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Abstract12

A large-scale field survey was undertaken in the Neste system (South-West France) to 13

investigate the impact of pesticide inputs on the structure of riverine benthic diatom 14

communities. A total of 18 sites in the “Coteaux de Gascogne” study area were sampled 15

during periods of pesticide use over two consecutive years (2005-2006).16

The typology of the diatoms collected was determined using artificial neural networks 17

generating patterns in diatom community composition that indicated the species influenced by 18

pesticide inputs, combined with organic pollution. Small, pioneer species of the Achnanthales 19

group were more frequent in the pesticide-contaminated assemblages, whereas slower 20

colonizers were more often found in the sites where disturbance was lower. The Phytopixal 21

approach, a means to assess the spatial contamination potential, provided valuable 22

information about pesticide exposure and was a successful means of discriminating diatom 23

assemblages, suggesting that a global estimate of pesticide pollution risk, although rough, 24

would be more appropriate and more representative than sporadic pesticide analyses.25
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1. Introduction30

Over the last decades, agricultural herbicide application has become the predominant weed 31

control method but the introduction of herbicides into aquatic environments, mostly through 32

surface water run-off, is likely to have subsequent consequences for non-target organisms, in 33

particular freshwater algae that form the base of the aquatic food webs. Hence, the effects of 34

pesticides on the structure and functions of these communities may alter other components of 35

the ecosystem.36
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So far, investigations into the effects of agricultural pollution (fertilizers and pesticides) on 37

periphytic algal communities are scarce (Guasch et al., 1997; Guasch et al., 1998; 38

Hatakeyama et al., 1994; Navarro et al., 2002) and generally disconnected from field 39

complexity. Most work on pesticides to date has been performed in the laboratory on diatom 40

isolates, often using single compounds. Since these compounds are rarely found alone in 41

aquatic environments which present a variety of other substances, commercial formulations 42

and breakdown products, exhaustive screening of all potential pesticides by physicochemical 43

analyses is almost impossible.44

Herbicides can affect algal growth and physiology, as well as community structure but the 45

responses of diatoms to pesticide contamination have been shown to vary greatly among 46

compounds (Eullaffroy and Vernet, 2003; Källqvist and Romstad, 1994; Nyström et al., 1999; 47

Pipe and Cullimore, 1984) and their combinations (Hatakeyama et al., 1994; Hoagland et al., 48

1996) and concentrations (Abdel-Hamid et al., 1996; Källqvist and Romstad, 1994), the 49

species involved (Kasai et al., 1993; Lockert et al., 2006; Nyström et al., 1999; Pérès et al., 50

1996) or even the strains (Kasai et al., 1993; Millie and Hersh, 1987) and experimental 51

conditions (Tlili et al., 2008 and references therein). Many laboratory bioassays have revealed 52

that the toxic effects of some pesticides on freshwater diatoms may occur at environmentally 53

realistic concentrations (i.e. < 1µg/L)(Guanzon and Nakahara, 2002; Källqvist and Romstad, 54

1994; Nyström et al., 2002). However, the effects on natural multispecific populations, 55

described through biological indices, did not express significant relationships between these 56

indicators and total pesticide concentrations (Dorigo et al., 2004; Liess et al., 2005). The main 57

determinants of diatom community structure may thus not only be pesticides, especially in 58

agricultural contexts where heavy fertilizer pollution is also observed, and there is a need for 59

alternative methods for the assessment of pesticide impact on aquatic ecosystems.60

Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): a case study in the Neste river system (South-West France). 
Morin, S. etal. Aquatic Toxicology, 2009, vol. 94, n° 1, p. 28-39.  
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4G-4WD7B25-2&_user=5403746&_coverDate=08%2F13%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%234974%232009%23999059998%231333053%23FLA%23display%23Volume)&_cdi=4974&_sort=d&_docanchor=&_ct=11&_acct=C000037979&_version=1&_urlVersion=0&_userid=5403746&md5=310aafa36ef93b3a0f0a8cc82e281f9c



Here, we propose to use typologies based on diatom community structure first (Grenier et al., 61

2006; Park et al., 2006; Tison et al., 2005) to group homogeneous species distributions in the 62

“Coteaux de Gascogne” area, then to allow the determination of the most structuring 63

environmental parameters explaining the biotypology, i.e. describing the largest part of the 64

variance in the diatom dataset. In this study, herbicide exposure was characterized via the 65

number of compounds recorded and the total and maximum pesticide concentrations 66

determined from field samplings. At the same time, a “spatial contamination potential” 67

approach (Phytopixal) based on the vulnerability of the environment (slope, pedology, 68

distance from the stream) and the agricultural pressure (Macary et al., 2007) provided data 69

that were compared to the patterns observed in the diatom communities.70

71

2. Materials and methods72

2.1. Study design73

Located in the “Coteaux de Gascogne” region (SW France), the Neste system is part of an 74

exclusively agricultural river basin with upstream dams that resupply rivers from which 75

farmers directly withdraw water for irrigation (Trouvat, 2001). Over 75% of the watershed 76

area is cultivated, and is especially under cereals.  The hydrological regime of the rivers is 77

pluvial, with low water period in Summer, with water circulating mainly superficial, making 78

this area vulnerable to surface run-off and erosion processes which may enrich river waters 79

with pollutants.80

A total of 18 sites belonging to the Neste system were selected along 4 watersheds (Save, 81

Touch, Sousson and Gèze catchments) and 2 complementary sites (the Jasse and Vermeil 82

rivers) to match the following requirements: all-year flow; agricultural pesticide use; expected 83

various pesticide loads. The streams were monitored for 2 years (2005-2006) and sampled 84

during herbicide spraying periods (i.e. in Spring: from mid-March to mid-June).85
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86

The location of the sites is displayed in Figure 1. The following catchments were 87

distinguished: 88

- the Sousson river (catchment surface area: 120 km²; sites Aujan, Dareous and Auch) 89

and its tributaries Hay and Cedon streams, with steep slopes on the right bank and 90

wide, gently sloping irrigated corn crops on the left bank (Colin et al., 2000).91

- the Gèze stream (sites Organ and Peyret), a tributary of the Sousson river draining a 92

heavily cultivated area.93

- the Save river (catchment surface area: 1150 km²; sites Gorges, Anan, Espaon and 94

Cazaux) and its tributary Montoussé, with mixed farming and livestock upstream and 95

irrigated corn, oil-seed crops and cereals downstream.96

- the Touch river (catchment surface area: 515 km²; sites Lilhac, Fabas, Savères and 97

Lamasquère), has its source in the forest of Lannemezan plateau and runs through 98

corn, oil-seed and soya crops and large agricultural plains downstream (from Savères 99

site).100

On the right bank of the Garonne river, the sites Jasse and Vermeil are located upstream and 101

at the outlet (respectively) of a small hilly watershed subjected to intensive agricultural land 102

use (irrigated crops and cereals).103

104

2.2. Calculation of the potential risk105

The spatial indicator Phytopixal was used to assess the agricultural pressure and impact on the 106

surface water pollution potential (Macary et al., 2007). It is calculated from data available at 107

different observation scales (i.e. plot, elementary drainage basin, or the entire drainage area) 108

and information has to be averaged or “aggregated” from the pixels on remote-sensing images 109

to the targeted Optimal Spatial Resolution (Marceau et al., 1994), i.e. final observation unit. 110
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To enable between-scale data transfer, this indicator of the pollution risk due to pesticide 111

treatments was developed on a pixel scale, using very high resolution images (20 m x 20 m 112

for a SPOT XS image, 30 m x 30 m for a LANDSAT image). This enables the detection of 113

the smallest geographical objects related to agricultural landuse (plots). Other variables of 114

importance in the pesticide pollution process were included in the GIS within the ArcGIS115

system and are scaled from 1 to 5, corresponding to an increasing risk of pollution. By means 116

of this scale, we used information relative to: (i) topography, related to increasing slopes, (ii) 117

pedology (for the Save watershed only) depending on soil types and their influence on 118

pesticide transfer mechanisms, (iii) hydrography, with decreasing distance to the stream, (iv) 119

landuse patterns and cropping practices (number of pesticides treatments, determined after 120

Agreste, Recensement Agricole 2000).121

Then, aggregation to the plot scale enabled a description to be given of the elementary 122

drainage basin; aggregation to the elementary drainage basin enabled a description of the 123

drainage area; and aggregation to the drainage area enabled a description of the entire 124

watershed. Indeed, the method developed can characterize functional investigation units at 125

different spatial scales, ranging from the elementary drainage basin to a large river basin, with 126

respect to the surface water pollution potential. In this study, information acquired at the pixel 127

level was not relevant so we used a large-scale spatial organization level (drainage area).128

129

2.3. Periphyton sample collection and diatom identification130

Periphytic diatoms were sampled from natural substrates by scraping pebbles (following the 131

protocol of the European standard NF EN 13946) and artificial substrates (glass slides, 300 132

cm² area for both sides) installed at each site for a 21-day immersion (as described in Morin et 133

al., 2008). At each time, glass slides were retrieved, scraped to give 3 replicate samples of 134

Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): a case study in the Neste river system (South-West France). 
Morin, S. etal. Aquatic Toxicology, 2009, vol. 94, n° 1, p. 28-39.  
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4G-4WD7B25-2&_user=5403746&_coverDate=08%2F13%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%234974%232009%23999059998%231333053%23FLA%23display%23Volume)&_cdi=4974&_sort=d&_docanchor=&_ct=11&_acct=C000037979&_version=1&_urlVersion=0&_userid=5403746&md5=310aafa36ef93b3a0f0a8cc82e281f9c



periphyton and fixed with a 37% solution of formaldehyde. Bare slides were placed in the 135

water column for a new 21-day colonization.136

Taxonomic analysis of diatom assemblages was performed for all the periphyton samples, 137

which were prepared according to the procedure described in ANSP protocols (Charles et al., 138

2002).139

After digestion of the samples in boiling hydrogen peroxide (30% H2O2) and hydrochloric 140

acid (35 %), permanent slides were prepared by mounting the cleaned diatom frustules on a 141

glass microscope slide in Naphrax© (Brunel Microscopes Ltd, UK), a high refractive index 142

(1.74) medium. A minimum of 400 diatom valves were identified on each slide at 1,000× 143

magnification, using taxonomic literature from central Europe (Krammer and Lange-Bertalot, 144

1986 - 1991) and recent nomenclature updates. Relative abundances of each species and 145

species richness were estimated, diatom diversity was calculated using the Shannon index, 146

and Biological Diatom Index (BDI-2006; Coste et al., 2009) and Specific Polluosensitivity 147

Index (IPS; Coste in Cemagref, 1982) values were determined. 148

149

2.4. Stream water physicochemical parameters150

Water quality was evaluated every 21 days through the determination of in situ151

physicochemical parameters (pH, temperature, conductivity, dissolved oxygen; WTW, 152

Weilheim, Germany) during the experimental periods. Two-litre stream water samples were 153

simultaneously collected and brought back to the laboratory for nutrient (phosphate, silica, 154

ammonium, nitrite and nitrate) measurements and pesticide analyses. Nutrient concentrations 155

were determined according to French and international standards (NF T90-023, NF T90-007, 156

NF EN ISO 11732 and NF EN ISO 13395).157

158

2.5. Chemicals159

Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): a case study in the Neste river system (South-West France). 
Morin, S. etal. Aquatic Toxicology, 2009, vol. 94, n° 1, p. 28-39.  
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4G-4WD7B25-2&_user=5403746&_coverDate=08%2F13%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%234974%232009%23999059998%231333053%23FLA%23display%23Volume)&_cdi=4974&_sort=d&_docanchor=&_ct=11&_acct=C000037979&_version=1&_urlVersion=0&_userid=5403746&md5=310aafa36ef93b3a0f0a8cc82e281f9c



Acetonitrile supragradient, methanol gradient and water gradient (HPLC grade) were 160

purchased from ICS-Science Groupe (Gradignan, France). Oasis HLB cartridges (6 mL, 500 161

mg, 60 µm) were provided by Waters (Saint-Quentin-en-Yvelines, France). All analytical 162

standards were purchased from Dr. Ehrenstorfer (Augsburg, Germany): acetochlor, aclonifen, 163

alachlor, ametryne, atrazine, chlorotoluron, deethylatrazine (DEA), deethylterbuthylazine 164

(DET), deisopropylatrazine (DIA), diuron, 1-(3,4-dichlorophenyl)-3-urea (DCPU), 1-(3,4-165

dichlorophenyl)-3-methylurea (DCPMU), 1-(4-isopropylphenyl)-3-urea (IPPU), 1-(4-166

isopropylphenyl)-3-methylurea (IPPMU), isoproturon, linuron, metobromuron, metolachlor, 167

metoxuron, monuron, monolinuron, prometryn, propazine, simazine, terbuthylazine.168

2.5.1. Sample preparation and solid phase extraction:169

The water samples were collected in glass bottles and maintained at 4 °C until sample 170

preparation. Preconcentration of the analytes from water samples was accomplished by using 171

solid phase extraction (SPE) with Oasis HLB cartridges. Prior to SPE, 200-mL water samples 172

(pH adjusted to 7) were filtered using GF/F glass microfibre filters (0.7 µm pore size). SPE 173

was conducted using a VisiPrep 12-port manifold (Supelco, Saint-Germain-en-Laye, France). 174

The conditioning, extraction and rinsing steps were carried out under a 53.33 kPa vacuum. 175

The SPE cartridges were successively washed with 10 mL of methanol, conditioned with 10 176

mL of HPLC grade water, loaded with 200-mL water samples, then rinsed with 20 mL of 177

HPLC grade water and dried with a stream of nitrogen for 30 minutes. Elutions were achieved 178

with 5 mL of methanol. The 5-mL extracts were blown under a gentle stream of nitrogen and 179

dissolved within 1 mL of an acetonitrile and water (20:80, v/v) mixture prior to the analysis 180

with an ODS 2 column. The recoveries are reported elsewhere (Mazzella et al., 2007).181

2.5.2. HPLC-DAD determination of herbicides:182

HPLC system: Finnigan SpectraSYSTEM SCM1000 Solvent Degasser, Finnigan 183

SpectraSYSTEM P4000 Quaternary Pump, Finnigan SpectraSYSTEM AS3000 Autosampler184
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(column oven set at 30°C) and Finnigan UV6000LP photodiode array detector (Thermo 185

Electron Corporation, MA, USA). Detection wavelengths: λ=220 nm for acetochlor, 186

aclonifen, alachlor, ametryne, atrazine, deethylatrazine (DEA), deethylterbuthylazine (DET), 187

deisopropylatrazine (DIA), metolachlor, prometryn, propazine, simazine and terbuthylazine.188

λ=240 nm for chlorotoluron, diuron, 1-(3,4-dichlorophenyl)-3-urea (DCPU), 1-(3,4-189

dichlorophenyl)-3-methylurea (DCPMU), 1-(4-isopropylphenyl)-3-urea (IPPU), 1-(4-190

isopropylphenyl)-3-methylurea (IPPMU), isoproturon, linuron, metobromuron, metoxuron, 191

monuron and monolinuron.192

The HPLC determination of herbicides was adapted from Dupas et al. (1996) and performed 193

with a Prontosil Spheribond ODS 2 column (250 x 4 mm, 3 µm) with a C18 (10 x 4 mm, 6 194

µm) guard column (Bischoff Chromatography, Leonberg, Germany). The injection volume 195

and composition were 50 µL and acetonitrile/water (20:80, v/v), respectively. The limits of 196

quantification after the SPE preconcentration (about 200:1) were between 20 and 50 ng L-1 for 197

the chemical of interest. The binary gradient was made up of acetonitrile and HPLC water. 198

The proportion of acetonitrile was maintained at 20 % for 5 minutes, then increased to 50 % 199

after 60 minutes, and further increased to 90 % after 5 minutes, and kept constant for 10 200

minutes. Afterwards, the proportion of acetonitrile was decreased to 20 % in 3 minutes and an 201

isocratic phase was applied for 7 minutes. The flow rate was maintained at 0.4 mL min-1 for 5 202

minutes, then increased to 0.5 mL min-1 after 60 minutes, and kept constant for 15 minutes. 203

Lastly, the flow rate was returned to initial 0.4 mL min-1 after 10 minutes. The total running 204

time was 90 minutes.205

206

2.6. Data analysis207

Self-organizing maps (SOM; Kohonen, 1995) are known to be an efficient alternative to 208

traditional statistical methods to deal with datasets ruled by complex, non-linear relationships, 209
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providing a topology-preserving projection of the data space onto a more comprehensible 210

two-dimensional space. These unsupervised neural networks were trained under a Matlab ® 211

environment (v7.0.4.365, The MathWorks, 2005), and the SOM toolbox (version 2.0 beta) 212

developed by the Laboratory of Computer and Information Science, Helsinki University of 213

Technology (http://www.cis.hut.fi/projects/somtoolbox/documentation/somalg.shtml). We 214

used Bray-Curtis (Bray and Curtis, 1957) distances between log-transformed relative 215

abundances of diatom species (Park et al., 2006). The optimal size of the map (12 rows × 8 216

columns) was determined in order to minimize the topographic and quantization errors. A 217

hierarchical cluster analysis on the SOM output using the Unweighted Pair Group Method 218

Analysis algorithm allowed the determination of homogeneous clusters. Neighbouring 219

clusters of sites are represented by neighbouring hexagons on the map according to species 220

assemblages, whereas sites very different from each other are expected to be distant in the 221

map. For clarity it is the number of the clusters obtained (i.e. of the 4 groups) that are noted 222

on the SOM map rather than the sample numbers.223

Then the specific weight of each physicochemical parameter on the SOM data clustered 224

together was determined by using Linear Discriminant Analysis (LDA) in the ade4 package 225

(Thioulouse et al., 1997) implemented in the R environment (Ihaka and Gentleman, 1996; 226

http://www.r-project.org/). This statistical technique aims to classify the dataset into mutually 227

exclusive groups (i.e. the 4 clusters) based on the physicochemical parameters that can best 228

separate the samples. The predictability of the clusters from the physicochemical data was 229

tested using the Jackknife procedure with the package MASS (Venables and Ripley, 2002).230

The IndVal method (Dufrêne and Legendre, 1997) was then used to identify the indicator231

value of species, in order to determine the ones that structured the dataset most.232

233
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3. Results234

3.1. Pesticide monitoring235

Pesticide concentrations were below detection levels most of the year but during spreading 236

periods many compounds were detected (Table 1 and Table 2), with total herbicide 237

concentrations frequently exceeding the general EU drinking water threshold of 0.5µg/L 238

(about 1/3 of the samples analyzed) and occasionally above 5µg/L (10.3µg/L in the Jasse and 239

6.3µg/L at Auch, Sousson river, in April 2005; 6.3µg/L at Lilhac, Touch river, May 2006; 240

5.1µg/L at Auch, June 2005). The compounds recorded, displayed in Table 2, were triazines 241

(5 herbicides + 3 breakdown products), phenylureas (8 + 4), chloroacetanilides (3 herbicides) 242

and diphenyl-ethers (1).243

The spatial contamination potential (Phytopixal) gives an annual average pollution risk for 244

years 2005 and 2006 (Figure 2). For both years, the maps indicate a gradient of potential 245

pesticide pollution from up- to downstream, Phytopixal values ranging from 1 (site Gorges, 246

not far from the source of the Save river) to 6 at sites Cazaux and Montoussé (downstream of 247

the Save catchment). Between 2005 and 2006, pollution tended to decrease slightly in some of 248

the drainage areas.249

250

3.2. Biotypology of the streams251

A total of 473 species (including 69 abnormal forms) were identified. The clusters based on 252

diatom communities (Figure 3) were compared to environmental data (Table 3, Figure 4), and 253

allowed us to separate two main clusters and four sub-clusters corresponding to the following 254

stream characteristics:255

- Clusters 1 & 3 (111 samples) with elevated pesticide inputs 256

- Clusters 2 & 4 (316 samples) with lower pesticide concentrations.257

The second level of discrimination was linked to trophic pollution:258
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- Clusters 1 & 2 exhibited high nutrient (nitrate, nitrite, phosphate) levels259

- Clusters 3 & 4 had lower nutrient bioavailability.260

After cross-validation, clusters 2 and 4 were better predicted (respectively 63 and 80%) with 261

LDA than clusters 1 and 3. However cluster 1 was predicted to 43% by the data of clusters 1 262

and 2 (high nutrient availability), and cluster 3 to 56% by those of clusters 3 and 4 (lower 263

nutrient concentrations). 264

Among the taxa used for the SOM analysis, 124 had significant IndVal values for the two 265

main clusters or four sub-clusters (Table 4).266

267

4. Discussion268

4.1. Land use 269

Neither wastewater treatment plants nor industrial facilities are found in the area studied; 270

hence we assumed that pesticide concentrations were due to non-point source pollution input 271

through runoff. The Phytopixal representation expresses the vulnerability of the soils and the 272

gradient of land use between up- (principally prairies) and downstream (short rotations spring 273

cereals / oil seed, and corn in the valley), with a theoretical increase in the use of pesticides 274

(in numbers of treatments per crop). Although the concentrations and numbers of compounds 275

recorded were highly variable between sites and dates, the herbicides detected are in 276

accordance with those commonly sprayed on corn, cereals and oil seed crops in this area 277

(http://www.midipyrenees.chambagri.fr/). However, the use of some of the compounds 278

detected is forbidden in France (e.g. monuron since 1994; monolinuron since 2001; linuron, 279

atrazine, simazine, terbuthylazine, propazine and ametryn since 2003), suggesting soil storage 280

or illegal use. 281

282

4.2. Relationships between pesticide inputs and diatom community structure283
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As seen in the gradient up- to downstream of pesticide and nutrient concentrations (Table 1), 284

eutrophication and pesticides are major stressors affecting agricultural environments (Smith, 285

1998). The effects of organic contaminations on periphytic diatoms have been widely studied, 286

leading to the routine use of many diatom-based trophic indices in Europe (for a review, see 287

Prygiel et al., 1999). In the present study diatom indices BDI and IPS (Table 3) expressed the 288

trophic contamination levels better than they expressed pesticide exposure, as underlined by 289

Dorigo et al. (2004). This could indicate the unsuitability of these indices for the assessment 290

of pesticide contaminations, or imply a poor description of the water’s physicochemical 291

characteristics (mainly pesticides) through point measurements. This was further observed in 292

the LDA performed on the physicochemical data where it was clear that nutrients were the 293

main discriminating factor.294

It was expected that the abundances of valve abnormalities would indicate pesticide exposure, 295

following the laboratory results of Schmitt-Jansen and Altenburger (2005) and Debenest et al. 296

(2008). However, the percentages of deformities were very low (below 1%, see Table 3), 297

variable, and not clearly related to pesticide exposure. Experiments with triazines and 298

sulphonylureas showed a decrease in specific diversity (Abdel-Hamid et al., 1996; Hamala 299

and Kollig, 1985; Hamilton et al., 1987; Seguin et al., 2001), which was also observed in this 300

survey with multi-substance contamination (Table 3). 301

Herbicides exert selection pressure when the exposure reaches a certain level for a sufficient 302

period of time, which varies depending on the environmental conditions. It has been shown 303

that the toxicity of triazines is influenced by light and temperature (Guasch and Sabater, 1998; 304

Guasch et al., 2003; Krieger et al., 1988; Millie et al., 1992) and by their degradation stage 305

(Stratton, 1984). Agricultural streams being more likely to have little shading, periphyton 306

communities would consequently be more sensitive to the pesticides and diatom-dominated, 307

according to previous studies (Guasch et al., 1998; Hamala and Kollig, 1985; Tang et al., 308
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1997). Furthermore, since organisms vary in their resistance to toxicants, the selection 309

pressure would exclude the sensitive ones which would be replaced by resistant strains or 310

species. Very little is known about diatom species sensitivity to pesticides. Of the main 311

structuring species of clusters 1 and / or 3, inferred from their IndVal value (Table 4), some 312

have already been shown to tolerate triazines, for example Achnanthidium minutissimum313

(Herman et al., 1986; Kasai et al., 1993; Munoz et al., 2001; Seguin et al., 2001) or Cocconeis 314

placentula (Goldsborough and Robinson, 1986), and phenylureas, like  P. frequentissimum315

(Pérès et al., 1996). Melosira varians (Pérès et al., 1996; Spawn et al., 1997) has been shown 316

to be sensitive to pesticides, but some of the other species preferentially found in clusters 2 317

and / or 4 are likely to tolerate a number of pesticides: Cyclotella meneghiniana (Kosinski, 318

1984; Millie and Hersh, 1987), Eolimna minima (Pérès et al., 1996), Encyonema minutum319

(Seguin et al., 2001), Fragilaria capucina (Carder and Hoagland, 1998; Guasch et al., 1998), 320

Navicula lanceolata (Guasch et al., 1998), Nitzschia fonticola (Kasai, 1999; Munoz et al., 321

2001), N. palea (Guasch et al., 1998; Hatakeyama et al., 1994; Kasai et al., 1993; Kasai, 322

1999), and Ulnaria ulna (Hatakeyama et al., 1994; Kasai et al., 1993). 323

Diatom community responses to pesticide contamination are also affected by changes in the 324

physicochemical conditions (conductivity, nutrient concentrations, etc.) and environmental 325

factors such as interspecific interactions. This implies competition for resources (light, 326

nutrients: Lozano and Pratt, 1994; Turbak et al., 1986) and allelopathic interactions between 327

diatoms throughout succession (Guasch et al., 1998), as well as indirect disturbances of the 328

grazing pressure (deNoyelles et al., 1982). The affinities of many species for varied trophic 329

levels are well known (van Dam et al., 1994) and most of the structuring species were meso-330

to hyper-eutraphentic. However, in clusters 3 and 4 species were found with lower trophic 331

indicator values (oligotraphentic to mesotraphentic). This was also underlined by the BDI and 332

IPS values (Table 3). It has been suggested that some taxa may also avoid direct deleterious 333
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effects of herbicides by their ability to grow heterotrophically (Goldsborough and Robinson, 334

1986; Pérès et al., 1996), although this was not demonstrated by our data (Table 3).335

Other factors accompanying flood events, such as increased scour, may have exerted species-336

specific pressure on diatom community structure when combined with pesticide exposure: 337

Wang et al. (1997) demonstrated inhibited adhesion in the diatom Achnanthes longipes338

exposed to the herbicide DCB. The consecutive changes in periphyton physiognomy may 339

influence the overall community responses to toxicants by modifying the diffusion gradients 340

within the biofilm, and hence its sorption capacities (Guasch et al., 2003; Headley et al., 341

1998).342

343

Benthic communities are often exposed to a mixture, rather than to individual toxicants; few 344

studies have assessed whether such combinations act synergistically, additively or 345

antagonistically (Megharaj et al., 1990; Munkegaard et al., 2008; Stratton, 1984). Obviously, 346

diatom species respond differently to pesticide exposure depending on concomitant organic 347

contamination. This confirms that conclusions based on standard single-species tests provide 348

limited assessment of possible environmental impacts. Toxicity endpoints that have been 349

established for numerous pesticides and many algal species (available in the PAN Pesticide 350

database: www.pesticideinfo.org; the EC50 of the widely studied green alga 351

Pseudokirchneriella subcapitata for the pesticides recorded in this survey are given in Table 352

2) do not provide reliable information about the effective toxicity of these compounds to 353

diatom communities. Indeed, it has been demonstrated for many herbicides that periphyton 354

photosynthetic activity is affected at lower concentrations than the effective concentrations 355

published for standard single-species growth tests with phytoplankton species (Gustavson et 356

al., 2003). Furthermore effects of pesticides in the field are mostly related to multi-substance 357

contamination, but current risk assessment does not consider mixture toxicity. Hence, the data 358
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it provides may be useful in itself but unlikely to successfully evaluate the potential hazard of 359

chemicals at the ecosystem level. As the sensitivity / tolerance characteristics of species are 360

scarce and have generally been determined in simplified laboratory conditions, it is difficult to 361

extrapolate such results directly to stream ecosystems. From the present field study, the co-362

occurrence of the species reported in Table 4 may constitute a basis for the use of diatoms as 363

indicators of pesticide contamination.364

365

4.3. Use of a spatial contamination potential vs. point measurements366

Considering the multitude of pesticides applied in this agricultural context (25 compounds 367

including pesticides and their metabolites were recorded here) and the moderate significance 368

of point measurements, it is difficult to ascribe direct toxicity to the concentration of a single 369

compound. The Phytopixal has been designed as an indicator of the potential run-off of 370

contaminants to the aquatic environment. The pesticides analyzed at each sampling date being 371

highly dependent on the local environmental conditions (rainfall and flooding events), some 372

of the measurements of elevated concentrations in the streams were almost synchronous with 373

changes in precipitation regimes (http://www.meteofrance.com/) and / or discharge 374

(http://www.hydro.eaufrance.fr/). The high level of prediction of clusters 2 and 4, when the 375

prediction of clusters 1 and 3 was grouped with clusters 2 and 4 respectively, indicates that 376

organic pollution was accurately predicted throughout the survey. The variations in pesticide 377

measurements discarded the prediction of the clusters involved, whereas Phytopixal, while 378

not indicating the nature of the herbicides employed and possibly also other pollutants, or any 379

interactions occurring between them, nevertheless provides a rudimentary estimate for 380

understanding the stream community structure. It can be argued that, in chronically-381

contaminated conditions, a global indicator of pollution levels would give a better estimate of 382

pesticide stress than a single measurement, which would correspond either to a chronic stress 383
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or a peak concentration. In this survey, the relationships between the Phytopixal and clusters 384

1-3 vs. 2-4 were more significant than those using pesticide concentrations or the number of 385

compounds detected. Experimental studies have previously shown that periphytic 386

communities grown in slightly contaminated conditions initially change in taxonomic 387

composition, but are less impaired when subjected to a secondary stress (Kasai, 1999; 388

Niederlehner and Cairns, 1992; Tlili et al., 2008). Moreover, field experiments of biofilm 389

translocation from polluted to unpolluted sites (and vice-versa) showed a high resilience of 390

diatom communities from polluted streams (Ivorra et al., 1999; Tolcach and Gómez, 2002). 391

As a consequence, a global estimate may still yield a good indication of potential pesticide 392

effects on the biota, despite variations in in situ measured concentrations. 393

394

5. Conclusions395

Diatom classification based on community structure, and the relationship to environmental 396

descriptors, underlined that pesticide and nutrient inputs play an important role in structuring 397

the communities of the Neste system. The best estimate of pesticide exposure available in the 398

dataset was given by the Phytopixal approach, which does not necessarily express the 399

effective concentrations in the field. The use of passive integrative samplers to average out 400

water-soluble organic chemicals in aqueous environments has been proposed to provide time-401

weighted concentrations over long immersion periods, mimicking the exposure of aquatic 402

organisms (Alvarez et al., 2004; Huckins et al., 1993; Mazzella et al., 2007). Further 403

investigations are needed to determine whether sampling strategies using passive samplers 404

provide increased information and significance about the responses of periphytic 405

communities.406
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Figure captions624

Figure 1: Location of the study sites of the Neste system (SW France)625

Figure 2: Spatial contamination potential (Phytopixal) in the Neste system in 2005 and 2006.626

Figure 3: The patterned SOM map (left) and hierarchical cluster analysis (right) used to define 627

clusters on the units of the SOM map.628

Figure 4: Linear discriminant analysis based on the physicochemical characteristics of the 629

water of each cluster (eigenvalues: Axis 1: 0.43, Axis 2: 0.16). (a) projection of the samples, 630

grouped by clusters (noted Cl); (b) projection of the environmental parameters.631
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Figure 2

Source : Landsat 5 TM Pictures, Carthage DB, 

MNT BD Topo (IGN), SRPV Midi Pyrénées

Realisation : Cemagref, UR ADBX, 2007
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Figure 3
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Figure 4
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Table 1: Field water physicochemical characteristics. Data are mean ± standard deviation. 

Number of 
samples

pH Conductivity 
(µS/cm)

Ammonium 
(mg/L)

Nitrite 
(mg/L)

Nitrate 
(mg/L)

Orthophosphate 
(mg/L)

Oxygen 
(mg/L)

Suspended matter 
(mg/L) *

Highest pesticide 
concentration (µg/L) 
[number of compounds 
detected]

Sousson catchment
Aujan 32 8.1 ± 0.1 518 ± 8 0.09 ± 0.02 0.25 ± 0.07 27.6 ± 2.3 0.23 ± 0.03 7.8 ± 0.6 29.6 ± 7.8 1.57 [18]
Dareous 31 8.3 ± 0.1 529 ± 15 0.14 ± 0.03 0.38 ± 0.07 23.2 ± 3.1 0.21 ± 0.03 8.7 ± 0.7 140.4 ± 51.3 1.88 [16]
Hay 10 8.2 ± 0.1 628 ± 12 0.05 ± 0.01 0.11 ± 0.01 22.8 ± 1.4 0.08 ± 0.01 9.1 ± 0.7 11.8 ± 3.7 1.84 [8]
Cedon 32 8.1 ± 0.1 440 ± 51 0.06 ± 0.01 0.10 ± 0.01 13.3 ± 1.7 0.12 ± 0.01 8.2 ± 0.6 32.4 ± 2.4 1.95 [16]
Auch 29 8.1 ± 0.1 596 ± 12 0.18 ± 0.06 0.29 ± 0.09 21.2 ± 1.7 0.13 ± 0.02 8.1 ± 0.6 42.5 ± 11.2 6.30 [21]
Gèze catchment
Organ 10 7.9 ± 0.1 137 ± 5 0.03 ± 0.00 0.03 ± 0.00 8.6 ± 0.5 0.03 ± 0.00 8.3 ± 0.7 12.6 ± 0.3 0.10 [3]
Peyret 7 8.3 ± 0.1 323 ± 23 0.05 ± 0.01 0.09 ± 0.00 16.3 ± 1.2 0.17 ± 0.02 8.9 ± 0.8 10.8 ± 2.1 0.63 [8]
Save catchment
Gorges 29 8.3 ± 0.2 171 ± 4 0.03 ± 0.00 0.04 ± 0.01 4.6 ± 0.3 0.07 ± 0.01 8.7 ± 0.7 18.3 ± 4.4 0.88 [16]
Anan 32 8.4 ± 0.1 230 ± 11 0.05 ± 0.01 0.05 ± 0.01 6.7 ± 0.4 0.09 ± 0.01 9.0 ± 0.7 13.5 ± 1.2 0.35 [8]
Espaon 29 8.4 ± 0.1 236 ± 11 0.09 ± 0.01 0.10 ± 0.01 7.1 ± 0.5 0.12 ± 0.01 8.6 ± 0.7 40.2 ± 11.5 1.57 [16]
Cazaux 32 8.1 ± 0.1 344 ± 18 0.14 ± 0.01 0.19 ± 0.01 9.6 ± 0.6 0.15 ± 0.01 8.4 ± 0.7 20.7 ± 1.3 0.91 [13]
Montoussé 10 8.2 ± 0.1 842 ± 17 0.04 ± 0.01 0.09 ± 0.02 35.2 ± 0.5 0.08 ± 0.04 7.7 ± 0.6 6.1 ± 0.4 1.75 [5]
Touch catchment
Lilhac 31 8.3 ± 0.1 593 ± 8 0.02 ± 0.00 0.02 ± 0.00 4.9 ± 1.1 0.02 ± 0.00 9.0 ± 0.8 5.4 ± 1.4 6.29 [14]
Fabas 31 8.2 ± 0.1 598 ± 38 0.10 ± 0.04 0.08 ± 0.00 13.9 ± 1.5 0.06 ± 0.02 8.6 ± 0.8 30.4 ± 5.1 0.50 [9]
Savères 31 8.3 ± 0.1 629 ± 18 0.16 ± 0.05 0.10 ± 0.01 11.8 ± 1.0 0.05 ± 0.00 8.5 ± 0.6 31.8 ± 2.2 4.27 [13]
Lamasquère 32 8.2 ± 0.1 358 ± 32 0.06 ± 0.00 0.09 ± 0.01 6.3 ± 0.3 0.07± 0.00 8.5 ± 0.7 22.7 ± 1.8 1.38 [12]
Complementary sites
Jasse 10 7.8 ± 0.1 794 ± 24 0.05 ± 0.01 0.09 ± 0.01 13.4 ± 1.2 0.06 ± 0.00 6.7 ± 0.4 6.3 ± 0.9 10.33 [5]
Vermeil 9 8.2 ± 0.1 772 ± 21 0.04 ± 0.01 0.18 ± 0.02 28.3 ± 1.3 0.15 ± 0.12 8.3 ± 0.7 10.9 ± 0.4 0.27 [2]

* intercorrelation with total phosphorus (R² = 0.9034; data not shown)
Data in italics represent sites from each catchment area that do not belong to the main tributary.
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Table 2: Characteristics (from: a FOOTPRINT (2007), b Tomlin (2003), c Kegley et al. (2007), d Sbrilli et al. (2005), e Agritox Online 
Database (2007)) and concentrations of compounds recorded in the survey. DT50, water: hydrolysis half-life (or stability to hydrolysis) 
in aqueous neutral solutions at 20°C; Koc: soil:water partitioning coefficient normalized by the organic carbon fraction of soil; 
Solubility: solubility in water at 20°C; Kow: octanol:water partitioning coefficient at 20°C; EC50: the concentration of a pesticide 
producing a 50% reduction in the abundance of Pseudokirchneriella subcapitata (formerly Selenastrum capricornutum) in one week.

Compound Class DT50, watera

(days)
Koc

b,c,e

min - max
Solubility a,b 

(mg/L)
Log Kow

a,b,e EC50
a,b,c,d,e

(µg/L)
Highest 

concentration 
(µg/L)

Linuron Phenylurea 1460 341-620 63.8 3.00 67 9.10
Atrazine Triazine 86 39-513 35 2.70 49 5.53
Deisopropyl atrazine Triazine / 

Breakdown product
n/a 142 670 1.15 2 4.64

Metolachlor Chloroacetanilide Stable 121-309 530 3.40 8 1.92
Prometryn Triazine 30 277-400 33 3.34 12 1.90
Aclonifen Diphenyl-ether Stable 5318-12,164 1.4 4.37 16 1.65
Acetochlor
Alachlor

Chloroacetanilide 31
0.5

100-377
100-190

223
240

4.14
3.09

1.3
n/a

1.60

Isoproturon Phenylurea 1560 36-241 70.2 2.50 35 0.93
Deethyl atrazine Triazine / 

Breakdown product
n/a 72 3200 1.51 100

(12d-exposure)
0.89

Metoxuron Phenylurea 24 120 678 1.60 n/a 0.88
Chlorotoluron Phenylurea Stable 104-1000 74 2.50 n/a 0.81
Metobromuron Phenylurea 170 95-646 330 2.41 n/a 0.80
Monuron Phenylurea n/a 150 230 1.79 n/a 0.49
Diuron Phenylurea Stable 161-1666 35.6 2.87 2.4 0.35
Simazine Triazine 96 103-340 5 2.30 100 0.25
IPPU 3-(4-isopropylphenyl)-urea
DCPU 3-(3,4-dichlorophenyl)- urea

Phenylurea / 
Breakdown product

n/a
n/a

n/a
527-861

n/a
940

n/a
2.35

n/a
n/a

0.21

Deethyl terbuthylazine Triazine / 
Breakdown product

n/a n/a n/a n/a n/a 0.18

IPPMU
3-(4-isopropylphenyl)-1-methylurea

Phenylurea / 
Breakdown product

n/a n/a n/a n/a n/a 0.16

Monolinuron Phenylurea Stable 67-500 735 2.20 1 0.11
Terbuthylazine Triazine Stable 162-306 8.5 3.21 3.20 0.08
DCPMU
(3,4-dichlorophenyl)-1-methylurea

Phenylurea / 
Breakdown product

n/a 498-1358 490 n/a n/a 0.07

Propazine
Ametryne

Triazine 83
Stable

65-268
170-390

8.6
200

3.95
2.63

29
3.67

0.05
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Table 3: Characteristics of stream waters and diatom communities of each cluster determined by 
SOM. Data are mean ± standard deviation. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Number of samples 53 155 58 161
Water physicochemical parameters
pH 8.0 ± 0.0 8.2 ± 0.0 8.2 ± 0.0 8.2 ± 0.0
Conductivity (µS/cm) 459.7 ± 19.4 518.7 ± 13.1 610.8 ± 28.1 323.0 ± 12.9
Nitrate (mg/L) 14.2 ± 1.7 17.7 ± 0.7 14.7 ± 1.7 9.2 ± 0.8
Nitrite (mg/L) 0.24 ± 0.06 0.13 ± 0.01 0.09 ± 0.03 0.13 ± 0.02
Ammonium (mg/L) 0.18 ± 0.04 0.08 ± 0.01 0.04 ± 0.01 0.08 ± 0.01
Orthophosphate (mg/L) 0.14 ± 0.01 0.11 ± 0.01 0.06 ± 0.01 0.11 ± 0.01
Temperature (°C) 16.9 ± 0.3 13.2 ± 0.2 13.3 ± 0.3 16.4 ± 0.3
Oxygen (mg/L) 7.6 ± 0.1 9.2 ± 0.2 8.7 ± 0.3 8.3 ± 0.1
Suspended Particulate Matter (mg/L) 44.6 ± 6.5 18.7 ± 1.3 13.3 ± 3.2 49.7 ± 10.9
Total pesticide concentration (µg/L) 0.96 ± 0.17 0.77 ± 0.10 1.65 ± 0.40 0.57 ± 0.06
   - Triazines and their metabolites 0.22 ± 0.07 0.27 ± 0.07 0.55 ± 0.18 0.16 ± 0.04
   - Phenylureas and their metabolites 0.30 ± 0.08 0.10 ± 0.02 0.95 ± 0.36 0.21 ± 0.03
   - Chloroacetanilides 0.31 ± 0.10 0.26 ± 0.04 0.14 ± 0.04 0.12 ± 0.02
   - Diphenyl ethers 0.04 ± 0.02 0.04 ± 0.01 0.01± 0.00 0.03± 0.01
Number of compounds detected 4.9 ± 0.4 3.3 ± 0.2 3.2 ± 0.3 3.5 ± 0.2
Phytopixal value 3.2 ± 0.2 3.1 ± 0.1 4.0 ± 0.2 2.7 ± 0.1
Diatom indices
Shannon’s diversity index 3.0 ± 0.1 4.3 ± 0.1 2.8 ± 0.1 4.4 ± 0.0
BDI-2006 15.4 ± 0.1 14.8 ± 0.1 18.2 ± 0.2 16.0 ± 0.1
IPS 14.6 ± 0.1 13.9 ± 0.1 16.7 ± 0.2 15.0 ± 0.1
Valve abnormalities (‰) 3.2 ± 0.5 8.7 ± 1.3 3.2 ± 1.0 5.4 ± 0.6
% N-heterotrophic 2.5 8.8 5.2 8.9
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Table 4: Main structuring species of the clusters.

Species Cluster IndVal p-value

Achnanthidium minutissimum (Kützing) Czarnecki 1 - 3 0.734 0.001

Cocconeis placentula Ehrenberg var. lineata (Ehrenberg) Van Heurck 1 - 3 0.670 0.001

Cocconeis placentula Ehrenberg var. placentula 1 - 3 0.655 0.001

Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot 1 - 3 0.614 0.001

Achnanthidium exiguum (Grunow) Czarnecki 1 - 3 0.009 0.001

Cyclotella fottii Hustedt 1 - 3 0.009 0.001

Eunotia exigua (Brébisson) Rabenhorst var. tenella (Grunow) Nörpel & Alles 1 - 3 0.009 0.001

Gomphonema biceps Meister 1 - 3 0.009 0.001

Gomphonema clavatulum Reichardt 1 - 3 0.009 0.001

Gomphonema sarcophagus Gregory 1 - 3 0.009 0.001

Nitzschia nana Grunow 1 - 3 0.009 0.001

Psammothidium sacculum (Carter) Bukhtiyarova & Round 1 - 3 0.009 0.001

Sellaphora stroemii (Hustedt) Mann 1 - 3 0.009 0.001

Tabellaria fenestrata (Lyngbye) Kützing 1 - 3 0.009 0.001

Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot 1 - 3 0.514 0.006

Navicula cryptotenella Lange-Bertalot 2 - 4 0.854 0.001

Navicula gregaria Donkin 2 - 4 0.848 0.001

Navicula tripunctata (O.F. Müller) Bory 2 - 4 0.812 0.001

Nitzschia dissipata (Kützing) Grunow var. dissipata 2 - 4 0.811 0.001

Surirella brebissonii Krammer & Lange-Bertalot var. brebissonii 2 - 4 0.782 0.001

Encyonema minutum (Hilse in Rabenhorst) Mann 2 - 4 0.729 0.001

Melosira varians Agardh 2 - 4 0.693 0.001

Navicula reichardtiana Lange-Bertalot var. reichardtiana 2 - 4 0.664 0.001

Nitzschia sociabilis Hustedt 2 - 4 0.659 0.001

Ulnaria ulna (Nitzsch) Compère 2 - 4 0.658 0.001

Navicula capitatoradiata Germain 2 - 4 0.653 0.001

Nitzschia recta Hantzsch 2 - 4 0.647 0.001

Nitzschia palea (Kützing) W. Smith 2 - 4 0.629 0.001

Navicula antonii Lange-Bertalot 2 - 4 0.593 0.001

Nitzschia heufleriana Grunow 2 - 4 0.554 0.001

Diatoma vulgaris Bory 2 - 4 0.551 0.001

Eolimna minima (Grunow) Lange-Bertalot 2 - 4 0.534 0.001

Navicula lanceolata (Agardh) Ehrenberg 2 - 4 0.533 0.001

Fragilaria capucina Desmazières var. vaucheriae (Kützing) Lange-Bertalot 2 - 4 0.533 0.001

Caloneis bacillum (Grunow) Cleve 2 - 4 0.484 0.001
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Navicula catalanogermanica Lange-Bertalot & Hofmann 2 - 4 0.449 0.001

Gyrosigma sciotense (Sullivan & Wormley) Cleve 2 - 4 0.409 0.001

Navicula cryptotenelloides Lange-Bertalot 2 - 4 0.368 0.001

Surirella angusta Kützing 2 - 4 0.363 0.001

Fallacia subhamulata (Grunow in Van Heurck) Mann 2 - 4 0.360 0.001

Fragilaria capucina Desmazières var. capucina 2 - 4 0.240 0.001

Fragilaria capucina Desmazières var. capitellata (Grunow) Lange-Bertalot 2 - 4 0.234 0.001

Nitzschia acula Hantzsch 2 - 4 0.209 0.001

Encyonema prostratum (Berkeley) Kützing 2 - 4 0.140 0.004

Fallacia pygmaea (Kützing) Stickle & Mann 2 - 4 0.114 0.004

Gyrosigma attenuatum (Kützing) Rabenhorst 2 - 4 0.235 0.005

Nitzschia angustatula Lange-Bertalot 2 - 4 0.124 0.005

Cymatopleura solea (Brébisson) W. Smith var. solea 2 - 4 0.258 0.007

Diploneis oblongella (Naegeli) Cleve-Euler 2 - 4 0.190 0.007

Navicula(dicta) seminulum (Grunow) Lange Bertalot 2 - 4 0.178 0.007

Gyrosigma acuminatum (Kützing) Rabenhorst 2 - 4 0.276 0.009

Cocconeis placentula Ehrenberg var. euglypta (Ehrenberg) Grunow 1 0.607 0.001

Frustulia crassinervia (Brébisson) Lange-Bertalot & Krammer 1 0.019 0.001

Frustulia saxonica Rabenhorst 1 0.019 0.001

Surirella capronii Brébisson 1 0.019 0.001

Cocconeis pediculus Ehrenberg 1 0.338 0.002

Planothidium frequentissimum (Lange-Bertalot) Round & Bukhtiyarova 1 0.305 0.005

Nitzschia linearis (Agardh) W.M. Smith var. linearis 2 0.570 0.001

Nitzschia vermicularis (Kützing) Hantzsch 2 0.479 0.001

Nitzschia linearis (Agardh) W.M. Smith var. subtilis (Grunow) Hustedt 2 0.423 0.001

Navicula trivialis Lange-Bertalot var. trivialis 2 0.419 0.001

Nitzschia linearis (Agardh) W.M. Smith var. tenuis (W. Smith) Grunow 2 0.313 0.001

Frustulia vulgaris (Thwaites) De Toni 2 0.234 0.001

Nitzschia pusilla (Kützing) Grunow 2 0.233 0.001

Nitzschia sigmoidea (Nitzsch) W. Smith 2 0.220 0.001

Navicula radiosa Kützing 2 0.211 0.001

Cyclotella ocellata Pantocsek 2 0.198 0.001

Nitzschia capitellata Hustedt 2 0.195 0.001

Nitzschia dubia W.M. Smith 2 0.159 0.001

Gyrosigma spencerii (Quekett) Griffith & Henfrey 2 0.130 0.001

Mayamaea agrestis (Hustedt) Lange-Bertalot 2 0.122 0.001

Nitzschia acicularis (Kützing) W.M.Smith 2 0.177 0.002

Navicula cryptocephala Kützing 2 0.259 0.003

Tryblionella hungarica (Grunow) Mann 2 0.148 0.003

Nitzschia archibaldii Lange-Bertalot 2 0.091 0.003

Nitzschia gracilis Hantzsch 2 0.103 0.004
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Navicula veneta Kützing 2 0.224 0.005

Tryblionella apiculata Gregory 2 0.183 0.005

Nitzschia dissipata (Kützing) Grunow var. media (Hantzsch) Grunow 2 0.118 0.005

Gomphonema micropus Kützing var. micropus 3 0.568 0.001

Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum 3 0.405 0.001

Gomphonema exilissimum (Grunow) Lange-Bertalot & Reichardt 3 0.399 0.001

Gomphonema olivaceum (Hornemann) Brébisson var. olivaceum 3 0.374 0.001

Meridion circulare (Greville) Agardh var. circulare 3 0.291 0.001

Gomphonema pumilum var. elegans Reichardt & Lange-Bertalot 3 0.275 0.001

Gomphonema gracile Ehrenberg 3 0.223 0.001

Gomphonema tergestinum Fricke 3 0.145 0.001

Gomphonema parvulius Lange-Bertalot & Reichardt 3 0.110 0.001

Gomphonema angustum Agardh 3 0.103 0.001

Ulnaria biceps (Kützing) Compère 3 0.102 0.001

Navicula exilis Kützing 3 0.091 0.001

Eunotia minor (Kützing) Grunow in Van Heurck 3 0.085 0.001

Achnanthes linearioides Lange-Bertalot 3 0.062 0.004

Gomphonema acuminatum Ehrenberg var. coronata (Ehrenberg) W. Smith 3 0.088 0.005

Encyonema silesiacum (Bleisch) Mann 4 0.583 0.001

Achnanthidium pyrenaicum (Hustedt) Kobayasi 4 0.400 0.001

Encyonema ventricosum (Agardh) Grunow 4 0.379 0.001

Amphora ovalis (Kützing) Kützing 4 0.348 0.001

Fragilaria arcus (Ehrenberg) Cleve var. arcus 4 0.339 0.001

Gomphoneis minuta (Stone) Kociolek & Stoermer var. minuta 4 0.310 0.001

Cyclotella meneghiniana Kützing 4 0.309 0.001

Reimeria sinuata (Gregory) Kociolek & Stoermer 4 0.306 0.001

Sellaphora pupula (Kützing) Mereschkowksy 4 0.290 0.001

Diatoma ehrenbergii Kützing 4 0.282 0.001

Nitzschia fonticola Grunow 4 0.245 0.001

Surirella suecica Grunow 4 0.244 0.001

Fallacia subhamulata (Grunow) Mann 4 0.243 0.001

Navicula rostellata Kützing 4 0.199 0.001

Achnanthidium subatomus (Hustedt) Lange-Bertalot 4 0.184 0.001

Navicula submuralis Hustedt 4 0.180 0.001

Achnanthidium latecephalum Kobayasi 4 0.152 0.001

Navicula germainii Wallace 4 0.130 0.001

Navicula cryptofallax Lange-Bertalot & Hofmann 4 0.119 0.001

Encyonema mesianum (Cholnoky) Mann 4 0.095 0.001

Sellaphora bacillum (Ehrenberg) Mann 4 0.093 0.001

Amphora copulata (Kützing) Schoeman & Archibald 4 0.242 0.002

Surirella angusta Kützing 4 0.217 0.002

Hippodonta neglecta Lange-Bertalot Metzeltin & Witkowski 4 0.121 0.002

Navicula novaesiberica Lange-Bertalot 4 0.211 0.003
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Caloneis silicula (Ehrenberg) Cleve 4 0.138 0.003

Surirella minuta Brébisson 4 0.122 0.003

Cyclotella cyclopuncta Håkansson & Carter 4 0.108 0.003

Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin 4 0.133 0.004

Navicula viridula (Kützing) Ehrenberg 4 0.116 0.004
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