kl)p(1 ⊗ x(k − ǫl+1 + ǫl−1)) = η(k)(al+1 + kl+1 + 1)p(1 ⊗ x(k − ǫl+1 + ǫl−1)).

Since η(k) 6= 0, p(1 ⊗ x(k − ǫl + ǫl+1)) 6= 0 and p(1 ⊗ x(k − ǫl+1 + ǫl−1)) 6= 0, we
deduce from the above equations that c = 0.

Assume now the Dynkin diagram of g contains the following piece:

u u ui i
γ1 α1 αl

︸ ︷︷ ︸

Al=l′

Denote by c′(k) the action of Hγ1 on x(k) ∈ C. A reasoning as above shows that
c′(k) = c′ − (a1 + k1) with c′ = −1.

In general, we have the following Dynkin diagram:

u u u u uui i
γj γ1 α1 αl β1 βm

︸ ︷︷ ︸

Al=l′

Note then that Hβi
and Hγi

with i > 1 belong to the center of l. Thus they act as
constant on C. Denote by di and d′

i these constants. We show that di = 0 = d′
i.

Let us prove this for the di’s. Assume it does not hold. Let p be the first integer
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such that dp 6= 0. We apply lemma 4.6 to the vector v := p(X−αl−β1−...−βp
⊗ x(k))

with α = αl and β = (β1 + · · · + βp). We have v 6= 0 and v ∈ U(l−θ )−(β1+···+βp)p(1 ⊗
x(k − ǫl + ǫl+1)). More precisely we can write down the following expression:

v =
∑

σ∈Sp

ησp(X−βσ(1)
· · · X−βσ(p)

⊗ x(k − ǫl + ǫl+1)).

Apply then the vectors Xαl+β1+···+βp
et Xαl−1+αl+β1+···+βp

to this equation. Note
that both of these vectors act trivially on p(X−βσ(1)

· · · X−βσ(p)
⊗ x(k − ǫl + ǫl+1))

except if σ = σ0 = (p, p − 1, . . . , 1). Computations analogous to those in lemma
4.19 give the following two equations:

(10)
((al + kl − al+1 − kl+1) + c(k) + dp)p(1 ⊗ x(k)) = ησ0(al+1 + kl+1 + 1)p(1 ⊗ x(k))

(al + kl)p(1 ⊗ x(k − ǫl+1 + ǫl−1)) = ησ0(al+1 + kl+1 + 1)p(1 ⊗ x(k − ǫl+1 + ǫl−1)).

We deduce then that ησ0(al+1 + kl+1 + 1) = al + kl and thus that dp = 0. This
contradicts our assumption.

Now we conclude as in corollary 4.20. We compare the action of U(g)0 on
the weight vector x(0) with its action on the weight vector x(0) ∈ N(a) with
a = (−1, . . . , −1, a1, . . . , al+1, 0, . . . , 0) and then use Lemire’s correspondence [17].

�

4.3. Type C case. In this section we assume that g = sp2n.

4.3.1. Case l of type A. According to the theorem 4.14, we need only to consider
the following situation:

u u ui
β2 β1 α

<

Let L(C) be a simple module in the corresponding category OΦ,θ. We know
that C is a simple cuspidal l-module of degree 1. Since l′ = A1 we must have
C = N(a1, a2) for some a1, a2 ∈ C \ Z. Set A = a1 + a2. The vector Hβ1 + Hα is
in the center of l. Therefore it acts on C by some constant. Denote by c(k) the
action of Hβ1 on x(b). Then we find that c(k) = c + 2a2 − 2k.

Lemma 4.22. With the notations as above, we have either c = 0 or c = −2 − 2A.
We also have 2c + 2A + 1 = 0.

Proof. The proof is analogous to that of lemma 4.15. Set

u := p(X−α−β1 ⊗ x(k)) and v := p(X−α−2β1 ⊗ x(k)).

Lemma 4.6 implies that u = η(k)p(X−β1 ⊗ x(k − 1)) for some non zero complex
number η(k). Apply Xβ1 and Xα+β1 to the equation u = η(k)p(X−β1 ⊗ x(k − 1)).
Using the structure constants of C2 we get:

{

−2(a1 + k)p(1 ⊗ x(k − 1)) = η(k)c(k − 1)p(1 ⊗ x(k − 1))
(2(a1 − a2 + 2k) + c(k))p(1 ⊗ x(k)) = −2η(k)(a2 − k + 1)p(1 ⊗ x(k))
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Since p(1⊗x(k−1)) 6= 0 and p(1⊗x(k)) 6= 0, this system gives c = 0 or c = −2−2A
and η(k) = − c+2a1+2k

2a2−2k+2
.

Now lemma 4.6 applied to α and β = (β1, β1) gives v = η′(k)p(X2
−β1

⊗x(k−1)) for
a non zero complex number η′(k). Apply Xβ1, Xα+β1 and Xα+2β1 to this equation
to obtain the following system:







−p(X−α−β1 ⊗ x(k)) = 2η′(k)(c(k − 1) − 1)p(X−β1 ⊗ x(k − 1))
p(X−β1 ⊗ x(k)) = −4η′(k)(a2 − k + 1)p(X−β1 ⊗ x(k))
(c(k) + a1 − a2 + 2k)p(1 ⊗ x(k)) = 2η′(k)(a2 − k + 1)p(1 ⊗ x(k))

We solve this system using the value of c and of η(k) found above. We get 2c +
2A + 1 = 0.

�

Corollary 4.23. Assume g = C2 and θ = {e1}. A simple module M belongs to
the category OΦ,θ if and only if it is isomorphic to M(−1, a1 − a2 − 1

2
).

Proof. Once more, it suffices to check that the action of U(g)0 on p(1 ⊗ x(0)) ∈
L(N(a1, a2)) is identical as its action on x(0) ∈ M(−1, a1 − a2 − 1

2
). We then

conclude with Lemire’s correspondence [17].
�

Remark 4.24. Note that if c = 0 then lemma 4.22 implies that a1 − a2 − 1
2

= 2a1

and if c = −2 − 2A, it implies that a1 − a2 − 1
2

= 2a1 + 1. In both cases we see that

a1 − a2 − 1
2

is a non integer complex number. Conversely if z ∈ C \ Z, there is a
pair (a1, a2) of non integer complex numbers such that z = a1 − a2 − 1

2
and z = 2a1

or z = 2a1 + 1.
We also note that N(a1, a2) ∼= N(−1 − a2, −1 − a1). But if a1 + a2 = −1

2
then

(−1 − a1) + (−1 − a2) = −3
2

and if a1 + a2 = −3
2

then (−1 − a1) + (−1 − a2) = −1
2
.

Therefore with the notations as above, we can always assume that c = 0 and
A = −1

2
.

We now show the following:

Theorem 4.25. Assume g = Cn with n > 2 and Φ \ θ = {en}. A simple module
M is in the category OΦ,θ if and only if it is isomorphic to M(−1, . . . , −1, a) for
some a ∈ C − Z.

Proof. Let L(C) be a simple module in OΦ,θ. We keep the notations above. As we
mentioned, we can assume that c = 0 and A = −1

2
. Now the vectors Hβ2, . . . , Hβn−1

are in the center of l. Thus they act on C by some constants. Denote d2, . . . , dn−1

these constants. We show by induction that di = 0.

(1) We begin with d := d2. Assume that d 6= 0. Then we have Xβ2 · (X−β2 ⊗
x(k)) = Hβ2 ⊗ x(k) = d × 1 ⊗ x(k) 6= 0. Hence, the proposition 2.7 implies
that p(X−β2 ⊗ x(b)) 6= 0. Consider u := p(X−α−β1−β2 ⊗ x(k)). We apply
lemma 4.6 to α et β = (β1, β2). We get u ∈ p(U(l−θ )−β1−β2 ⊗ x(k − 1)).
But U(l−θ )−β1−β2 is generated by the two vectors X−β1X−β2 and X−β2X−β1.
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Therefore there are two non zero complex numbers η1(k) and η2(k) such
that

u =η1(k)p(X−β2X−β1 ⊗ x(k − 1)) + η2(k)p(X−β1X−β2 ⊗ x(k − 1)).(11)

Apply to equation (11) the vectors Xβ1 , Xα+β1 and Xα+β1+β2. Using the
structure constants of Cn, we have the following system:







0 = (η1(k)c(k − 1) + η2(k)(c(k − 1) + 1))p(X−β2 ⊗ x(k − 1))
p(X−β2 ⊗ x(k)) = −2(η1(k) + η2(k))(a2 − k + 1)p(X−β2 ⊗ x(k))
(2(a1 − a2 + 2k) + c(k) + d)p(1 ⊗ x(k)) = −η1(k)(a2 − k + 1)p(1 ⊗ x(k))

Since p(X−β2 ⊗ x(b′)) 6= 0, p(X−β2 ⊗ x(b)) 6= 0 and p(1 ⊗ x(b)) 6= 0 the
solution of this system gives in particular d = 1−3a1 −3k. This contradicts
the fact that d is a constant. Therefore d = 0.

(2) By induction assume that di = 0 for 2 ≤ i ≤ l − 1. We prove then that
d := dl is also zero. On the contrary, assume d 6= 0.

We begin with a lemma.

Lemma 4.26. Let 1 < i ≤ j < l. Then for all v ∈ U(n+
Φ\θ) and all

u ∈ U(l−θ )−(βi+···+βj), we have v · (u ⊗ x(k)) = 0.

Proof. We prove it by induction on j − i. If 1 < i = j < l, we have
Xβi

· X−βi
⊗ x(k) = Hβi

⊗ x(k) = 0 since di = 0. Now for X ∈ n+
Φ\θ of

weight β 6= βi, either β − βi 6∈ R or β − βi is a positive root, belonging to
〈Φ \ θ〉+. In both cases the action of X on X−βi

⊗ x(k) is trivial. In other
words the action of U(n+

Φ\θ) on X−βi
⊗ x(k) is trivial.

Assume the lemma holds if j − i < m. Let 1 < i ≤ j < l be such that
j − i = m. Let u ∈ U(l−θ )−(βi+···+βj). Without loss of generality we can

assume that u is a monomial. Let v ∈ U(n+
Φ\θ) be a weight vector of weight

β. Then we have the following possibilities.
(a) If ad(v)(u) = 0, then v · u ⊗ x(k) = 0.
(b) If ad(v)(u) is a weight vector with a negative weight. Then we must

have ad(v)(u) ∈ U(l−θ ) since the weight of v is positive. Note that this
case can only happen if v ∈ U(lθ)

+. Then the weight of ad(v)(u) is of
smaller length that the weight of u. Thus we can apply the induction
hypothesis to conclude that v · u ⊗ x(k) = 0.

(c) If ad(v)(u) has zero weight, then ad(v)(u) must be proportional to
Hβi

+ · · · + Hβj
. Then the hypothesis dp = 0 for 1 < p < l imply that

v · u ⊗ x(k) = 0.
(d) If ad(v)(u) is a weight vector of positive weight, then ad(v)(u) ∈

U(n+
Φ\θ). Therefore we have v · u ⊗ x(k) = 0.

Thus in every case the action of v on u ⊗ x(k) is trivial.
�
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The lemma together with proposition 2.7 now imply that p(u⊗x(k)) = 0
for all u ∈ U(l−θ )−(βi+···+βj). Consider now

v = p(X−(α+2β1+β2+···+βl) ⊗ x(k)).

Lemma 4.6 with α and β = (β1 + · · · + βl, β1) implies that v 6= 0 and
that v ∈ p(U(l−θ )−(2β1+β2+···+βl) ⊗ x(k − 1)). We shall order the elements
in U(l−θ )−(2β1+β2+···+βl) putting on the left the weight vectors in l−θ whose
weight has the form βl + · · · + βi and then we order the remaining vectors
according to the length of their weight (that is the number of simple roots
involved in the writing of the weight). Using the above lemma giving the
non zero contributions in p(U(l−θ )−(2β1+β2+···+βl) ⊗ x(k − 1)), we finally get
complex numbers µi such that

(12) v = µ1p(X−(β1+···+βl)X−β1 ⊗ x(k − 1)) + µ2p(X−(β2+···+βl)X
2
−β1

⊗ x(k − 1))+

µ3p(X−(β3+···+βl)X−β1−β2X−β1 ⊗ x(k − 1))

+ · · · + µlp(X−βl
X−(β1+···+βn−1)X−β1 ⊗ x(k − 1)).

Apply Xα+β1+···+βk
to equation (12). We get

p(X−β1 ⊗ x(k)) = 2(−µ1 + 2µ2 + µ3 + · · · + µl)(a2 − k + 1)p(X−β1 ⊗ x(k)).

Now we remark that the above lemma implies

p(X−(β2+···+βi)X−β1 ⊗ x(k − 1)) = p(X−(β1+···+βi) ⊗ x(k − 1)), i < l.

Indeed, we have

p(X−(β2+···+βi)X−β1 ⊗ x(k − 1)) = p(X−β1X−(β2+···+βi) ⊗ x(k − 1))

+ p([X−(β2+···+βi), X−β1] ⊗ x(k − 1))

= X−β1p(X−(β2+···+βi) ⊗ x(k − 1))

+ p(X−(β1+···+βi) ⊗ x(k − 1))

= 0 + p(X−(β1+···+βi) ⊗ x(k − 1))

Apply now the vectors X2
β1

, Xβ1Xβ2 , . . . , Xβ1Xβl−1
to equation (12). Using

the above lemma and the structure constants in Cn we get:






0 = (−2c(k − 1)µ1 + 2c(k − 1)(c(k − 1) − 1)µ2) p(X−(β2+···+βl) ⊗ x(k − 1))
0 = (−2(c(k − 1) − 1)µ2 + 2(c(k − 1) − 1)µ3) p(X−(β3+···+βl)X−β1 ⊗ x(k − 1))
0 = (−(c(k − 1) − 1)µ3 + (c(k − 1) − 1)µ4) p(X−(β4+···+βl)X−β2−β1 ⊗ x(k − 1))

...
0 = (−(c(k − 1) − 1)µl−1 + (c(k − 1) − 1)µl) p(X−βl

X−(β1+···βl−2
⊗ x(k − 1))

On the other hand since d 6= 0, we have for i > 1:

Xβ1+···+βi−2
Xβi+···+βl

· X−(βi+···+βl)X−(β1+···+βi−2) ⊗ x(k − 1) =

d × c(k − 1) × 1 ⊗ x(k − 1) 6= 0.
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Proposition 2.7 thus implies that

p(X−(βi+···+βl)X−(β1+···+βi−2) ⊗ x(k − 1)) 6= 0.

Finally we apply the vector Xβ1Xβ1+···+βl
to equation (12) to obtain:

(13) 2(a1 + k)p(1 ⊗ x(k − 1)) = (((d + c(k − 1) − 1)µ1 + 2(c(k − 1) − 1)µ2

+(c(k − 1) − 1)µ3 + · · · + (c(k − 1) − 1)µl)c(k − 1)) p(1 ⊗ x(k − 1)).

We solve this system in the indeterminate (µ1, . . . , µl, d) obtained from the
k + 1 equations above, using c(k) = c + 2(a2 − k), c = 0 and A = −1

2
. In

particular we get d = 1 − 2a2 + 2k − l × 2a2−2k+3
2a2−2k+1

. This contradicts the fact
that d is a constant. Therefore we proved that d = 0.

(3) We conclude as in corollary 4.20 that L(C) is isomorphic to some M(−1, . . . , −1, a)
with a ∈ C \ Z.

(4) Conversely, theorem 3.14 ensures that the module M(−1, . . . , −1, a) with
a ∈ C \ Z is in the category OΦ,θ.

�

4.3.2. Case l of type C. We show the following:

Theorem 4.27. Let θ ⊂ Φ be such that Φ \ θ is of type C. The simple module M
is in the category OΦ,θ if and only if M is isomorphic to M(−1, . . . , −1, a1, . . . , al)
with ai ∈ C \ Z and l > 1.

Proof. (1) Let us begin with the following case:

u u ui i
β α1 α2

<

Let L(C) be a simple module in OΦ,θ. We already know that C is a
simple cuspidal l-module of degree 1. Thus it is of the form M(a) where
a ∈ (C\Z)2. Denote by c(k) the action of Hβ on x(k). Since Hβ +Hα1 +Hα2

is in the center of l, we deduce that c(k) = c − a1 − k1 for some complex
number c. Let us prove the following:

Lemma 4.28. We have c = −1.

Proof. Consider u := p(X−α1−β ⊗ x(k)). Lemma 4.6 implies that there is a
non zero complex number η(k) such that

u = η(k)p(X−β ⊗ x(k − ǫ1 + ǫ2)).

Apply now the vector Xβ+α2+α1 to this equation. We get:

p([Xβ+α1+α2 , X−β−α1] ⊗ x(k)) =

η(k)p([Xβ+α2+α1 , X−β] ⊗ x(k − ǫ1 + ǫ2).
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Using the structure constants in C3 we finally obtain 1 = η(k). Apply then
the vectors Xβ and Xβ+α1 to the equation u = η(k)p(X−β ⊗ x(k − ǫ1 + ǫ2)).
We get two equations whose resolution gives c = −1.

�

We can now check as in corollary 4.20 that the C3-module L(C) is iso-
morphic to some M(−1, a, b) for well chosen non integer complex numbers
a and b.

(2) More generally if l′ = C2, we show that the action of Hβi
is trivial for

i > 1. This can be done by induction as in theorem 4.21. Here we need to
consider the vector v = p(X−(α1+β1+···+βi) ⊗x(k)) and apply to v the vectors
Xα2+α1+β1+···+βi

, Xα1+β1+···+βi
, . . . We left the details to the reader.

(3) Assume now that l′ = Cl for l > 2. Then the Dynkin diagram contains the
Dynkin diagram of (Al−1, An−1) of section 4.2.3. Therefore theorem 4.21
gives us the action of the center of l on the module C. It only remains to
check that L(C) is then isomorphic to some M(−1, . . . , −1, a1, . . . al) using
the argument of corollary 4.20.

(4) Conversely, the theorem 3.11 ensures that the simple modules
M(−1, . . . , −1, a1, . . . , al) belong to some category OΦ,θ.

�

4.4. Classification theorem. Let us gather the results obtained in this part:

Theorem 4.29. Let g be a simple Lie algebra. Let θ ⊂ Φ be such that θ 6= Φ and
θ 6= ∅. Assume that (g, Φ \ θ) does not belong to table 2. Then:

(1) The category OΦ,θ is non trivial if and only if either g is isomorphic to An

and l′Φ\θ to Am with m < n or g is isomorphic to Cn and l′Φ\θ is isomorphic
to either the sl2-subalgebra generated by the long simple root or to Ck with
k < n.

(2) For a pair (g, l′Φ\θ) as in (1), the simple module in the category OΦ,θ are

of degree 1 except in the case where g = An with n > 2 and l′Φ\θ is the
sl2-subalgebra generated by one of the simple roots on the extremity of the
Dynkin diagram of g.

(3) Conversely every simple module of degree 1 belongs to one category OΦ,θ.

Type Φ \ θ
Bn {e1}
Dn {e1} or {en−1} or {en}
E6 {e1} or {e6}
E7 {e7}
Table 2. Excluded Cases
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Remark 4.30. If g = An with n > 2 and l′Φ\θ is the sl2-subalgebra generated by
one of the simple roots on the extremity of the Dynkin diagram of g, then there
exists in OΦ,θ simple modules not of degree 1 (see appendix A).

5. Semisimplicity of the category OΦ,θ

In this part we show that the non empty category OΦ,θ is semisimple except
if l′Φ\θ = {e1} or {en} when g is of type A. As in the previous part, we denote
l := lΦ\θ.

5.1. Type A case. In this section we assume that g = An for n > 1. Let θ ⊂ Φ
be such that l is of type A. Moreover, if n > 2 we will assume that Φ \ θ 6= {e1}
and Φ \ θ 6= {en}.

5.1.1. Case l′ = A1. Suppose here that Φ \ θ = {α} = {αl+1}. According to the
classification theorem 4.29, the simple modules in OΦ,θ are the modules

Na = N(−1, . . . , −1
︸ ︷︷ ︸

l

, a1, a2, 0 . . . , 0
︸ ︷︷ ︸

m

), l + 2 + m = n

where ai ∈ C \ Z.

Theorem 5.1. For a and b in (C \ Z)2, we have Ext1(Nb, Na) = {0}.

Remark 5.2. We shall prove the following equivalent statement:
Any exacte sequence

(Sa,b) : 0 → Na → M → Nb → 0

with M ∈ OΦ,θ splits.

Proof. Let us denote by c the cocyle corresponding to the exact sequence (Sa,b).
Note first that the sequence splits as a sequence of lθ-modules since the restriction
condition of category OΦ,θ expresses that Na, Nb and M are semisimple lθ-modules.
In other words, the cocyle c vanishes on lθ. To prove the theorem we have to show
it vanishes on the whole Lie algebra g. Thanks to the cocyle relation, we only need
to show that c(X±α) = 0.

(1) Suppose that Na 6∼= Nb. From theorem 3.11, we know that the lθ-highest
weight vectors in Na or Nb are the x(k) with ki = 0 for i 6∈ {l +1, l +2}. To
avoid any confusion we shall write x(k) the basis vectors for Nb and y(j)
for Na. Using the explicit action of h, we show:

Lemma 5.3. Assume x(k) and y(j) have the same weight under the action
of h. Then there is an integer K such that

y(j) = y(k1 + K, . . . , kl + K, b1 − a1 + kl+1 + K,

b2 − a2 + kl+2 + K, kl+3 + K, . . . , kn + K)

and

K + k1 ≤ 0, . . . , K + kl ≤ 0, kl+3 + K ≥ 0, . . . , kn + K ≥ 0.
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In particular, if x(k) is a lθ-highest weight vector and if y(j) has the same
weight as x(k), then we have K = 0 and Na

∼= Nb.

Recall from proposition 3.16 that as l-modules Na and Nb are semisimple.
From proposition 2.17, we get c(X−α) = 0 on every simple l′–submodules
of Nb and therefore on the whole of Nb. Let x = x(k) ∈ Nb be a lθ-highest
weight vector, of weight λ. Then we see that c(Xα)(x), if non zero, is a
weight vector of Na of weight λ + α. Indeed, since c(h) = 0, we have

c([Hα, Xα])(x)
︸ ︷︷ ︸

2c(Xα)(x)

= [c(Hα), Xα](x)
︸ ︷︷ ︸

0

+[Hα, c(Xα)](x)

= Hα · c(Xα)(x) − λ(Hα)c(Xα)(x).

Since the module Na is {−α}–cuspidal, we deduce from the above equation
that Na should have a weight vector of weight λ, that is with the same
weight as x(k). This contradicts the above lemma. Hence we must have
c(Xα)(x) = 0.

Consider now β ∈ 〈θ〉+. Let y = X−β ·x. Since [Xα, X−β] = 0, the cocyle
relation together with the fact that c(X−β) = 0 (for X−β ∈ lθ), show that

0 = c([Xα, X−β])(x) = c(Xα)(y) − X−β · c(Xα)(x).

Since we proved that c(Xα)(x) = 0, we must have c(Xα)(y) = 0 as well.
The very same computation implies that if for some vector x′ ∈ Nb we
have c(Xα)(x′) = 0 then we must also have c(Xα)(X−β · x′) = 0. Since Nb

is a direct sum of simple lθ–modules, reasoning by induction shows that
c(Xα) = 0 on Nb, which proves the theorem in this case.

(2) Suppose that Na
∼= Nb. Recall the action of X− = X−α and X+ = Xα

on Na :
{

X+ · x(k) = (a2 + kl+2)x(k − ǫl+2 + ǫl+1)
X− · x(k) = (a1 + kl+1)x(k − ǫl+1 + ǫl+2)

From that we deduce that
(

X−
)−1

· x(k) =
1

a1 + kl+1 + 1
x(k − ǫl+2 + ǫl+1).

Proposition 3.16 implies that Na is a direct sum of simple cuspidal l–
modules. Using the above equations, remark that the l–module U(l)x(k)
does not depend upon kl+1 and kl+2. Proposition 2.17 gives the expres-
sion of the cocycle c on each module U(l)x(k) : c(X−) = 0 and c(X+) =

b(k)×(X−)
−1

with b(k) ∈ C. The previous remark implies that b(k) should
also not depend upon kl+1 and kl+2.

Let us come back to the notations of section 4.2.2. Let β = β1 + · · ·+βi ∈
〈θ〉+. Then we have α + β ∈ R, [X+, Xβ] = Xα+β and [Xα+β, X−β] = X+.
Using the cocyle relation we thus get c(X+) = [[c(X+), Xβ], X−β] (since
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c(Y ) = 0 for Y ∈ lθ). This is an equality in EndC(Na). Let us see how it
acts on a vector x(k) ∈ Na. Recall we have

{

Xβx(k) = kl+2+ix(k + ǫl+2 − ǫl+2+i)
X−βx(k) = (a2 + kl+2)x(k + ǫl+2+i − ǫl+2)

Thus we get

(14) c(X+)x(k) =
b(k)

a1 + kl+1 + 1
x(k − ǫl+2 + ǫl+1).

We deduce then

[c(X+), Xβ]x(k) =
kl+2+i

a1 + kl+1 + 1
(b(k − ǫl+2+i) − b(k)) x(k − ǫl+2+i + ǫl+1)

and

(15) [[c(X+), Xβ], X−β]x(k) =

a2 + kl+2

a1 + kl+1 + 1

(

(kl+2+i + 1)(b(k) − b(k + ǫl+2+i))

− kl+2+i(b(k − ǫl+2+i) − b(k))
)

x(k − ǫl+2 + ǫl+1).

The equality of equation (14) and equation (15) implies

(16) b(k) = (kl+2+i + 1)(a2 + kl+2)(b(k) − b(k + ǫl+2+i))

− kl+2+i(a2 + kl+2)(b(k − ǫl+2+i) − b(k)).

Let k be such that kl+2+i = 0. Then we have [c(X+), Xβ]x(k) = 0 and there-
fore we must have c(X+)x(k) = 0 which implies that b(k) = 0. Now if k is

such that kl+2+i = 1, equation (16) gives 2b(k+ǫl+2+i) = b(k)
(

3 + 1
a2+kl+2

)

.

This is a contradiction since b(k) does not depend upon kl+2, unless b(k) =
0 = b(k + ǫl+2+i). Now a simple induction using equation (16) shows that
b(k + jǫl+2+i) = 0 for any non negative integer j. The same reasoning with
the roots γ = γ1 + · · · + γi finally implies that b(k) = 0. Hence the cocyle
c is zero, as asserted.

�

Remark 5.4. Looking at the proof above, we see that the theorem holds also in
case l = 0, that is Φ \ θ = {α1}. We will use this case of the theorem to prove our
next result.

5.1.2. Case l′ = Am−1, with m > 2. Let θ ⊂ Φ be such that card(Φ\θ) > 1. Recall
from theorem 4.29 that Φ \ θ is a connected part of the Dynkin diagram, which
thus looks as follows:

u u u ui i
γ1 α1 αm−1 β1

︸ ︷︷ ︸

Am−1
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The simple modules in OΦ,θ are the

Na = N(−1, . . . , −1
︸ ︷︷ ︸

j

, a1, . . . , am, 0, . . . , 0
︸ ︷︷ ︸

l

),

with a = (a1, . . . , am) ∈ (C \ Z)m. Without lack of generality we can assume that
l is positive. We prove

Theorem 5.5. With the notations as above, we have Ext1(Nb, Na) = {0}.

Proof. Denote by c the cocycle associated with the exact sequence

0 → Na → M → Nb → 0.

We have to prove that c = 0. From the restriction condition of OΦ,θ we already
know that c is zero on lθ. The cocyle relation implies then that it suffices to prove
c(X±αi

) = 0 for i ∈ {1, . . . , m}. Our strategy is to use the previous theorem.
Let θ̄ = {β1, . . . , βl}. Consider the set θ1 = θ̄ ∪ {αm−1}. Denote by l1 the

corresponding Levi subalgebra, whose semisimple part is of type Al+1. An explicit
computation analogous to that in proposition 3.16 shows that Na splits into a
direct sum of simple l1-modules. More precisely, these modules are isomorphic to
N(c1, c2, 0, . . . , 0) for some c1, c2 ∈ C \Z. In other words Na and Nb are direct sum
of simple modules in the category Oθ1,θ̄. Obviously M belongs to this category by
restriction. Theorem 5.1 implies now that c(Xαm−1) = 0 and c(X−αm−1) = 0.

We can reason the same way using θ2 = θ̄ ∪ {αm−2 + αm−1}. Hence we get
c(Xαm−2+αm−1) = 0 and c(X−(αm−2+αm−1)) = 0. Applying the cocycle relation to
[Xαm−1+αm−2 , X−αm−1 ] = Xαm−2 , we obtain c(Xαm−2) = 0 and c(X−αm−2) = 0.

Using the sets θp = θ̄ ∪ {αm−p + · · · + αm−1} we deduce that the cocyle c is zero,
as asserted.

�

Theorem 5.1 together with theorem 5.5 leads to the following

Corollary 5.6. Let g = An. Let θ be a proper subset of Φ such that Φ \ θ is
different from {e1} and {en}. Then the category OΦ,θ is semisimple.

Proof. Proposition 2.3 implies that every module in the category OΦ,θ admits a
Jordan-Hölder series of finite length. We show the corollary by induction on the
length ℓ(M) of M . If ℓ(M) = 1 then M is a simple module. If ℓ(M) = 2 then
there is an exact sequence

0 → Na → M → Nb → 0.

By theorem 5.1 or theorem 5.5 this sequence splits and thus M = Na ⊕Nb. Assume
now that the corollary holds for the modules in category OΦ,θ of length at most m.
Let M be a module in OΦ,θ of length m + 1. Then there is a submodule M ′ of M
of length m. This submodule is semisimple by induction. Now we have an exact
sequence

0 → M ′ → M → Na → 0.
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This must splits, which proves that M = M ′ ⊕ Na. This completes the proof.
�

Remark 5.7. If θ = Φ, the category OΦ,Φ(sln) is semisimple by definition. If
θ = ∅, the category OΦ,∅(sln) is no longer semisimple. The indecomposable mod-
ules of this category have been studied by Grantcharov and Serganova [12] and by
Mazorchuk and Stroppel [23].

5.2. Type C case. In this section g = Cn. Let θ be a proper subset of Φ. We
keep the notations of part 4.3.

5.2.1. Case Φ \ θ = {α}. In this case we have the following Dynkin diagram:

u u ui
β2 β1 α

<

From theorem 4.29 we know that the simple modules in the category OΦ,θ are
the

Ma = M(−1, . . . , −1, a),

with a ∈ C \ Z. We prove:

Theorem 5.8. In the category OΦ,θ, we have Ext1(Mb, Ma) = {0}.

Remark 5.9. We shall prove the following equivalent statement:
Any exacte sequence

(Sa,b) : 0 → Ma → M → Mb → 0

with M ∈ OΦ,θ splits.

Proof. Let us denote by c the cocyle corresponding to the exact sequence (Sa,b).
Note first that the sequence splits as a sequence of lθ-modules since the restriction
condition of category OΦ,θ expresses that Ma, Mb and M are semisimple lθ-modules.
In other words, the cocyle c vanishes on lθ. To prove the theorem we have to show
it vanishes on the whole Lie algebra g. Thanks to the cocyle relation, we only need
to show that c(X±α) = 0.

(1) First suppose that Ma 6∼= Mb. From the explicit action of h on Ma and
Mb, we obtain Supp(Ma) ∩ Supp(Mb) = ∅. Indeed, if x(k) ∈ Ma has the
same weight as y(k′) ∈ Mb, we would have







k1 − k2 = k′
1 − k′

2
... =

...
kn−2 − kn−1 = k′

n−2 − k′
n−1

kn−1 − a − kn − 1 = k′
n−1 − b − k′

n − 1
a + kn + 1

2
= b + k′

n + 1
2

The unique solution of this system is given by ki = k′
i for any i ≤ n−1 and

b = a+kn −k′
n. But we must have k1 + · · ·+kn ∈ 2Z and k′

1 + · · ·+k′
n ∈ 2Z.

Since ki = k′
i for i ≤ n − 1, we must have kn − k′

n ∈ 2Z. Hence we have
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b ∈ a+2Z. This means that the vector y(k′) ∈ Mb also appears in Ma. Then
Lemire’s correspondence [17] would imply that Ma

∼= Mb, which contradicts
our assumption.

Now let x ∈ Mb be a weight vector. From the cocycle relation and the
fact that c(H) = 0 for H ∈ h ⊂ lθ, we get that c(X±α)x is a weight vector
of Ma, having the same weight as X±αx which is non zero since the action
of X±α on Mb is cuspidal. As Supp(Ma) ∩Supp(Mb) = ∅, this is impossible
unless c(X±α)x = 0. Thus we proved that c(X±α) = 0, as asserted.

(2) Suppose now that Ma
∼= Mb. Recall the action of X− = X−α and

X+ = Xα on Ma :
{

X+ · x(k) = 1
2
x(k + 2ǫn)

X− · x(k) = −1
2
(a + kn)(a + kn − 1)x(k − 2ǫn)

Proposition 3.16 implies that Ma splits into a direct sum of simple cuspidal
l-modules. Using the action of X− and X+ we remark that the vectors
x(k′) belonging to the module U(l)x(k) satisfy k′

i = ki for i 6= n. Thus the
module U(l)x(k) does not depend upon kn. Proposition 2.17 now gives the

cocycle on each U(l)x(k): c(X−) = 0 and c(X+) = b(k) × (X−)
−1

for some
b(k) ∈ C. We should remember from the previous remark that b(k) does
not depend upon kn.

Let β ∈ 〈θ〉+ be such that α + β ∈ R. We write β = β1 + · · · + βi. Then
we have [X+, Xβ] = −Xα+β and [−Xα+β, X−β] = 2X+. Using the cocycle
relation we get:

2c(X+) = c([[X+, Xβ], X−β]) = [[c(Y ), Xβ], X−β],

since c(X±β) = 0 as X±β ∈ lθ. This is an identity in EndC(Ma). Let us
apply it to the vector x(k) ∈ Ma. Recall that:

{

Xβ · x(k) = kn−i(a + kn)x(k + ǫn−i − ǫn)
X−β · x(k) = x(k − ǫn−i + ǫn)

Using the above action of X− we get

(

X−
)−1

x(k) = −
2

(a + kn + 2)(a + kn + 1)
x(k + 2ǫn).

Therefore we have

(17) 2c(X+)x(k) = −
4b(k)

(a + kn + 2)(a + kn + 1)
x(k + 2ǫn).

Hence:

(18) [c(X+), Xβ]x(k) =
2kn−i

a + kn + 1
(b(k) − b(k + ǫn−i))x(k + ǫn−i + ǫn)
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and thus

(19) [[c(X+), Xβ], X−β]x(k) =
2(kn−i − 1)

a + kn + 2
(b(k − ǫn−i) − b(k))x(k + 2ǫn)

−
2kn−i

a + kn + 1
(b(k) − b(k + ǫn−i))x(k + 2ǫn).

Equaling equations (17) and (19), we finally get:

(20) 2b(k) = kn−i(a + kn + 2)(b(k) − b(k + ǫn−i))

− (kn−i − 1)(a + kn + 1)(b(k − ǫn) − b(k)).

Let k be such that kn−i = 0. Then the equation (18) implies that [c(X+), Xβ]x(k) =
0. Therefore c(X+)x(k) should be zero. Thus we have b(k) = 0. If kn−i =
−1, then equation (20) gives 3(a+kn+2)b(k) = 2(a+kn+1)b(k−ǫn). Since
b(k) does not depend upon kn, we must have b(k) = 0 = b(k − ǫn). Now we
show by induction on kn−i ≤ 0 using equation (20) that b(k − pǫn−i) = 0
for any non negative integer p. Thus the cocycle c is zero, as asserted.

�

Corollary 5.10. Let θ ⊂ Φ be such that Φ \ θ = {α}. Then the category OΦ,θ is
semisimple.

5.2.2. Case l′ = Cj. Theorem 4.29 implies that the simple modules of the category
OΦ,θ are modules of degree 1. Then proposition 3.16 asserts that these modules split
into a direct sum of simple cuspidal l–modules. Moreover any M in the category
OΦ,θ can be seen as a cuspidal l-module by restriction (this is the cuspidality
condition). Applying theorem 2.19, we get that as a l-module M is semisimple.

On the other hand, the restriction condition of category OΦ,θ implies that M
is a semisimple lθ-module. Hence M is semisimple as a g-module. Therefore we
proved

Corollary 5.11. Let θ ⊂ Φ be such that Φ \ θ = Cj. Then the category OΦ,θ is
semisimple.

Remark 5.12. If θ = Φ, the category OΦ,Φ is semisimple by definition. On the
other hand, if θ = ∅, the category OΦ,∅ is also semisimple according to the theorem
2.19. Thus if g = Cn, then the category OΦ,θ is semisimple for any subset θ of Φ.

Appendix A. Case g = A3

Let g = sl4(C). We described the category OΦ,θ(g) in all cases except when
θ = {e2, e3}. We handle this case here. It corresponds to the following Dynkin
diagram:

u u ui
α β1 β2
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We shall use the notations introduced in section 4.2.1. Recall we set l := lΦ\θ.
For simplicity, we set X− := X−α and X+ = Xα. Since the semisimple Lie
algebra l′ is isomorphic to sl2(C) we know that the simple modules in OΦ,θ are
the L(C) where C is a simple cuspidal l-module, isomorphic to some N(a1, a2) as a
l′-module, with a1 and a2 non integer complex numbers. Recall that we denoted by
V (C) the corresponding generalised Verma module and by p the natural projection
p : V (C) → L(C).

The center of l is two dimensional and generated by H1 := Hα + 2Hβ1 and
H2 := Hβ2. We denote by c(k) the action of Hβ1 on x(k) ∈ C. We have seen in
lemma 4.15 that c(k) = c + a2 − k with c = 0 or c = −1 − a1 − a2. As H2 is in the
center of l, it acts on C by some constant that we shall denote by d. As in corollary
4.16, we prove that if d = 0 then the module L(C) is isomorphic to N(a1, a2, 0, 0)
if c = 0 or to N(−1 − a2, −1 − a1, 0, 0) if c = −1 − A.

In what follows we assume that d 6= 0. This condition implies that p(X−β2 ⊗
x(b)) 6= 0. Indeed, we have Xβ2 · X−β2 ⊗ x(k) = H2 ⊗ x(k) = d × 1 ⊗ x(k) 6= 0.
Then we apply proposition 2.7 to conclude. We shall find the possible values for d
in order the module L(C) be in category OΦ,θ in the spirit of section 4.2.1.

From lemma 4.6, there are two complex numbers η1(k) and η2(k) such that

(21) p(X−α−β1−β2 ⊗ x(k) = η1(b)p(X−β2X−β1 ⊗ x(k − 1))

+ η2(b)p(X−β1X−β2 ⊗ x(k − 1)).

We apply the vector Xα+β1+β2 to equation (21). We get:

p(Hα+β1+β2 ⊗ x(k)) = η1(k)p(X+ ⊗ x(k − 1)),

which gives us the following equation:

c + d + a1 + k =(a2 − k + 1)η1(k).(22)

We apply then the vector Xβ2 to equation (21). We have

p(X−α−β1 ⊗ x(k)) = η1(k)p(H2X−β1 ⊗ x(k − 1)) + η2(k)p(X−β1H2 ⊗ x(k − 1)),

which gives together with lemma 4.15:

η(k) =(d + 1)η1(k) + dη2(k).(23)

Finally we apply Xβ1+β2 to equation (21). We get

p(X− ⊗ x(k)) = η1(k)p(Hβ1 ⊗ x(k − 1)) + η2(k)p(−H2 ⊗ x(k − 1)),

from which we obtain

a1 + k =(c + a2 − k + 1)η1(k) − dη2(k).(24)

From equations (22), (23) and (24) we find the following values:






η1(k) = − c+a2−k+2
a2−k+1

,

η2(k) = c+a2−k+1
a2−k+1

,

d = −2 − A − 2c.
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Note in particular that d is entirely determined by A = a1 + a2 and c.
Conversely, we have to show that given c ∈ {0, −1 − A} and d = −2 − A − 2c

the corresponding module Lc,d(a1, a2) belongs to the category OΦ,θ. We prove it
for the case (c, d) = (0, −2 − A), the other one being analogous. Of course we only
need to show that the module L(C) satisfies the restriction condition. First PBW
theorem implies that L(C) is generated by the following weight vectors:

p(Xm1
−β1−β2

Xm2
−β2

Xm3
−β1

Xm4
−α−β1−β2

Xm5
−α−β1

⊗ x(k)).

Thanks to lemma 4.15 and equation (21), this reduces to the following vectors
only:

p(Xm1
−β1−β2

Xm2
−β2

Xm3
−β1

⊗ x(k)).

This proves that L(C) splits into a direct sum of lθ-modules, namely the modules
Mk := p(U(lθ) ⊗ x(k)).

Thus it remains to prove that Mk is a simple highest weight module. From lemma
4.5 we already know that Mk is a highest weight module, generated by the highest
weight vector p(1 ⊗ x(k)). Its l′θ-highest weight is λ = (a2 − k)ω1 + (−2 − A)ω2

where ωi are the fundamental weights of l′θ. Let Vk be the l′θ-Verma module with
highest weight λ. Using a theorem of Bernstein-Gelfand-Gelfand (see for instance
[16, thm 5.1]), we remark that Vk is simple (and therefore isomorphic to Mk by the
universal property of Verma modules) if and only if A 6∈ Z<−1.

So it only remains to work out the case A ∈ Z<−1. In this case, Bernstein-
Gelfand-Gelfand’s theorem [16, thm 5.1] together with the Kazdhan-Lusztig con-
jecture for rank two Lie algebras (see for instance [16, chapitre 8]) show that V
admits a unique simple submodule L(µ) with µ = s

β2
· λ. We shall see Vk as a

l′θ-submodule of V (C). Then it is easy matter to check that the submodule L(µ) is
generated by X−A−1

−β2
⊗x(k). On the other hand, one shows by straightforward com-

putation that X−A−1
−β2

⊗ x(k) is annihilated by the action of Xα+β1 and Xα+β1+β2.

Using proposition 2.7, we conclude that p(X−A−1
−β2

⊗ x(b)) = 0. But now by the
universal property of the Verma module Vk there is a surjective map from Vk onto
Mk. As we just shown that p(L(µ)) = 0, we get a surjective map from Vk/L(µ)
onto Mk. As L(µ) is the unique submodule of Vk, the quotient Vk/L(µ) is simple
and so is Mk. This completes the proof of the following

Proposition A.1. (1) The simple modules in OΦ,θ are the modules Lc,d(a1, a2)
with a1, a2 ∈ C \ Z, c ∈ {0, −1 − a1 − a2} and d ∈ {0, −2 − a1 − a2 − 2c}.

(2) If d = 0, the module Lc,d(a1, a2) is of degree 1, isomorphic to some module
N(a′

1, a′
2, 0, 0), with a′

1 and a′
2 non integer complex numbers.

Remark A.2. If d 6∈ Z, the module Lc,d(a1, a2) is not of finite degree. Indeed, in
this case A 6∈ Z. Therefore the previous proof implies that the simple lθ-modules
Mk are isomorphic to Verma modules, which are obviously not of finite degree.
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