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1 Laboratoire de Physique Théorique de la Matière Condensée,
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Phase-change materials (PCMs) are the subject of considerable interest because they have been
recognized as potential active layers for next-generation non-volatile memory devices, known as
Phase Change Random Access Memories (PRAMs). By analyzing First Principles Molecular Dy-
namics simulations we develop a new method for the enumeration of mechanical constraints in the
amorphous phase and show that the phase diagram of the most popular system (Ge-Sb-Te) can be
split into two compositional regions having a well-defined mechanical character: a Tellurium rich
flexible phase, and a stressed rigid phase that encompasses the known PCMs. This sound atomic
scale insight should open new avenues for the understanding of PCMs and other complex amorphous
materials from the viewpoint of rigidity.

PACS numbers: 61.43.Fs-61.20.-x

Driven by applications in data storage [1] fundamen-
tal and applied studies of tellurides are rapidly develop-
ing. The most promising phase-change materials (PCMs)
belong to the ternary Ge-Sb-Te system with particular
compositions such as the Ge2Sb2Te5 already used in in-
dustrial products [2]. To optimize the peculiar property
portfolio of these PCMs, a key issue is the understand-
ing of their atomic structure. This has led to a series
of investigations of the structure of both amorphous and
crystalline phases using experimental as well as computer
simulation techniques (for a review, see [1]).

Since they are related to the ageing of PCMs [3], the
mechanical properties of the amorphous phase are of ma-
jor interest. In parent systems where the 8-N rule holds
(N: number of s and p electrons), particularly sulphur
and selenium based amorphous networks, rigidity the-
ory offers a practical computational scheme using topol-
ogy, namely the Maxwell counting procedure, and has
been central to many contemporary investigations on
non-crystalline solids [3, 4]. It has led to the recogni-
tion of a rigidity transition [5] which separates flexible
glasses, having internal degrees of freedom that allow for
local deformations, from stressed rigid glasses which are
”locked” by their high bond connectivity.

What happens if these elements are replaced by the
heavier element Te which will lead to more complicated
local structures, as highlighted both from experiments
[6, 7] and simulations [8, 9, 10]? Does the counting pro-
cedure still hold? Attempts in this direction have been
made on a heuristic basis [7] but they seem to contrast
with experimental observations. A firm basis for the
Maxwell constraint counting is therefore very much de-
sirable to assess algorithms specially designed for PCMs.
This is the purpose of the present study that develops
a precise enumeration algorithm for constraints arising

from bond-stretching (BS) and bond-bending (BB) inter-
actions, based on the analysis of atomic scale trajectories
using First Principles Molecular Dynamics Simulations
(FPMD). Combined with rigidity theory, it opens an in-
teresting perspective to study amorphous phase change
materials in much the same fashion as network glasses.
As a result, we show that the phase diagram of the Ge-
Sb-Te system can be separated into two compositional
regions having a well-defined mechanical character de-
rived from rigidity theory: a flexible Te-rich phase, and a
(Sb,Ge)-rich phase that is stressed rigid. The most com-
monly used GST phase change materials belong to this
second category.

At the heart of the rigidity concept is the identifica-
tion of relevant interatomic forces between atoms in a
manner similar to what Maxwell pioneered for trusses
and macroscopic structures [11]. When applied to cova-
lent amorphous networks and once the forces acting as
constraints are identified (BS and BB forces), a similar
analysis can be performed leading to the Phillips-Thorpe
rigidity transition [5], which separates flexible (undercon-
strained) networks from stressed rigid (overconstrained)
networks [3, 4]. As in standard mechanics however, in-
stead of treating forces and querying about motion, one
can ask the opposite question and try to relate motion to
the absence of a restoring force. Using FPMD, we gen-
erate therefore atomic scale trajectories of various amor-
phous systems at low temperature using an electronic
structure model (see [12, 13] and EPAPS supplementary
material for simulation details) and apply a structural
analysis in relation with rigidity theory. The number
of neighbors, and hence the number of BS constraints, is
calculated by integrating the radial distribution functions
up to its first minimum (Table I). To estimate the num-
ber of bond-bending constraints we analyze the partial
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FIG. 1: (color online) a) Ge-centered bond angle distributions
(up to 15) for various triplets of atoms i0j (i=1..6, j=2..5)
in amorphous GeSe2. The six colored distributions have a
low second moment (typically 10-20o, see panel b). The angle
number assignments (1..15) displayed in the Ge panel are valid
for all other angular studies. b) Second moment σθij of the
distributions as a function of the angle number in amorphous
GeSe2: Ge-(red) and Se-centered angles (blue).

bond angle distributions. For each type of central atom
0, the six first neighbors i are selected and sorted accord-
ing to their distances, as done in [14], and the distribu-
tions P(θij) of the 15 corresponding angles i0j (i=1..5,
j=2..6) are calculated, i.e. 102, 103, 203, etc. The second
moment σθij of P(θij) provides a quantitative estimate of
the angular excursion around the mean value of angle i0j,
thus measuring the strength of the bond-bending restor-
ing force. An angle displaying a wide σθij corresponds
to a broken BB constraint as there is a weak interaction
to maintain the angle fixed. In an opposite way, sharp
bond angle distributions lead to intact constraints.

In order to check this method, we first apply it to the
benchmark case GeSe2 , for which application of con-
straint counting algorithms is straightforward [5]. Ac-
cording to the Phillips-Thorpe enumeration, one has for
a r-coordinated atom respectively r/2 and 2r-3 BS and
BB constraints. Thus a four-fold Ge atom has 2 BS and
5 BB constraints whereas the two-fold selenium atom
has 1 BS and 1 BB constraint leading on the overall to
nc = 3.67 constraints per atom [5]. We obtain the coor-
dination numbers rGe=4.04 and rSe=1.98 from the area
of the first peak of the Ge- and Se- centered pair dis-
tribution functions. We furthermore find that σθij can
vary between 10o and 40o depending on the different an-
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FIG. 2: (color online) Ge and Te centered bond angle dis-
tribution in the Ge1Sb2Te4 (124) amorphous system. The
curves in color correspond to distributions with a low second-
moment σθij considered as having intact BB constraints. The
peaks around 50o correspond to the steric hindrance (hard
core repulsion between neighboring atoms).

gles i0j considered (Fig. 1). For the Ge-centered atoms,
six moments σθij are found to be of the order of 10-20o,
very well separated from all others for which σθij ≃ 40o.
However there is one redundant constraint that needs to
be removed because it can be determined from the five
other angles. This leaves the estimate with 5 indepen-
dent BB constraints for the Ge atom. For the Se atom,
a single low σθij (i.e. a single BB constraint) is found
(12o) around the mean value θ̄ij = 100o, in agreement
with experiment [15]. We arrive to the conclusion that
the constraint computation from FPMD matches exactly
the direct counting from [5].

Having validated the method with GeSe2, we now
turn to the amorphous Ge-Sb-Te system and focus on
seven particular compositions, namely Ge1Sb2Te4 (124),
Ge2Sb2Te5 (225), GeTe (101), GeTe6 (106), GeSb6 (160),
Sb2Te (021) and Sb2Te3 (023) (see also Fig. 4), using
extensive FPMD simulations. We determine the BS con-
straints from the coordination numbers extracted from
the partials (Table I). The coordination number of Ge
and Sb is nearly equal to r=4, with a preference for het-
eropolar bonding with Te atoms, which have a coordi-
nation number between 2.1 and 2.9, larger than the 8-N
value (r=2).
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Compound Atom ri nBB
i nc

GeTe6 Ge 4.0 3.3
Te 2.4 1.0 2.68

GeTe Ge 4.1 3.0
Te 2.9 1.0 3.75

Ge1Sb2Te4 Ge 4.0 3.4
Sb 4.1 3.0
Te 2.8 1.0 3.59

Ge2Sb2Te5 Ge 4.0 3.2
Sb 3.8 3.0
Te 2.4 1.0 3.47

GeSb6 Ge 4.1 5.0
Sb 3.7 3.0 5.16

Sb2Te Sb 4.0 3.0
Te 2.5 1.0 4.08

Sb2Te3 Sb 3.7 3.0
Te 2.1 1.0 3.17

TABLE I: Coordination number ri of the atomic species, giv-
ing the number of bond-stretching (BS) constraints (ri/2),
number of BB constraints nBB

i computed from the second
moments of the bond angle distributions P(θij), and total
number of constraints nc in the seven different Ge-Sb-Te com-
pounds.

The Ge and Te centered P(θij) for the 124 compound
are displayed in Fig. 2 . Certain angles clearly display a
limited motion around their mean value. Similar figures
are found for Sb (not shown) from which the appropriate
counting can be drawn. Fig. 3 shows the 15 different sec-
ond moments σθij for the compositions 124 and 225 lead-
ing to the determination of corresponding BB constraints
for Ge, Sb and Te atoms. Compared to the benchmark
system GeSe2, we notice that σθij is more scattered for
large angle number n (i.e. n>6), which suggests an in-
creased orientational disorder when more distant neigh-
bors are considered.

In the ternary compositions 124 and 225, only three
second moments are of the order of σθij ≃ 10-15o for
the Ge and Sb atoms, associated with well-defined angles
at θ̄ij=90-100o which are, together with those found at
≃180o, reminiscent of the distorted octahedral-like rock-
salt cubic phase [6, 16]. The present results contrast with
the view that would follow the standard enumeration of
constraints, directly derived from coordination numbers
obeying the 8-N rule. In fact, a three-fold Sb would give
rise to 1.5 BS and 3 BB constraints [5]. Here, Sb has
an additional neighbor that increases the number of BS
constraints but it does not give rise to two additional BB
constraints (Fig 3).

Although it is found rTe > 2, Te has only one angular
constraint (Fig. 3, σθij=12o in the 124 and θ̄ij ≃95o),
the two other possible angles (angle number 2: 103 and
6: 203) being much more flexible (σθij=27o and 29o). On
the basis of this enumeration, and using results of Table
I and of Fig. 3, a Maxwell estimate for the number of BS
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FIG. 3: (color online) Angular Second-moment σθij of the
bond angle distributions of 124 and 225 amorphous systems
as a function of angle number for Ge-(black), Sb-(red) and
Te-centered (blue) atoms. The correspondence between angle
number (x-axis) and angles (i0j) with 0 the central atom and
i and j the neighbors, is given in Fig. 1 and 2. Only three
Ge and Sb (one Te) angles have a low σθij , corresponding to
intact bond-bending constraints.

and BB constraints of GexSbyTe1−x−y is given by :

nc =
1

2

[

x(rGe − rTe) + y(rSb − rTe) + rTe

]

(1)

+

[

x(nBB
Ge − nBB

Te ) + y(nBB
Sb − nBB

Te ) + nBB
Te

]

where the square brackets are used to separate BS from
BB contributions. Results for the seven compositions are
given in Table I. They furthermore take into account the
possibility of two local environments for four-fold Ge in
the presence of Te also found in [8, 9]: a majority of dis-
torted octahedral sites having 3 constraints for the angles
θ̄ij=90-100o (see Fig. 3), and a minority of tetrahedral
Ge (calculated to have a respective fraction of η =0.1 and
η=0.2 in the 225 and 124) which have 5 BB constraints
as in GeSe2. This means that the average number of Ge
BB constraints is nBB

Ge = 5η+3(1−η) = 3+2η and leads
finally to n124

c =3.59 and n225

c =3.47, rTe being calculated
for each composition using Table I. One can thus con-
clude that 124 and 225 are stressed rigid, i.e. they have
more constraints than degrees of freedom (3 in 3D). The
present results contrast with a constraint enumeration
based on EXAFS measurements, and with the assump-
tion that GST materials are perfect glasses [7], but they
agree with the obvious observation that, apart the 106
alloy [17], which is found flexible, but close to the op-
timal nc = 3, none of the alloys studied can form bulk
glasses. Using these elements, we now determine an ap-
proximate flexible to rigid transition composition [5] from
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FIG. 4: (color online) Contour map of the number of con-
straints nc in the ternary GexSbyTe1−x−y phase diagram.
The red and green lines correspond respectively to the stressed
rigid and flexible phase. Blue circles represent the composi-
tions studied by FPMD in this Letter. The thick black line
represents the rigidity transition line defined by equ. (2),
and separates the flexible (Te-rich) from the stressed rigid
phase where most PCMs can be found, especially on the
GeTe-Sb2Te3 tie line (black line). Green dots in the flexible
phase represent bulk glass compositions obtained experimen-
tally [18].

the Maxwell estimate corresponding to nc = 3. Consid-
ering the numbers given in Table I and the results of
Fig. 3, we make the simple assumption that Ge has four
neighbors (rGe=4) with a fraction η of tetrahedral sites,
Sb has four neighbors (rSb=4) in a distorted octahedral
geometry (nBB

Sb =3) and Te has rTe=2.6 neighbors and
one BB constraint. Pure amorphous Ge is known to be a
tetrahedral network and in GeSb6 all Ge are tetrahedral,
so that η=1. From table I, we note that the addition of
Te effectively lowers the fraction η of tetrahedral Ge, so
that, for the sake of simplicity, we assume that η = x+y,
in which case one finally obtains a parameter-free rigidity
transition line depending only on the compositions x and
y:

y =
7

27 + 20x
− x (2)

The relationship (2) is found to be close to the composi-
tional join GeTe4-SbTe4 (Fig. 4), and defines two regions
in the GST triangle. In the Te-rich region, the system
has not enough Ge or Sb cross-links to ensure rigidity,
and local deformations are allowed. In the second region,
where usual PCMs are found, the amorphous phases are
stressed rigid. Bulk glass formation seems to be only
possible in the flexible phase as shown from experimen-
tal data [18].

In summary, we have developed a new constraint
counting algorithm applicable to tellurides for which a
simple counting based on the 8-N rule does not apply
in a straightforward manner. We show that atomic-scale
trajectories obtained from First Principles Molecular Dy-
namics simulations can be appropriately used for the es-
timation of bond-stretching and bond-bending constraint
counting and applied to the GST phase-change system.
The results show that amorphous systems lying on the
popular Sb2Te3-GeTe tie-line in the GST compositional
triangle belong to a stressed rigid phase, whereas an rigid-
ity transition line is obtained close to the SbTe4-GeTe4
join. Furthermore, since an intermediate phase with
some remarkable properties (absence of ageing, stress-
free character and space-filling tendencies) [3] has been
found close to nc = 3 in sulphide and selenide systems,
one may wonder to what extent these properties can be
observed in tellurides as well, and how these properties,
once being observed, could be used in close future to de-
sign phase-change materials with the corresponding func-
tionality.
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