
HAL Id: hal-00523663
https://hal.science/hal-00523663

Submitted on 6 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deriving non-Zeno behaviour models from goal models
using ILP

D. Alrajeh, J. Kramer, A. Russo, S. Uchitel

To cite this version:
D. Alrajeh, J. Kramer, A. Russo, S. Uchitel. Deriving non-Zeno behaviour models from goal models
using ILP. Formal Aspects of Computing, 2009, 22 (3), pp.217-241. �10.1007/s00165-009-0128-5�.
�hal-00523663�

https://hal.science/hal-00523663
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

Deriving Non-Zeno Behaviour Models
from Goal Models using ILP
D. Alrajeh1, J. Kramer1, A. Russo1 and S. Uchitel1,2

1Department of Computing, Imperial College London,

180 Queen’s Gate London SW7 2AZ, UK
2Departamento de Computaciòn, FCEyN, Universidad de Buenos Aires,

Buenos Aires, Argentina

Abstract. One of the difficulties in Goal-Oriented Requirements Engineering (GORE) is the construction
of behaviour models from declarative goal specifications. This paper addresses this problem using a combi-
nation of model checking and machine learning. First, a goal model is transformed into a (potentially Zeno)
behaviour model. Then, via an iterative process, Zeno traces are identified by model checking the behaviour
model against a time progress property, and Inductive Logic Programming (ILP) is used to learn opera-
tional requirements (pre-conditions) that eliminate these traces. The process terminates giving a non-Zeno
behaviour model produced from the learned pre-conditions and the given goal model.

Keywords: Goal-oriented requirements engineering, zeno behaviour, operational requirements, model check-
ing, inductive learning.

1. Introduction

Goal-Oriented Requirements Engineering (GORE) is an increasingly popular approach for elaborating soft-
ware requirements. Goals are prescriptive statements of intent whose satisfaction requires the cooperation
of software components and the environment. One of the limitations of GORE approaches [DvLF93, DvL96,
LvL02, Ant97, GMS05] is due to the declarative nature of goals which hinders the application of a number
of successful validation techniques based on executable models such as graphical animations, simulations,
and rapid-prototyping. Goals are neither conceived for nor naturally support narrative style elicitation tech-
niques, such as those in scenario-based requirements engineering. Additionally, they are not suitable for
down-stream analyses that focus on design and implementation issues, which are of operational nature.

To address these limitations, techniques have been developed that construct behaviour models automati-
cally from safety properties and scenarios [UBC07], and goal models [LKMU06]. The core of these techniques
is based on “temporal logic to automata” transformation algorithms developed in the model checking com-
munity. For instance, in [LKMU06] Labelled Transition Systems (LTS) are built automatically from KAOS
goals, which are safety goals expressed in Fluent Linear Temporal Logic (FLTL) [GM03].

However, the key technical difficulty in constructing behaviour models from goal models is that the latter

Correspondence and offprint requests to: D. Alrajeh, Department of Computing, Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, UK. e-mail: dalal.alrajeh04@imperial.ac.uk

2 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

are typically expressed in a synchronous, non-interleaving semantic framework while the former have an
asynchronous interleaving semantics. This mismatch relates to the fact that it is convenient to make different
assumptions for modelling requirements and system goals than for modelling communicating sequential
processes. One of the practical consequences of this mismatch is that the construction of a behaviour model
from a goal model may introduce deadlocks and progress violations. More specifically, the resulting behaviour
model may be Zeno, i.e exhibits traces in which time never progresses. Clearly these models do not adequately
describe the intended system behaviour and thus are not suitable basis for down-stream analysis.

A solution is to construct behaviour models from fully operationalised goal models rather than from high-
level goals [LKMU06]. This involves identifying system operations and extracting operational requirements in
the form of pre- and trigger-conditions from the high-level goals [LvL02]. One disadvantage of this approach
is that operationalisation is only partial supported, where such support comes in the form of pre-defined
derivation patterns restricted to some common goal patterns [DvL96].

This paper proposes a new approach for (systematic) computation of non-Zeno behaviour models from
high-level goal models, using a combination of model checking and machine learning. The approach starts
with a goal model and produces a non-Zeno behaviour model that satisfies all goals. First, a given goal model,
formalised in Linear Temporal Logic (LTL), is automatically translated into a (potentially Zeno) Labelled
Transition System (LTS). Then, via an iterative process, Zeno traces in the LTS are identified mechanically,
elaborated into positive and negative scenarios, and used to automatically learn pre-conditions that prevent
such traces from occurring. Identification of Zeno traces is achieved by model checking the LTS model
against a time progress property expressed in LTL, while pre-conditions are learned using Inductive Logic
Programming (ILP). As a result, the process not only constructs a non-Zeno behaviour model, but also
computes a set of pre-conditions. These pre-conditions, in conjunction with the given high-level goals, ensure
the non-Zeno behaviour of the system. Consequently, the approach also supports the operationalisation
process of goal models described in [LvL02].

The paper is an extended version of [ARU08]. It provides relevant background notions on goal models,
LTS and FLTL (Section 2). It describes, in Section 3, the problem of deriving non-Zeno behaviour models
from goal models and defines a formal characterisation of the proposed approach. It presents, in Section 4,
the approach in detail, proving that it satisfies its formal characterisation. In Section 5, it illustrates the
process through a case study on the Safety Injection event-driven System defined in [CP93]. The approach
is then compared with other existing related work in Sections 6, and a discussion of future work in Section
7 concludes the paper.

2. Background

In this section we discuss goal and behaviour modelling. The examples we use refer to a simplified version
of the mine pump control system, described in [KMS83], in which a pump controller is used to prevent the
water in a mine pump from passing some threshold and flooding the mine. To avoid the risk of explosion,
the pump may only be on when the level of methane gas in the mine is not critical. The pump controller
monitors the water and methane levels by communicating with two sensors, and controls the pump in order
to guarantee the safety properties of the system.

2.1. Goal Models

Goals focus on the objectives of the system. They are state-based assertions intended to be satisfied, over time,
by the system. By structuring goals into refinement structures, GORE approaches aim to provide systematic
methods that support requirements engineering activities including conflict detection, goal operationalisation
and responsibility assignment. Goals are expected to be refined into sub-goals that can be assigned to the
software-to-be or environment. Goals assigned to the environment form domain assumptions while those
assigned software-to-be are used to derive operational requirements, in the form of pre-, post- and trigger-
conditions, for the operations provided by the software.

In this paper, we define a goal model to be a collection of system goals, domain properties and operational
requirements. We specify goals informally using natural language and formally using LTL [MP92]. Following
the KAOS [DvLF93] approach, we assume a discrete-model of time, in which consecutive states in a trace are
always separated by a single time unit. The time unit corresponds to some arbitrarily chosen time unit for

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 3

the application domain. We consider goals to be specified as safety properties. For instance, the system goal
PumpOffWhenLowWater can be informally described as “when the water is below the low level, the pump
must be off within the next time unit” and formally specified as

�(¬HighWater→©¬PumpOn) (1)

where � is the temporal operator meaning always, © is the next time point operator, and HighWater and
PumpOn are propositions meaning that “the water in the pump is above the low level threshold” and “the
pump is on”, respectively.

LTL assertions are constructed using a set P of propositions, which refer to state-based properties, the
classical connectives, ¬,∧ and →, and the temporal operators © (next), � (always), ♦ (eventually) and U
(strong until). Other classical and temporal operators can be defined as combinations of the above operators
(e.g. φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), and φWψ ≡ (�φ) ∨ (φUψ)).

The semantics of LTL assertions is given in terms of traces (i.e. infinite sequences of states s1, s2, . . .).
A proposition p is said to be satisfied in a trace σ at position i, written σ, i |= p, if it is true at the ith state
in that trace (i.e. ith time unit). The semantics of Boolean operators is defined in a standard way over each
state in a sequence. The semantics of the temporal operators is defined as follows:

• σ, i |=©φ iff σ, i+ 1 |= φ

• σ, i |= �φ iff ∀j ≥ i. σ, j |= φ

• σ, i |= ♦φ iff ∃j ≥ i. σ, j |= φ

• σ, i |= φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ

Given the above semantics, a formula ©p is satisfied at the ith state (or time unit) of a trace σ, if p is true
at the (i+ 1)th state (or time unit) of σ. An LTL assertion φ is said to be satisfied in a trace σ if and only if
it is satisfied at the first state in the trace. Similarly, a set Γ of formulae is said to be satisfied in a trace σ
if each formula ψ ∈ Γ is satisfied in the trace σ; Γ is said to be consistent if there is a trace that satisfies it.

Goal models may also include domain and (partial) required conditions of operations. An operation causes
a system to transit from one state to another. Conditions over operations can be domain pre-condition and
post-conditions and/or required pre-conditions and trigger-conditions. For instance, the operation switch-
PumpOn has, as domain pre-condition and post-condition, the assertions ¬PumpOn and PumpOn. Required
pre-conditions and trigger-conditions are prescriptive conditions defining, respectively, the weakest neces-
sary conditions and the sufficient conditions for performing an operation. The set of required conditions on
operations to be performed by the software are called operational requirements

2.2. Behaviour Models

Behaviour models are event-based representations of system behaviours. Different formalisms have been
proposed for modelling and analysing system behaviours (e.g. [HBGL95], [SMMM98]), among which LTS is
a well known formalism for modelling systems as a set of concurrent components [MK99]. Each component
is defined as a set of states and possible transitions between these states. Transitions are labelled with
events denoting the interaction that the component has with its environment. The global system behaviour
is captured by the parallel composition of the LTS model of each component, that interleaves their behaviour
and forces synchronisation on shared events.

Definition 1. (Labelled Transition Systems) A Labelled Transition System (LTS) model is defined as
a tuple T = (S,E, s0,R) where S is a finite non-empty set of states, E is a finite non-empty set of event
labels, s0 is the initial state, and R ⊆ S × E × S is a labelled transition relation. A transition (s, e, s′) ∈ R
from a state s to a new state s′ labelled by e is denoted as sRes

′.

A (possibly infinite) path σ in an LTS is a sequence of states and transitions, starting from the initial
state, of the form s0Re1s1Re2s2..., such that for each i ≥ 0 there is a transition relation (si, ei+1, si+1) ∈ R,
with label ei+1. The event ei ∈ E is said to be at position i in σ, and to be the ith label in the path σ,
whereas si ∈ S is said to be the ith state in σ. The set of all paths in T starting from the initial state is
denoted as Σ.

4 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

Definition 2. (Scenarios) Given a set of event labels E, a scenario is a finite sequence of events of the
form 〈e1, e2, ...en〉 where ei ∈ E. It is said to be a positive scenario, and denoted as σ+, if it represents a
desirable behaviour of the system. It is said to be a negative scenario, and denoted as σ−, if at least one of
the events in the sequence is an undesirable occurrence. Furthermore, a scenario is said to be accepted by an
LTS T if there is a path σ = s0Re1s1...sn−1Ren

sn in T where, for all 0 ≤ i < n, (si, ei+1, si+1) ∈ R.

Note that, in this paper, we assume that the undesirable event occurrence will always be the last event in
the sequence of a negative scenario. Furthermore, we use Σ+ and Σ− to denote a set of positive and negative
scenarios respectively

LTSA [MK99] is a tool that supports various types of automated analyses over LTSs such as model
checking and animation. The logic used by LTSA is the asynchronous linear temporal logic of fluents (FLTL)
[GM03]. This logic is an LTL in which propositions in P are defined as fluents. Fluents represent time varying
properties of the world that are made true and false through the occurrence of events. A fluent can be either
state-based or event-based. We denote the set of state-based fluents as Pf , and the set of event-based fluents
as Pe. A fluent definition of a fluent f , denoted as f = 〈If , Tf 〉, is a pair of disjoint sets of events, referred
to as the initiating (If) and terminating (Tf) sets, and an initial truth value. Events of the initiating (resp.
terminating) set are those events that, when executed, cause the fluent to become true (resp. false). For
instance, the fluent definition for the state-based fluent PumpOn would be

PumpOn= 〈{switchPumpOn},{switchPumpOff}〉

meaning that the event switchPumpOn causes the fluent PumpOn to be true, and the event switchPumpOff
causes the fluent PumpOn to be false. The fluent definition for an event-based fluent e is always defined as
e = 〈{e},E− {e}〉. For instance, the fluent definition for the event-based fluent switchPumpOn would be

switchPumpOn = 〈{switchPumpOn}, E − {switchPumpOn}〉

where E is the universe of events. An FLTL language is therefore defined in terms of a set P = Pe ∪ Pf of
fluents and a set D of fluent definitions.

Given an FLTL language, an FLTL model is a pair 〈T, VD〉 where T is a LTS and VD a valuation function.
The set of events in T is isomorphic to the set Pe of event fluents in the FLTL language, and the valuation
function VD assigns truth value to fluents over paths in T according to their fluent definition. Specifically, a
fluent f is said to be true at position i in a path σ if and only if either of the following conditions hold: (i)
a state-based fluent f is initially true and no terminating event has occurred since; and (ii) some initiating
event has occurred before position i and no terminating event has occurred since. Note that event-based
fluents are always initially false. Hence, given a path σ and a position i, the valuation function VD returns
the set of fluents that are true at i in σ with respect to D. As the satisfiability of fluents depends on their
fluent definition, we use σ, i |=D f to denote that f is satisfied in σ at position i with respect to a given
set D of fluent definitions. As formalised in the following definition, the satisfiability of asynchronous FLTL
assertions over an FLTL model is also defined with respect to positions in a given path and given fluent
definitions.

Definition 3. (Satisfiability in FLTL) Given an FLTL language with propositions P and set D of fluent
definitions, an FLTL model 〈T, VD〉 and a path σ in T , the satisfiability of an FLTL formula φ at a position
i ≥ 0 of the path σ with respect to D, denoted σ, i |=D φ, is defined inductively as follows:

• σ, i |=D f iff f ∈ VD(σ, i), where f ∈ P
• σ, i |=D ¬φ iff σ, i 6|= φ

• σ, i |=D φ ∧ ψ iff σ, i |= φ and σ, i |= ψ

• σ, i |=D ©φ iff σ, i+ 1 |= φ

• σ, i |=D �φ iff ∀j ≥ i. σ, j |= φ

• σ, i |=D φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ

Furthermore, an FLTL formula φ is said to be satisfied in a path σ, denoted σ |=D φ if and only if
σ, 0 |=D φ. Given a set Γ of FLTL assertions, Γ is said to be ssatisfied in a path σ, if and only if every
formula φ ∈ Γ is satisfied in the path σ. An FLTL model 〈T, VD〉 is said to satisfy a formula φ, if φ is

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 5

satisfied in every path σ in T . Similarly, the model is said to satisfy a set Γ of FLTL formulae, if it satisfies
every FLTL formula φ ∈ Γ.

Definition 4. (Entailment in FLTL) Given an FLTL language with propositions P and set D of fluent
definitions, and an FLTL model 〈T, VD〉, let Γ be a set of FLTL assertions, called also theory, and φ an
FLTL formula. The formula φ is said to be entailed by the theory Γ, and denoted as Γ |=D φ, if and only if
in every path σ where Γ is satisfied, the formula φ is also satisfied.

FLTL language can also be used to formalise the notion of scenarios. Note that we use symbol ©i to
denote i number of the temporal operator ©.

Definition 5 (Scenario properties). A positive scenario σ+ = 〈e1, ..., em〉+ can be formalised as the
FLTL positive scenario property

∧
1≤i≤m−1©iei ∧ ©mem, whereas a negative scenario σ− = 〈e1, ..., en〉−

can be formalised as the FLTL negative scenario property
∧

1≤i≤n−1©iei → ©n¬en.

Note that, by slight abuse of notation, σ+ and σ− will also be used to denote the FLTL properties for
positive and negative scenarios respectively, and Σ+ and Σ− to denote a set of positive and negative scenario
properties respectively.

3. Problem Formulation

In this section we discuss and exemplify why the construction of behaviour models from goal models can
result in models with Zeno executions. We then formally characterise the problem that this paper addresses
in Section 4.

3.1. From Goal Models to Behaviour Models

LTS models are untimed. To support the derivation of behaviour models from goal models, which are timed
models, time must be represented explicitly in the LTSs [MK99]. We adopt the approach to discrete timed
behaviour models proposed in [LKMU05]. An event tick is used to model the global clock with which each
timed-process synchronises. The occurrence of this event signals the end of a time unit (as assumed by the
goal model) and the beginning of the next. This event does not initiate or terminate any state-based fluent.
A state-based fluent Occurs e is also used, where needed, to denote that the event e has occurred within the
last time unit. Its fluent definition is given by the tuple Occurs e= 〈{e},{tock}〉, where tock is an event that
always immediately follows a tick event to terminate the Occurs e fluent.

In a timed behaviour model states are classified as either observable or non-observable. The former are
states with an in-going tick transition, and the latter are any other state. LTL assertions are assumed to
be evaluated only at observable states. All timed behaviour models have a tick transition as first transition.
This forces the first observable state of the model to have the same state-based fluents as those at the initial
state. In this way, the evaluation of LTL assertions at the first observable state captures the synchronous LTL
satisfiability at an initial state. To “simulate” synchronous LTL semantics within the context of timed be-
haviour models, LTL assertions are translated into asynchronous FLTL formulae, adopting the methodology
given in [LKMU06] and briefly described below.

The transformation of a goal model, Gs, into a set, Ga, of asynchronous FLTL assertions, requires trans-
lating the LTL goals and operational requirements that are in Gs into FLTL formulae. Goal assertions,
written in LTL, are translated into semantically equivalent asynchronous FLTL expressions using the event
fluent tick. The translation Tr : LTL→ FLTLAsync is defined as follows (where φ and ψ are state-based LTL
assertions):

Tr(�φ) = �(tick → Tr(φ))
Tr(φUψ) = tick → Tr(φ) U (tick ∧ Tr(ψ))
Tr(♦φ) = ♦(tick ∧ Tr(φ))
Tr(©φ) = ©(¬tick W (tick ∧ Tr(φ)))

The translation of the synchronous (LTL) next operator (see Tr(©φ)) exemplifies well the difference between

6 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

synchronous and asynchronous semantics. The synchronous formula ©φ asserts that at the next time point
φ is true. The translation assumes that the formula Tr(©φ) is evaluated at the start of a time unit, in
other words at the occurrence of a tick, and requires that no tick occurs from that point onwards until
the asynchronous translation of φ holds and the tick event can occur. Consider the synchronous system
goal PumpOffWhenLowWater formalised in (1) as �(¬HighWater→©¬PumpOn). Its translation gives the
asynchronous FLTL assertion

�(tick→ (¬HighWater→©(¬tick W (tick ∧ ¬PumpOn))))

Operations specified in the goal model, Gs, correspond to the events in the timed behaviour model; domain
properties and operational requirements are then translated into asynchronous FLTL assertions using the
associated event-based fluents. A domain pre-condition DomPre, for an operation e, in Gs, is represented in
Ga by the following asynchronous FLTL assertion:

�(tick → ((¬DomPre)→©(¬e W tick))) (2)

For instance, the domain pre-condition ¬PumpOn for the event switchPumpOn is expressed as

�(tick → (¬(¬PumpOn)→©(¬switchPumpOn W tick)))

The domain post-condition DomPost for an operation e, captured in Gs by the fluent definitions, is repre-
sented in asynchronous FLTL as �(e → (DomPost)). The FLTL formalisation of required pre-conditions,
ReqPre, in Ga is analogous to that of domain pre-conditions, namely

�(tick → ((¬ReqPre)→©(¬e W tick))) (3)

where the FLTL representation of required trigger-condition, ReqTrig, for an operation e is given by

�(tick → ((ReqTrig ∧ DomPre)→©(¬tick W e))) (4)

An LTS model can then be computed from the asynchronous FLTL representation of a given goal model.
This is done using an adaptation [LKMU06] of a “temporal logic to automata” algorithm used in model
checking of FLTL [GM03]. The technique for model-checking an asynchronous FLTL property φ over an
LTS T involves constructing a Büchi automaton B(¬φ) that recognises all infinite traces, over the alphabet
L, that violate φ and checking that the synchronous product of B(¬φ) with T is empty [GM03]. When φ
is a safety property, which is the case for goal models, B(¬φ) has only one accepting state that only has
self-loop transitions as outgoing transitions. Thus, B(¬φ) can be viewed as an observer for φ, i.e., an LTS
with an error state in which reaching the error state corresponds violating φ. Removing the error state and
all transitions that lead to it yields an LTS that is as least constrained as possible, yet that is guaranteed to
satisfy φ. Consider the model in Figure 1. This is the Büchi automata resulting from the formula

φ = �(tick→ (¬HighWater→©(¬tick W (tick ∧ ¬PumpOn))))

which is the FLTL translation of the LTL goal �(¬HighWater→©¬PumpOn). Removing the accepting
state labelled -1, yields an LTS that is guaranteed to satisfy the formula φ.

The above-mentioned procedure for constructing LTS models from asynchronous FLTL representation
of goal models can be applied to each assertion in the goal model individually. The resulting LTS models
can then be composed in parallel, so capturing logical conjunction [LKMU06]. However, in so doing, it is
possible that the resulting LTS model may exhibit problematic behaviours in the form of traces in which
a finite number of ticks occur. These traces, called Zeno traces or Zeno-executions, represent behaviours in
which time does not progress. We refer to LTS models with Zeno traces as Zeno models.

3.2. The Problem with Zeno Models

To summarise, given a goal model, Gs, as described in Section 2.1, it is possible to construct a timed LTS
model that satisfies Gs by transforming the goal model into a semantically equivalent set of asynchronous
FLTL assertions, Ga, and then computing an LTS model, using an adaptation [LKMU06] of the temporal
logic to automata algorithms in [GM03], that satisfies Ga.

However, the LTS models constructed from asynchronous FLTL goal assertions are not good models of a

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 7

Fig. 1. Büchi automata constructed from the goal PumpOffWhenLowWater

8 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

system behaviour. They constrain the event tick, which should not be constrained as it cannot be controlled
by the system, and do not impose sufficient constraints on the system events. Such constraints are those
introduced by the domain and required conditions for operations that are included in the initial goal model.
So, if the considered goal model has insufficient conditions on the system events, as it is often the case
in practice, then spurious executions may be exhibited by the LTS model generated from the goal model.
For instance, the LTS model for the goal PumpOffWhenLowWater, given in Figure 1, includes the infinite
trace 〈tick, switchPumpOn, switchPumpOff, switchPumpOn, switchPumpOff,...〉. This trace does not
exhibit a second tick events so violating the expectation that time progresses (referred to as time progress
property). Such trace occurs because there is no restriction as to when the pump may be switched on or off
(i.e. required pre-condition for switchPumpOn and/or switchPumpOff is missing). Therefore, although the
LTS model constructed automatically from an asynchronous FLTL encoding of a goal model may satisfy all
goals, it may contain Zeno executions due to missing conditions over system operations. Note that this is
not a problem caused by the translation but rather caused by the under-specification in the synchronous
description of what happens within the time units [LKMU06].

The problem addressed in this paper is how to provide automated support for extending a goal model
with required pre-conditions over system’s operations in order to guarantee the construction of a non-Zeno
behaviour model from a given goal model. In other words, given the asynchronous transformation Ga of a
synchronous goal model Gs, we want to compute a set, {Prei}, of required pre-conditions that is consistent
with Ga and such that the LTS model constructed from Ga∪{Prei} satisfies the time progress (TP) property
(i.e. �♦tick). This is formally defined below.

Definition 6. (Correct Operational Extension) Let Ga be an asynchronous goal model and TP be the
time progress property defined as the FLTL assertion �♦tick. Then a set {Prei} of required pre-conditions
is said to be a correct operational extension of Ga iff the following conditions hold:

• Ga ∪ {Prei} |=D TP
• Ga ∪ {Prei} ∪ TP 6|=D false

4. The Approach

This section presents a novel approach for extending a goal model with the set of required pre-conditions
necessary to generate a non-Zeno behaviour model that satisfies the given goal model. The approach uses
model checking to analyse the LTS of the given goal model with respect to the time progress property and to
generate automatically any existing Zeno traces, and uses ILP to compute the required pre-conditions that
eliminate such traces. A brief overview of the framework is first given, followed by a detailed description of
each of its phases.

4.1. Overview of the Approach

An overview of the approach is depicted in Figure 2. A goal model Gs is initially transformed into an asyn-
chronous model Ga and a set of fluent definitions D. The computation of the correct operational extension
of Ga is then done by iterating over four phases. (1) The Analysis phase uses the LTSA model checking
to construct an LTS model of Ga with respect to D and then to check the LTS against the time progress
property. If the property does not hold, a violation trace is generated. (2) The Scenario Elaboration phase
requires the engineer to elaborate the violation trace into a set of positive and negative scenarios. (3) The
Learning phase transforms the asynchronous goal model, fluent definitions and scenarios into a logic program
and then uses an ILP system to find a set of required pre-conditions that cover the positive but none of
the negative scenarios. (4) The Selection phase then requires the engineers to select the pre-condition(s) to
be added to Ga from those computed during the learning phase. These four phases are repeated until no
more violation traces are detected. The final output is an extended FLTL goal model from which a non-Zeno
behaviour model can be constructed.

The first step, as depicted in Figure 2, involves translating the synchronous goal model into an FLTL
asynchronous goal model using the translation process presented in Section 3. In our running example, the
full set Gs includes the system goals given by the following LTL assertions:

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 9

Fig. 2. Overview of the approach

g[PumpOffWhenLowWater]=

�(¬HighWater→©¬PumpOn) (5)

g[PumpOffWhenMethane]=

�(CriticalMethane→©¬PumpOn) (6)

g[PumpOnWhenHighWaterAndNoMethane]=

�(¬CriticalMethane ∧HighWater→©PumpOn) (7)

and the required pre-conditions (HighWater) and (CriticalMethane ∨ ¬HighWater) for the events switch-
PumpOn and switchPumpOff respectively. The goal assertions are translated into the following asynchronous
FLTL formulae:

ga[PumpOffWhenLowWater]=

�(tick→ (¬HighWater→©(¬tick W (tick ∧ ¬PumpOn)))) (8)

ga[PumpOffWhenMethane]=

�(tick→ (CriticalMethane→©(¬tick W (tick ∧ PumpOn)))) (9)

ga[PumpOnWhenHighWaterAndNoMethane] =

�(tick → ((¬CriticalMethane ∧HighWater)→©(¬tick W (tick ∧ PumpOn)))) (10)

The required pre-condition are expressed asynchronously as follows:

�(tick → (¬HighWater →©(¬switchPumpOn W tick))) (11)

�(tick → ((HighWater ∧ ¬CriticalMethane)→
© (¬switchPumpOff W tick))) (12)

4.2. Analysis Phase

This phase takes as input an asynchronous FLTL encoding of a goal model and produces a Zeno trace if the
goal model does not guarantee time progress.

10 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

The LTSA model checker is used to build automatically the least constrained LTS model from the
asynchronous FLTL assertions [GM03]. LTSA is then used to verify that time progresses by checking the
property �♦tick against the model. The output of LTSA, in the case of a Zeno model, is an infinite trace
in which, from one position onwards, no tick event occurs. The check is performed by assuming maximal
progress of the system with respect to the environment (a standard assumptions of reactive systems), and
weak fairness [MK99]. Fairness ensures that the environment will eventually perform tick instead of other
environment controlled events (assuming the environment itself is consistent with time progress).

In our running example, the application of the analysis phase to the asynchronous FLTL goal model (i.e.
equations (8)–(12)) gives the following output, where the capitalised text on the right column indicates the
fluents that are true after the occurrence of each event of the trace prefix on the left.

Violation of LTL property: Non Zeno
Trace to terminal set of states:
tick
tock
signalCriticalMethane CRITICALMETHANE
signalHighWater HIGHWATER && CRITICALMETHANE
tick HIGHWATER && CRITICALMETHANE
tock HIGHWATER && CRITICALMETHANE
switchPumpOn HIGHWATER && CRITICALMETHANE && PUMPON
switchPumpOff HIGHWATER && CRITICALMETHANE
Cycle in terminal set:
switchPumpOn
switchPumpOff
LTL Property Check in: 8ms

The above is an infinite trace compactly displayed as a (finite) trace with the prefix

〈tick,tock, signalCriticalMethane, signalHighWater, tick, tock,
switchPumpOn, switchPumpOff〉

followed by the cycle 〈switchPumpOn, switchPumpOff, switchPumpOn,. . .〉, in which tick does not occur.
The trace indicates that a pre-condition for at least one of two system controlled events, switchPumpOn

and switchPumpOff, is missing or requires strengthening. Indeed, consider the second tick of the trace, where
HighWater and CriticalMethane are true. At this point the goals proscribe tick from occurring while PumpOn
is still true. Hence, the occurrence of switchPumpOff is desirable. However, as soon as switchPumpOff hap-
pens, there are no pre-conditions preventing the pump being switched on again. Note that switching the
pump back on does not violate any goals as the requirement is that the pump be off at the next tick and
nothing is stated about the number of times the pump may be switched on during the time unit. A reason-
able outcome of this analysis is to conclude that the pre-condition for switchPumpOn needs strengthening
to prevent the pump being switched on unnecessarily.

4.3. Scenario Elaboration Phase

During this phase, the engineer elaborates the violation trace generated by the LTSA, and produces a set
of positive and negative scenarios. The engineer is assumed to identify, within the violation trace returned
by the LTSA, the event in the trace that should not have occurred at a particular position in that trace.
The prefix starting from the initial state of that trace up to and including the undesirable event is denoted
as a negative scenario. So, given a violation trace of the form 〈w1, e, w2〉, where e is the undesirable event, a
negative scenario would be 〈w1, e〉, denoting that whenever the system exhibits w1 then event e should not
happen. The task of producing a negative scenario from the trace returned by the LTSA is believed to be
an intuitive task that can be performed manually, in particular because the negative scenarios will always
be sub-traces of the trace produced by the LTSA.

The engineer is also assumed to provide at least one scenario which shows a positive occurrence of e. This

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 11

should be a scenario that starts from the same initial state, is consistent with the goal model and terminates
with a tick (i.e. 〈w′1, e, w

′

2, tick〉), where w
′

1 and/or w
′

2 may well be empty. The same model generated by
LTSA can be walked through or animated by the engineer to generate such positive scenarios, guaranteeing
their consistency with the given goals and operational requirements. Note that because scenarios are finite
traces, positive scenarios are not meant to exemplify non-Zeno traces. They merely capture desirable system
behaviours which are consistent with the given goal model.

Returning to the example of Zeno trace described above, the engineer may identify the first occurrence
of switchPumpOn as incorrect. A negative scenario could therefore be

σ−1 = 〈tick, tock, signalCriticalMethane, signalHighWater, tick, tock, switchPumpOn〉
stating that the pump should not have been switched on after high water and methane have been signalled.
In addition, a positive scenario exemplifying a correct occurrence of switchPumpOn could be:

σ+
1 = 〈tick, tock, signalHighWater, tick, tock, switchPumpOn, tick〉.

This phase finishes when at least one positive and one negative scenarios have been identified. Note that
more than one positive and/or negative scenarios can be provided during this phase (e.g. positive examples
from previous iterations).

4.4. Learning Phase

This phase is concerned with the inductive learning computation of missing required pre-conditions with
respect to a given collection ΣP ∪ΣN of positive and negative scenarios. It makes use of an Inductive Logic
Programming (ILP) framework, called non-monotonic Hybrid Abductive and Inductive Learning (XHAIL)
[Ray09]. In general, an inductive learning task is defined as the computation of an hypothesis H that
explains a given set E of examples with respect to a given background knowledge B [RBR04, Mug95]. The
hypothesis H is called, in this case, an inductive solution for E with respect to B. Intuitively, within the
context of learning pre-conditions, the background knowledge is the fluent definitions D and the goal model
Ga, generated during the analysis phase. The set of positive and negative scenarios constructed during the
scenario elaboration phase form the examples. The learned (set of) asynchronous pre-conditions, Pre, is the
hypothesis that added to Ga generates an LTS model that accepts the positive scenarios but none of the
negative ones. This can be formally defined below with respect to the scenario properties.

Definition 7 (Correct Operational Extension with respect to Scenarios). Let Ga be an asynchro-
nous goal model and let Σ+ and Σ− be, respectively, sets of positive and negative scenario properties. The
(set of) asynchronous pre-conditions Pre is said to be a correct extension of a goal model with respect to
scenarios Σ+ and Σ−, if the following conditions holds:

• Ga ∪ Pre |=D σ− for each σ− ∈ Σ−
• Ga ∪ Pre 6|=D ¬σ+ for each σ+ ∈ Σ+.

To apply XHAIL to the task of learning pre-conditions, the current asynchronous FLTL goal model Ga (in-
cluding pre-conditions computed in previous iterations), fluent definitions D, and the collection of positive
and negative scenarios, Σ+ ∪ Σ−, are encoded into a semantically equivalent Event Calculus (EC)[MS02]
logic program Π and set of examples E.

Event Calculus Programs. Our EC programs include a sort A of events (e1,e2,...), a sort F of fluents
(f1,f2,...), a sort S of scenarios (s1,s2,...), and two sorts P = (p1,p2,..) and T = (t1,t2,..) both isomorphic to
the set of non-negative integers. Each of the sorts P and T represents, respectively, positions and time units
along a trace. EC programs make use of the basic predicates happens, initiates, terminates, holdsAt,
impossible and attempt. The atom happens(e,p,t,s) indicates that event e occurs at position p, within
time unit t in scenario s, the atom initiates(e, f, p, s) (resp. terminates(e,f,p,s)) means that
if, in a scenario s, event e were to occur at position p, it would cause fluent f to be true (resp. false)
immediately afterwards. The predicate holdsAt(f,p,s) denotes, instead, that in a scenario s, fluent f is
true at position p. The atoms impossible(e,p,t,s) and attempt(e,p,t,s) are used, respectively, to state
that in a scenario s, at position p within a time unit t, the event e is impossible, and that an attempt has

12 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

been made to perform e. The first four predicates are standard, whereas the last two are adapted from the
EC extension presented in [MS02].

To relate positions and time units within a given scenario, the predicate posInTime(p,t,s) is used,
which denotes that, in a given scenario s, a position p is within a time unit t. Specifically, the time unit
of a position p ≥ 0 in a scenario is the number of tick occurrences between position 0 and p. A additional
predicate next(x2, x1) is also used to denote that x2 is the next time (resp. position) unit after x1. For
example, for the following scenario

〈tick, tock, signalHighWater, tick, tock, switchPumpOn, tick〉
The EC program would include the following relations between position and time:

posInTime(0,1,s).
posInTime(1,1,s).
posInTime(2,1,s).
posInTime(3,2,s).
posInTime(4,2,s).
posInTime(5,2,s).
posInTime(6,2,s).
posInTime(7,3,s).

where s is a constant that uniquely represents the above sequence in the EC program, and the facts
next(i+1,i), for every 0 ≥ i ≤ 6, which defines the ordering relation between time units and positions.

EC programs are equipped with a set of domain-independent core axioms suitable for reasoning about effects
of events over fluents.

clipped(P1,F,P2,S) : − happens(E,P,T,S),
terminates(E,F,P,S), P1 < P < P2.

(13)

holdsAt(F,P2,S) : − happens(E,P1,T,S), initiates(E,F,P1,S),
P1 < P2, not clipped(P1,F,P2, S). (14)

holdsAt(F,P,S) : − initially(F,S), not clipped(0,F,P,S). (15)

happens(E,P,T,S) : − attempt(E,P,T,S),
not impossible(E,P,T,S),
posInTime(P,T,S).

(16)

The three axioms (13)-(15) describe general principles for deciding when fluents hold or do not hold at
particular time-points.1 They formalise the common-sense law of inertia: a fluent that is true continues to
hold until a terminating event occurs, and vice versa. The last axiom (16) captures the semantics of event
pre-conditions. It states that an event E cannot happen if its pre-conditions are not satisfied (i.e. impossible
is true)2.

Furthermore, to capture the notion of synchronous satisfiability in terms of asynchronous semantics our
programs make use of two new predicates holdsAtTick and notholdsAtTick. These are defined by the
following additional domain-independent core axioms.

holdsAtTick(F,T,S):- attempt(tick,P,T,S), next(P2,P1), holdsAt(F,P2,S). (17)

notholdsAtTick(F,T,S) :- attempt(tick,P,T,S), next(P2,P1), not holdsAt(F,P2,S). (18)

Axioms (17) and (18) state that a fluent F holds (resp. does not hold) at the beginning of a time unit T in a
scenario S if it holds (resp. does not hold) at the position P where the tick event is attempted.

In addition to the domain-independent core axioms, EC programs are equipped with domain-dependent
axioms and integrity constraints. The former define the predicates initiates, terminates, impossible,

1 Axioms (13)–(15) are identical to those presented in [Sha97] apart from the extra argument T and S, for representing time
units and scenarios. Axiom (16) extends the formalism in [Sha97] to support event pre-conditions.
2 The symbol :- is used in Prolog to denote the implication ←.

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 13

attempt, and posInTime, depending on the particular problem in hand, and are automatically generated
from the fluent definition D of the FLTL goal model as described below. The integrity constraints are instead
used to express constraints over the holdsAtTick and notholdsAtTick predicates, which capture the FLTL
goal models. These constraints are represented as denial rules – i.e. rules of the form :- φ1, . . ., φn, where,
φi can in principle be any of the EC predicates.

From Goal Models to EC Programs. Given a goal model, Ga, written in asynchronous FLTL, and a
set D of fluent definitions, a mapping τ has been defined that automatically generates from Ga and D an
EC program. The definition of this mapping is given below.

Definition 8. (Encoding Goal Models into EC Programs) Given an asynchronous goal model Ga and
a set D of fluent definitions, the corresponding logic program Π = τ(Ga, D) is the EC program containing
the following (atomic) clauses:

• initially(fi,S), for each fluent defined to be initially true in D

• initiates(ei,f,P,S), for each event ei ∈ If in D

• terminates(ei,f,P,S), for each event ei ∈ Tf in D

• impossible(e,P,T,S):-(not)holdsAtTick(f1,T,S),..,
(not)holdsAtTick(fn,T,S), posInTime(P,T,S)

for each operational pre-condition �(tick→ ((
∧

1≤i≤n(¬)fi)→ (©¬e W tick))) in Ga

• :- (not)holdsAtTick(f1,T,S),. . ., (not)holdsAtTick(fn,T,S),
next(T2,T), notholdsAtTick(g,T2,S)

for each goal �(tick→ ((¬)f1 ∧ . . . ∧ (¬)fn →©¬tick W (tick ∧ ¬g))) in Ga

• :-(not)holdsAtTick(f1,T,S),. . .,(not)holdsAtTick(fn,T,S),
next(T2,T), holdsAtTick(g,T2,S)

for each goal �(tick→ ((¬)f1 ∧ . . . ∧ (¬)fn →©¬tick W (tick ∧ g))) in Ga

• EC domain-independent axioms (13)-(18)

For example, the mapping function τ would generate from the fluent definition

pumpOn ≡ 〈{switchPumpOn}, {switchPumpOff}〉
the facts

initiates(switchPumpOn,pumpOn,P,S).
terminates(switchPumpOff,pumpOn,P,S).

from the required pre-condition

�(tick → (¬HighWater →©(¬switchPumpOn W tick)))

the clause
impossible(switchPumpOn,P,T,S):- notholdsAtTick(highWater,T,S),
posInTime(P,T,S).

referred to as an EC pre-condition, and from the asynchronous FLTL goal PumpOffWhenLowWater

�(tick→ (¬HighWater→©(¬tickW(tick ∧ ¬PumpOn))))

the integrity constraint
:- notholdsAtTick(highWater,T,S),next(T2,T),holdsAtTick(pumpOn,T2,S).

The learning phase provides also an automatic encoding of positive (Σ+) and negative (Σ−) scenarios into
two sets of EC facts. The first set, called Nar for narrative, includes the encoding of positions and time
units ordering as facts of the form posInTime(p,t,s) and next(t+1,t), and the encoding of each event
transition as a fact of the form attempt(e,p,t,s). The second set constitutes the set E of positive and

14 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

negative examples that the learning system uses to compute new operational requirements, and it is defined
later in the section.

A formal definition of the transformation of scenarios into narratives is given below.

Definition 9. (Encoding of scenarios into Narrative) Let σ = 〈e1, e2, ..., en〉 be a scenario. A corre-
sponding EC narrative is the program Nar composed of the facts attempt(ei, i-1, t, s) and posInTime
(i-1,t,s) for each ei in s, where 1 ≤ i ≤ n, and t is the number of tick transitions in s from position 0
until position i inclusive in σ.

For example, consider the positive scenario σ+
1 :

〈tick, tock, signalHighWater, tick, tock, switchPumpOn, tick〉+

The EC encoding gives the narrative Nar:

attempt(tick,0,1,spos 1).
attempt(tock,1,1,spos 1).
attempt(signalHighWater,2,1,spos 1).
attempt(tick,3,2,spos 1).
attempt(tock,4,2,spos 1).
attempt(switchPumpOn,5,2,spos 1).
attempt(tick,6,3,spos 1).
posInTime(0,1,spos 1).
posInTime(1,1,spos 1).
posInTime(2,1,spos 1).
posInTime(3,2,spos 1).
posInTime(4,2,spos 1).
posInTime(5,2,spos 1).
posInTime(6,3,spos 1).
next(1,0).
next(2,1).
next(3,2).
next(4,3).
next(5,4).
next(6,5).

Note that from now on, the constants sneg h and spos h are used to refer to the positive and negative
scenarios σ−h and σ+

h where h ∈ N .
The following theorem proves that the encoding of FLTL goal models and scenarios into EC programs, given
in Definitions 8 and 9 respectively, is sound.

Theorem 1. Let Ga be a goal model expressed in asynchronous FLTL and T an LTS model that satisfies Ga.
Let 〈e1, e2, . . . , en〉 be a scenario accepted by T , and σ its associated path in T . Let Nar be the corresponding
encoding in EC of the scenario, and Π be the EC logic program Π = τ(Ga, D) ∪ Nar. This program has
a unique stable model I. Then, for each fluent f in the FLTL language and position p in the scenario,
σ, p |=D f iff holdsAt(f, p, s) is true in I; for every event-based fluent e in the FLTL language, position p
and associated time unit t in the scenario, σ, p |=D e iff happens(e, p− 1, t, s), is true in I.

Proof:
The proof is by induction of the position i in time unit j in σ using the fact that Π is a locally stratified
program and, as such, has a unique stable model. Let ΠI be the reduct of the program Π, so that I is
its minimal (Herbrand) model of ΠI . We consider three base cases for positions i = 0, i = 1 and i = 2,
respectively. The first base case is to prove the soundness with respect to state-based fluent propositions at
the initial state (i.e. at position 0), the second is with respect to the tick event-based proposition at position
1 (as this is the only event-based fluent at position 1 different from those at position 0), and the third case
is the actual based case for any arbitrary event-based and fluent-based proposition.

Base cases

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 15

• i = 0:
For any e ∈ Pe, σ, 0 6|= e by Definition 3, and no ground atom happens(e,−1, 0, s) is in I, since the time

constant −1 is outside the scope of the EC sort P of positions. Hence, σ, 0 |= e iff happens(e,−1, 0, s) ∈ I.
As for the case σ, 0 |= f iff holdsAt(f, 0, s) ∈ I, we consider the “if case” first and assume that σ, 0 |= f
for a given state-based fluent f . Since our D includes complete information on the initial state, we
have that f ∈ S0. Hence the program Π, and therefore I, will contain the ground atom initially(f, s).
Moreover, clipped(0, f, 0, s) 6∈ I, as there is no t, 0 < t < 0. Then, ΠI will contain the ground clause
holdsAt(f, 0, s) ← initially(f, s) so giving holdsAt(f, 0, s) ∈ I. For the “only if” case, we know that
holdsAt(f, 0, s) ∈ I and assume, reasoning by contradiction, that σ, 0 6|= f . Therefore, f is assumed to
be initially false in D. In this case, Π will contain the ground atom initially(f, s), as well as any fact
happens(e,−1, 0, s). Hence, the program ΠI will have no ground definition of holdsAt(f, 0, s), which
implies that holdsAt(f, 0, s) 6∈ I, giving a contradiction.

• i = 1:
In this case, it is sufficient to show σ, 1 |= tick iff happens(tick, 0, 1, s) ∈ I. Let’s consider the “if

case”. Given that the scenario is accepted by T and that σ, 1 |= tick, then there is a transition s0Rticks1
in σ and tick is the first event in the scenario s. Therefore attempt(tick, 0, 1, s) and posInT ime(0, 1, s)
are in I. Moreover, since Ga does not contain any pre-condition for the event tick3, the program ΠI does
not contain ground definitions of impossible(tick,0,1,s). So, by the domain-independent core axiom (16)
in ΠI , we have that happens(tick, 0, 1, s) ∈ I. Consider now the “only if” case and let us assume that
happens(tick, 0, 1, s) ∈ I and, reasoning by contradiction, that σ, 1 6|= tick. So the first transition in σ
will be different from tick which contradicts the fact that every path in an asynchronous LTS T always
starts with a tick transition.

We need now to show that σ, 1, |= f iff holdsAt(f,1,s) for any state-based fluent f different from tick.
Assume that σ, 1 |= f , for an arbitrary fluent f different from tick. Since the first transition in σ is a
tick, which does not initiate or terminate any state-based fluent different from tick, σ, 1, |= f iff σ, 0 |= f .
Therefore, initially(f,σ) ∈ I. Moreover, since tick does not terminates f , terminates(tick,f,0,s) 6∈ I and
clipped(0, f, 1, s) 6∈ I. Hence, holdsAt(f, 1, s)← initially(f, s), 0 < 1 is in ΠI , and then holdsAt(f, 1, s) ∈
I. The proof for the “only if” case is similar.

• i = 2:
We show that σ, 2 |= e iff happens(e,1,j,s) ∈ I for any event e. We consider the “if case” first and

assume that σ, 2 |= e for an arbitrary event e. Then, there will be a transition s1Res2 in σ. We distinguish
two cases, namely e is a tick event and e is a non-tick event. The proof for the first case is similar to the
base case for (i = 1). Let us assume then that e ∈ Pe − {tick}. This means that the antecedents of all
pre-conditions in Ga for the event e are false at position 1 (i.e. at the previous tick) in σ. Then, by the
previous base case, impossible(e, 1, 1, s) 6∈ I. Hence, by the domain-independent axiom (16) in ΠI and
the fact that attempt(e, 1, 1, s) and posInT ime(1, 1, s) are in I, we have that happens(e, 1, 1, σ) ∈ I.

We now show that σ, 2 |= f iff holdsAt(f,2,s) ∈ I. We assume that σ, 2 |= f for an arbitrary fluent
f . This implies that f is either (a) initially true (i.e σ, 0 |= f) and no event in Tf occurs at 2, or (b)
the fluent f has been initiated by an event in If at 2. Consider case (a). The program ΠI contains then
the ground atom initially(f, s). Moreover, since σ, 2 6|= eTf

for any terminating event eTf
∈ Tf then,

by the second base case, happens(eTf
, 1, j, s) 6∈ I (where j = 1 if σ, 2 6|= tick and j = 2 otherwise).

Thus, clipped(0, f, 2, s) 6∈ I, and ΠI contains the ground clause holdsAt(f, 2, s)← initially(f, s). Hence,
holdsAt(f, 2, s) ∈ I. We now consider case (b). We have that σ, 2 |= eIf

. Therefore, happens(eIf
, i, 1, s) ∈

I4. We also know that σ, 2 6|= e′ for any e′ ∈ Pe − {eIf
}, including any event that terminates f . Hence,

happens(eTf
, 1, 1, s) 6∈ I for any terminating event in Tf . This implies that clipped(0, f, 2, s) 6∈ I and

holdsAt(f, 2, s)← initiates(eIf
, f, 1, s), happens(eIf

, 1, 1, s), 1 < 2 is in ΠI . Since initiates(eIf
, f, 1, s) ∈

I also holdsAt(f, 2, s) ∈ I. The proof of the “only if” case is similar.

Inductive Hypothesis (IH):
We assume that for any position k, 0 ≤ k ≤ i − 1 and for any event e, we have σ, k |= e iff happens(e, k −
1, h, s) ∈ I where k − 1 is position in time unit h, and for any fluent f σ, k |= f iff holdsAt(f, k, s) ∈ I. We

3 This is because Ga is assumed to include only pre-conditions for system events.
4 Note that we can assume that non-tick event occurs at 1 and at 2 since tick does not initiates fluent f .

16 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

want to show this is true for position k = i .

Inductive Step:
We want to show that σ, i |= e iff happens(e, i − 1, h, s) ∈ I where i − 1 is a position in time unit

h. We consider the “if case” first and assume that σ, i |= e. This means that a transition si−1Resi exists
in σ. Then the antecedent of any pre-condition in Ga for the event e is false at the previous tick in σ.
Given that the program Π contains pre-condition clauses on e, by (IH) their respective antecedents are
also not satisfied at the last tick and hence impossible(e, i − 1, h, s) 6∈ I for all pre-condition clauses on
e. Now given that attempt(e, i − 1, h, s) and posInT ime(i − 1, h, s) are true in I, we can conclude that
happens(e, i − 1, h, s) ∈ I. For the “only if” case, we assume that happens(e, i − 1, h, s) ∈ I and that,
reasoning by contradiction, σ, i 6|= e. Since e is not satisfied at position i of σ, Π does not contain the fact
attempt(e, i− 1, h, s). So happens(e, i− 1, h, s) 6∈ I which contradicts the initial assumption.

We need now to show that σ, i |= f iff holdsAt(f, i, s) ∈ I. We consider the “if case” first and assume
that σ, i |= f . Then either (a) σ, 0 |= f and σ, j 6|= eTf

for all 1 ≤ j ≤ i and events eTf
∈ Tf , or (b)

σ, j |= eIf
, for some j such that 1 ≤ j ≤ i and some eIf

∈ If , and for all l, with j < l ≤ i, σ, l 6|= eTf
for

all events eTf
∈ Tf . In case (a) we know that initially(f, s) ∈ I and for all 0 ≤ j ≤ i, σ, j 6|= eTf

. Then,
by (IH), happens(eTf

, j − 1,m, s) 6∈ I, for all 0 ≤ j ≤ i where j − 1 is a position in time unit m. Therefore
clipped(0, f, i, s) 6∈ I. The transformed program ΠI will therefore include holdsAt(f, i, s) ← initially(f, s)
and hence holdsAt(f, i, s) ∈ I. We consider case (b) and assume that an f -Initiating event has occurred at
some j, with 1 ≤ j ≤ i (i.e. σ, j |= eIf

). Then, by (IH), happens(eIf
, j − 1,m, s) ∈ I where j − 1 is in time

unit m. Moreover, since no f -Terminating event occurs at any l where j < l ≤ i, ΠI does not contain any
atom of the form attempt(eTf

, l − 1, n, s) where l − 1 is a position in time unit n and n ≤ h. Therefore,
happens(eTf

, l − 1, n, s) 6∈ I. This means that the ground atom clipped(j − 1, f, i, s) 6∈ I. The program ΠI

then contains the ground rule holdsAt(f, i, s) ← initiates(eIf
, f, j − 1, s), happens(eIf

, j-1,m, s), j − 1 < i.
Hence, holdsAt(f, i, s) ∈ I.

We consider now the “only if” case and assume that holdsAt(f, i, s) ∈ I. We want to show that σ, i |= f .
Reasoning by contradiction, we assume that σ, i 6|= f . Then, either (a) f is initially false and has not been
initiated at any position j, with 0 ≤ j ≤ i, or (b) for every position j, 0 ≤ j ≤ i − 1, where f is true there
is a later position l, with j < l ≤ i such that σ, l |= eTf

. We first consider the case (a). Since σ, 0 6|= f ,
initially(f, s) 6∈ I. Furthermore, because σ, k 6|= eIf

for any event in If , happens(eIf
, j − 1,m, s) 6∈ I where

j− 1 is associated with time unit m. Thus, under the stable model semantics holdsAt(f, i, s) 6∈ I which con-
tradicts our initial assumption. Consider now case (b) and let k be the last position in σ such that σ, k |= f
where 0 < k < i− 1 and for which there is a later position l where j < l ≤ i where σ, l |= eTf

for some event
eTf
∈ Tf . Then, by (IH), happens(eTf

, l − 1, n, s) ∈ I, where position l − 1 is associated with time unit n,
and clipped(j − 1, f, i, s) ∈ I. Thus, under the stable model semantics, the following ground rules are not
included in ΠI :

holdsAt(f, i, s)← initially(f, s), not clipped(0, f, i, s)
holdsAt(f, i, s)← initiates(eIf

, f, j − 1, s), happens(eIf
, j − 1,m, s),

not clipped(j − 1, f, i, s)

Hence, holdsAt(f, i, s) 6∈ I which contradicts our initial assumption. �

The above theorem can be generalised to a set Σ of finite paths, as shown in the following corollary.

Corollary 1. Let Ga be a goal model in asynchronous FLTL language, T an LTS model that satisfies Ga.
Let Σ be a set of scenarios accepted by T with associated paths {σh|1 ≤ h ≤ m}. Let Nar be the encoding
in EC of Σ and let Π be the EC logic program Π = τ(Ga, D) ∪ Nar. This program has a unique stable
model I. Then for each σh and for any event-based fluent e ∈ Pe and position p ≥ 0, we have σh, j |=D e iff
happens(e, j − 1, tj , sh) ∈ I; for any fluent f ∈ Pf , we have σh, j |=D f iff holdsAt(f, j, sh) ∈ I.

Learning Pre-conditions. As mentioned before, the translation of the positive and negative scenarios also
contributes to the set E of examples that the learning algorithm uses to compute pre-conditions. This part
of the translation, as shown below, depends on the event for which the pre-condition has to be learned.

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 17

Without loss of generality we assume that pre-conditions are to be learned always for the last event of each
negative scenario.

Definition 10 (Encoding of scenarios into Examples). Given a set Σ+ ∪ Σ− of scenarios, the corre-
sponding set of examples is the program E given by:

• for each negative scenario σ−h = 〈e1, ..., en〉− in Σ−

– n− 1 facts of the form happens(ei,i-1,sneg h) with 1 ≤ i ≤ n− 1
– a fact of the form not happens(en,n-1, sneg h)

• for each positive scenario σ+
h = 〈e1, ..., em〉+ in Σ+

– m facts of the form happens(ei,i-1,spos h) with 1 ≤ i ≤ m

For instance, a translation of the positive scenario:

σ+
1 = 〈tick, tock, signalHighWater, tick, tock, switchPumpOn, tick〉+

contributes the following facts to E.

happens(tick,0,1,spos 1).
happens(tock,1,1,spos 1).
happens(signalHighWater,2,1, spos 1).
happens(tick,3,2,spos 1).
happens(tock,4,2,spos 1).
happens(switchPumpOn,5,2,spos 1).
happens(tick,6,3,spos 1).

while a translation of the negative scenario

σ−1 = 〈tick, tock, signalCriticalMethane, signalHighWater, tick, tock, switchPumpOn〉−

gives the following facts to E.

happens(tick,0,1,sneg 1).
happens(tock,1,1,sneg 1).
happens(signalCriticalMethane,2,1, sneg 1).
happens(signalHighWater,3,1, sneg 1).
happens(tick,4,2, sneg 1).
happens(tock,5,2, sneg 1).
not happens(switchPumpOn,6,2, sneg 1).

The search space, also referred to as Hypothesis Space (HS), of all possible pre-conditions is constrained
by a language bias, which specifies the predicates that can appear in the hypothesis, H. In our learning task,
the language bias defines the predicate impossible to appear in the head of the H rule, and the predicates
holdsAtTick, notholdsAtTick and posInTime to appear in the body.

As shown in the definition below, an inductive solution is a hypothesis, of the form given by the language
bias, that is consistent with the given background theory B and together with B entails a given set of
examples E.

Definition 11. Let Ga be a goal model expressed in asynchronous FLTL and T be an LTS model of Ga. Let
Σ+∪Σ− be a set of positive and negative scenarios accepted by T . Let Nar be the encoding in EC of Σ+∪Σ−,
B be the normal logic program τ(Ga, D)∪Nar and HS be the hypothesis space containing the set of clauses
with the predicate impossible in the head, and any of the predicates holdsAtTick, notholdsAtTick and
posInTime in the body. An inductive solution H ⊆ HS of the set E, of examples corresponding to Σ+ ∪Σ−,

18 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

with respect to the background knowledge B, is a set of EC pre-conditions, for every event en appearing as
the last event in σ−h ∈ Σ−, of the form

impossible(en,X,Y,Z) :- position(X), time(Y), scenario(Z),
holdsAtTick(f1,Y,Z),
holdsAtTick(fr,Y,Z),
posInTime(X,Y,Z).

such that B,H |= E and B ∪H 6|= false.

Consider again our running example of the Mine Pump system, where the the goal model Ga is given
by (8)–(12) with associated fluent definitions, and the positive and negative scenarios are as described in
Section 4.3. Our learning system, XHAIL, would generate the ground rule:

impossible(switchPumpOn,6,2,sneg 1) :- holdsAtTick(highWater,2,sneg 1),
notholdsAtTick(pumpOn,2,sneg 1),
holdsAtTick(criticalMethane,2,sneg 1),
posInTime(6,2,sneg 1).

and generalises it into the hypothesis:

impossible(switchPumpOn,X,Y,Z) :- holdsAtTick(criticalMethane,Y,Z).

The generalisation process is based on a compression heuristic which favours hypotheses containing the fewest
number of literals and is motivated by the principle of Occam’s razor (which, roughly speaking, means choose
the simplest hypothesis that fits the data). For a detailed description of the XHAIL learning algorithm the
reader is refer to [RBR04]. This output is then translated back into the FLTL assertion

�(tick → (CriticalMethane →©(¬switchPumpOn W tick)))

4.5. Selection Phase
The outcome of the learning phase consists of a set of required pre-conditions. Any of these solutions is
formally correct, meaning that it removes the violation detected in the analysis phase, covering the positive
but not the negative scenarios detected during the scenario elaboration phase. However, the choice of pre-
condition to include in the extended goal model does impact on the overall elaboration process. For instance, a
“too strong” pre-conditions (i.e.. a pre-condition that restricts the occurrence of events more than necessary)
may constrain the new goal model too much and impair the learning process in subsequent iterations. On
the other hand, “too weak” pre-conditions may just marginally constraint the specification and lead to a
larger number of iteration steps before termination.

The role of the engineer during this phase is therefore crucial. The engineer is prompted with the alterna-
tive collections of operational requirements and required to select among these the one that is considered to
be more plausible. The selected set of pre-conditions is then added to the current goal model. If the engineer
selects a weak pre-condition, more iterations will be required to obtain a non-Zeno model. On the other hand,
if an excessively strong requirement is selected then in some future iteration, the engineer will find that the
positive example he or she desires to propose as part of the scenario-elaboration phase is inconsistent with
the erroneously introduced strong requirements. Having identified this situation, the engineer will have to
“backtrack” to this iteration and select a weaker pre-condition.

4.6. The Cycle

At the end of each iteration, the learned pre-conditions are translated back into asynchronous FLTL and
added to the goal model. The LTS resulting from the extended goal model is guaranteed not to exhibit the

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 19

Zeno trace detected by the LTSA in that iteration and captured by the elaborated negative scenario. In
addition, the LTS is guaranteed to accept the positive scenarios identified by the engineer and, of course,
all previously elicited goals and operational requirements. The soundness of the learning step is formally
captured by the following theorem and constitutes the main invariant of the approach.

Theorem 2. Let Ga be an asynchronous goal model, D a set of fluent definitions, (T, VD) an FLTL model
of Ga and Σ+ ∪ Σ− a set of positive and negative scenarios. Let B = τ(Ga, D) ∪ Nar where Nar and is the
encoding of scenarios Σ+ ∪Σ− into a narrative. Let E be the set of examples corresponding to the scenarios
Σ+ ∪ Σ−, and HS be the hypothesis space containing the set of clauses with predicate impossible in the
head, and any of the predicates holdsAtTick, notholdsAtTick and posInTime in the body. Let H ⊂ HS
be an inductive solution for E with respect to B, such that B ∪ H |= E and B ∪ H 6|= false. Then the
corresponding set Pre of asynchronous FLTL pre-conditions, such that τ(Pre) = H, is a correct extension
of Ga with respect to Σ+ ∪ Σ−.

Proof:
The proof uses the following notation. For every position i in a given scenario, ti will be used to de-
note the number of tick transitions from position 1 until position i inclusive. Let σ+

1 = 〈e1, ..., em〉+ and
σ−1 = 〈e1, ...en〉− be a positive and negative scenario respectively accepted in T , where em = en and such
that σ+

1 ∈ Σ+ and σ−1 ∈ Σ−. Consider now the program B ∪ E. From the translation of the negative
scenario, we know that E contains the ground facts happens(ei,i-1,ti,sneg 1) for all 1 ≤ i ≤ n − 1,
and the literal not happens(en,n-1,tn,sneg 1), and from the translation of the positive scenario the lit-
erals happens(ej,j-1,tj,spos 1), for all 1 ≤ j ≤ m. We also know that B contains the ground literals
attempt(ei,i-1,ti,sneg 1) for all 1 ≤ i ≤ n, and the ground literals attempts(ej,j-1,tj,spos 1) for
all 1 ≤ j ≤ m. Hence, given the stable model I of B, happens(ei,i-1,ti,sneg 1)∈ I, for 1 ≤ i ≤ n,
happens(ej,j-1,tj,spos 1)∈ I, for 1 ≤ j ≤ m. Therefore, B 6|= not happens(en,n-1,tn,sneg 1) and
B 6|= E.

H is defined as a set of EC pre-condition clauses. Hence given the mode declaration of H, then an inductive
solution of E with respect to B is the single ground clause

impossible(en,n-1,tn,sneg 1):- (not)holdsAtTick(f1,tn,sneg 1), ...,
(not)holdsAtTick(fr,tn,sneg 1).

such that holdsAtTick(fi,tn,sneg 1), 0 ≤ i ≤ r, appears in the body if the literals holdsAt(fi,k,sneg 1),
attempt(tick, k,tn,sneg 1) and posInTime(k,tn,sneg 1) for some 1 ≤ k ≤ n, are true in I. Simi-
larly, the ground literal (not)holdsAtTick(fi,tn,sneg 1) appears in the body of the rule above, if the
literal holdsAt(fi,k,sneg 1) is not true in I and both the literals attempt(tick,k,tn,sneg 1) and
posInTime(k,tn,sneg 1) are true in I.

The above rule is then generalised giving a (minimally compressed) hypothesis H that subsumes the rule

impossible(en,X,Y,Z) :- (not)holdsAtTick(f1,Y,Z),..., (not)holdsAtTick(fl,Y,Z).

obtained by replacing the input ground terms with distinct variables.

Now, given that Pre is the FLTL pre-condition such that τ(Pre) = H, we need to show that the LTS model
of Ga∪ Pre accepts σ+

1 but does not accept σ−1 . The proof is by contradiction.

• First suppose that the LTS model of Ga∪ Pre accepts σ−1 . This means that there is a path in T of
the form s0Re1s1...sn−1Ren

sn. Consider the program B ∪H = τ(Ga ∪ Pre). From Theorem 1 we have
B ∪H |= happens(ei,i-1,ti,sneg 1) including the last event en of the negative scenario σ−1 . But we
know that B ∪ H |= not happens(en,n-1,tn,sneg 1) which is a contradiction. Hence Ga ∪ Pre does
not accept σ−1 .

• Now we suppose that Ga ∪ Pre does not accept the positive scenario σ+
1 . So Ga ∪ Pre must include a

pre-condition for an event eh, with 1 ≤ h ≤ m, in σ+
1 . Assume Ga ∪ Pre includes a pre-condition for an

event eh where 1 ≤ h ≤ m− 1. Since the positive scenario σ+
1 is assumed to be accepted in Ga, then this

20 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

means that the pre-condition for event eh must be included in Pre, as otherwise this would contradict the
fact that the path σ = s0Re1s1...sm−1Rem

sm already exists in the LTS model of Ga . Assuming now that
Pre includes a pre-condition for eh where the antecedent is satisfied at state sh−1 of a path accepting σ+

1
and there is no transition eh to state sh. Now, the program B ∪H is equal τ(Ga ∪Pre)∪ Nar where Nar
is the encoding of the scenarios Σ+ ∪Σ−. So by Corollary 1 we have that B ∪H |= happens(ei,i-1,ti,
spos 1) where 1 ≤ i ≤ h− 1, B ∪H |= happens(ei,i-1,ti,spos 1) where h+ 1 ≤ i ≤ m and B ∪H |=
not happens(eh,h-1,th,spos 1), which is in contradiction with the fact that B ∪H |= E.
The remaining case to consider is that Ga ∪ Pre includes a pre-condition for em. Let’s assume that Ga

includes such a pre-condition. The path s0Re1s1...sm−1Rem
sm would then not exist already in the LTS

model of Ga, which is inconsistent with our initial assumption. Let’s assume then that Pre includes a
pre-condition on em. Consider the sub-path s0Re1s1, ..., sm−2Rem−1sm−1 in which em does not occur.
Now, the program B ∪ H is equal to τ(Ga ∪ Pre, D) ∪ Nar. So by Corollary 1 we have that B ∪ H |=
happens(ej,j-1,tj,spos 1) where 1 ≤ j ≤ m − 1 and B ∪ H |= not happens(em,m-1,tm,spos 1),
which is in contradiction with the fact that Π ∪H |= E.

The four phases described in this section are then repeated with respect to the extended Ga. Assuming
the initial set of violation traces in the LTS model generated from given Ga is finite and that no further
information (other than the learned event pre-conditions) is added to Ga, then this cycle is repeated until
all the pre-conditions necessary to guarantee, together with the initial goal model, the construction of a non-
Zeno LTS model are computed. The termination of this cycle is based upon the invariant property that from
one iteration to another, the number of violation traces for the Zeno property (TP) progressively reduces.
This means that assuming that two iterations are needed to satisfy the time progress property TP , the set
of traces in the LTS model of Gai

, that violate TP strictly includes the set of traces in the LTS model of
Gai+1 that violate TP . This is because the addition of a learned pre-condition to the current goal model is
guaranteed (as proved by the above theorem) to reduce the number of violation traces in the extended goal
model. The application of our approach to two case studies, the Mine Pump System [KMS83] and Injection
System [CP93], have so far successfully confirmed the termination of the cycle and its convergence to the
computation of a correct extension of Ga that accepts non-Zeno LTS models.

5. Case Study

This section presents the approach applied on a simplified version of the Safety Injection system originally
described in [CP93, Let02]. This is a system for Nuclear Power Plant that prevents or mitigates damage to
the core and coolant system on the occurrence of a fault such as a loss of coolant. The system monitors the
water pressure level: If it drops below a predetermined set point “Low”, the system sends a safety injection
signal to the safety feature components which are responsible for dealing with the incident. A manual block
(push-button) is provided in order to override the safety injection signal and to avoid actuation of the pro-
tection system during a normal start-up or cool down phase. A manual block is permitted if and only if the
steam pressure is below a specified value (permissive). The manual block must be automatically reset by the
system. A manual block is effective if and only if it is executed before the protection signal is present.

Assume the language consists of the state-based fluents {SafetyInjection, Overridden, PressureBelowLow,
PressureAbovePermit, Occurs Block, Occurs Reset}, the event-based fluents {sendSafetySignal, stopSafe-
tySignal, overrideSafetySignal, enableSafetySignal, lowerPressureBelowLow, raisePressureAboveLow, raise-
PressureAbovePermit, lowerPressureBelowPermit, block. reset} as well as the following fluent definitions
D:

fluent SafetyInjection = <{sendSafetySignal},{stopSafetySignal}>
fluent Overridden = <{overrideSafetySignal},{enableSafetySignal}> initially True
fluent PressureBelowLow = <{lowerPressureBelowLow},{raisePressureAboveLow}>
fluent PressureAbovePermit = <{raisePressureAbovePermit}, {lowerPressureBelowPermit}>
fluent Occurs Block = <{block},{tock}>
fluent Occurs Reset = <{reset},{tock}>

Given the language above, the asynchronous goal model, Ga1 , generated from the synchronous goal model

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 21

in [CP93], is composed of the following FLTL formulae:

ga[SafetyInjectionWhenLowPressureAndNotOverridden]

= �(tick→ ((PressureBelowLow ∧ ¬Overridden)→
©(¬tick W (tick ∧ SafetyInjection)))) (19)

ga[SafetyInjectionOverriddenWhenBlockOccursAndPressureBelowPermit]

= �(tick→ ((Occurs Block ∧ ¬PressureAbovePermit)→
©(¬tick W (tick ∧Overridden)))) (20)

ga[SafetyInjectionNotOverriddenWhenPressureBelowPermit]

= �(tick→ (PressureAbovePermit→©(¬tick W (tick ∧ ¬Overridden)))) (21)

DomPre(sendSafetySignal)

= �(tick→ (PumpOn→©(¬sendSafetySignal W tick))) (22)

DomPre(stopSafetySignal)
= �(tick→ (¬PumpOn→©(¬stopSafetySignal W tick))) (23)

DomPre(overrideSafetySignal)
= �(tick→ (Overridden→©(¬overrideSafetySignal W tick))) (24)

DomPre(enableSafetySignal)
= �((tick→ (¬Overridden)→©(¬enableSafetySignal W tick))) (25)

where (19)-(21) specify the (asynchronous) goals and (22)-(25) define the domain pre-conditions for the
operations. Furthermore, we start our case study assuming the following required pre-condition is known.

ReqPre(sendSafetySignal)

= �(tick→ ((¬PressureBelowLow ∨Overridden)→©(¬sendSafetySignal W tick)))) (26)

What follows is a summary of some of the iterations resulting from the application of our approach.

Iteration 1

Analysis: Applying the analysis phase to Ga1 results in the following violation trace.

Violation of LTL property: @TICK
Trace to terminal set of states:
tick Overridden
tock Overridden
enableSafetySignal
reset Occurs Reset
raisePressureAbovePermit PressureAbovePermit && Occurs Reset
tick PressureAbovePermit && Occurs Reset
tock PressureAbovePermit
overrideSafetySignal Overridden && PressureAbovePermit
lowerPressureBelowPermit Overridden
lowerPressureBelowLow PressureBelowLow && Overridden
Cycle in terminal set:
block
LTL Property Check in: 47ms

This trace exemplifies a possible system behaviour which violates the time progress property. In the above
example a tick is not allowed to occur as its occurrence would result in a goal violation, specifically the goal
ga [SafetyInjectionNotOverriddenWhenPressureBelowPermit] which requires the safety injection signal to be

22 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

enabled by the next tick.

Scenario Elaboration: The overrideSafetySignal is identified as the undesirable event. The negative sce-
nario hence becomes:

σ−1 = 〈tick, tock, enableSafetySignal, reset, raisePressureAbovePermit,
tick, tock, overrideSafetySignal〉

A possible positive scenario is:

σ+
1 = 〈tick, tock, reset, enableSafetySignal, raisePressureAbovePermit,

tick, tock, lowerPressureBelowPermit, tick, tock, block, tick,
tock, overrideSafetySignal〉

Learning: The learning phase produces the following three alternative pre-conditions for the system event
overrideSafetySignal:

Pre1(overrideSafetySignal) =

�(tick→ (PressureAbovePermit→©¬overrideSafetySignal W tick)) (27)

Pre2(overrideSafetySignal) =

�(tick→ (¬Occurs Block→©¬overrideSafetySignal W tick)) (28)

Pre3(overrideSafetySignal) =

�(tick→ (Occurs Reset→©¬overrideSafetySignal W tick)) (29)

Selection: The required pre-condition (27) is chosen an added to Ga1

Iteration 2

The second iteration starts from the extended goal model Ga2 = Ga1∪ (27).

Analysis: The following violation trace is identified in the second iteration.

Violation of LTL property: @TICK
Trace to terminal set of states:
tick Overridden
tock Overridden
reset Occurs Reset && Overridden
enableSafetyInjection Occurs Reset
lowerPressureBelowLow PressureBelowLow && Occurs Reset
tick PressureBelowLow&& Occurs Reset
tock PressureBelowLow
sendSafetySignal SafetyInection && PressureBelowLow
tick SafetyInjection && PressureBelowLow
tock SafetyInjection && PressureBelowLow
stopSafetySignal PressureBelowLow
raisePressureAboveLow
raisePressureAbovePermit PressureAbovePermit
Cycle in terminal set:
lowerPressureBelowPermit
raisePressureAbovePermit
LTL Property Check in: 16ms

The above exemplifies another violation of the non-Zeno property caused this time by the occurrence of the
event stopSafetySignal.

Scenario Elaboration: stopSafetySignal is indicated as the undesirable one. The negative scenario here

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 23

becomes:

σ−1 = 〈tick, tock, enableSafetyInjection, lowerPressureBelowLow,
tick, tock, sendSafetySignal, reset, tick, tock, stopSafetySignal〉

Two possible positive scenarios are:

σ+
1 = 〈tick, tock, enableSafetyInjection, lowerPressureBelowLow,

tick, tock, sendSafetySignal, raisePressureAboveLow, tick, tock,
stopSafetyInjection〉

σ+
2 = 〈tick, tock, enableSafetyInjection, lowerPressureBelowLow,

tick, tock, sendSafetySignal, block, tick, tock, overrideSafetySignal,
tick, tock, stopSafetyInjection〉

Learning: The learning phase in this case results in the single pre-condition formally expressed as:

Pre1(stopSafetySignal) =

�(tick→ ((¬Overridden ∧ PressureBelowLow)→©¬stopSafetySignal W tick)) (30)

Selection: The pre-condition (30) is then added to the goal model Ga2 .

Iteration 3

Running the analysis phase again on Ga3 = Ga2∪ (30) gives the following output:
-- States: 420 Transitions: 1370 Memory used: 3247K
No LTL Property violations detected.
LTL Property Check in: 0ms

6. Related Work

Automated reasoning techniques are increasingly being used in requirements engineering [LW98, DBLvL05,
DLvL06]. Among these, the work most related to our approach is [LW98], where an ad-hoc inductive inference
process is used to derive high-level goals, expressed as temporal formulae, from manually attuned scenarios
provided by stake-holders. Each scenario is used to infer a set of goal assertions that explains it. Then each
goal is added to the initial goal model, which is then analyzed using state-based analysis techniques (i.e.
goal decomposition, conflict management and obstacle detection). The inductive inference procedure used in
[LW98] is mainly based on pure generalization of the given scenarios and does not take into account the given
(partial) goal model. It is therefore a potentially unsound inference process by the fact that the generated
goals may well be inconsistent with the given (partial) goal model. In our approach learned requirements are
guaranteed to be consistent with the given goals.

The work in [DBLvL05, DLvL06] also proposes the use of inductive inference to generate behavior models.
It provides an automated technique for constructing LTSs from a set of user-defined scenarios. The synthesis
procedure uses a grammar induction to generate an LTS that satisfies all given positive scenarios and none
of the negative ones. Starting from this initial LTS model, the inference procedure attempts “generalizing”
this model by merging states of the LTS and still preserving the initial set of scenarios. After each merge,
the user is requested to categorize specific paths of the new LTS as positive or negative. To reduce number
of scenarios to be classified, a goal specification is assumed and only paths satisfying the goals are queried to
the user. The generalisation process is based on a bottom-up search. It starts with the most constrained LTS
(i.e. the LTS that only contains paths that cover the initial set of scenarios) and progressively generalises it
by merging states and therefore including more behaviors. This generalization process, however, depends on
the order in which the states are considered for merging. On the other hand, the approach proposed in this
paper considers a top-down search. It starts from the least constrained LTS model that satisfies the given
specification, but that can exhibits Zeno traces behaviors, and it refines it adding pre-conditions on system
events so to eliminate Zeno undesirable behaviors.

The technique in [LKMU06] describes the steps for transforming a given KAOS goal and operational

24 D. Alrajeh, J. Kramer, A. Russo and S. Uchitel

model into an FLTL theory that is used later by the LTSA to construct an LTS. Deadlock analysis reveals
inconsistency problems in the KAOS model. However, the technique assumes these are resolved by manually
reconstructing the operational model. Our approach builds on the goal to LTS transformation of [LKMU06]
but does not require a fully operationalised model. Rather it provides automated support for completing an
operational model with respect to the given goals, that does satisfy the non-Zeno property.

7. Conclusion and Future Work

The paper presents an approach for deriving non-Zeno behavior model from goal models. It deploys estab-
lished model checking and learning techniques for the computation of required pre-condition from scenarios.
These pre-conditions can incrementally be added to the initial goal model so to generate at the end of the
cycle a non-Zeno behavior model. The pre-condition learned at each iteration has the effect of removing Zeno
traces identified by the LTSA-based analysis of the goal model at the beginning of that iteration. The cycle
terminates when no more Zeno traces are generated from the LTSA on the current (extended) goal model. A
formal characterization of termination of the cycle is currently under investigation. But our experiments and
case study results have so far confirmed the convergence of our process. Furthermore, the approach assumes,
in the second phase, that the engineer will manually elaborate the violation trace into a set of scenarios.
The possibility of automating the process of scenario elaboration process by using other forms of reasoning
techniques (e.g. abduction) is being considered. Future work includes learning other types of operational
requirements such as trigger-conditions, learning pre-conditions with time-bounded operators such as ♦≤h

meaning some time in the future within time h and �≤h meaning always in the future within time h in
[LL02], as well as past operators (e.g. Back-to, B, and Since, S, operators) in [MP92], and to integrate the
approach within a framework for generating a set of required pre- and trigger-conditions that is complete
with respect to a given goal model.

Acknowledgements

We acknowledge EPSRC EP/CS541133/1, ANPCyT PICT 11738, the Levehulme Trust and King Saud
University for partially funding this work.

Deriving Non-Zeno Behaviour Models from Goal Models using ILP 25

References

[Ant97] A.I Anton. Goal identification and refinement in the specification of software-based information systems. PhD
thesis, Atlanta, GA, USA, 1997.

[ARU08] D. Alrajeh, A. Russo, and S. Uchitel. Deriving non-zeno behavior models from goal models using ilp. In Proc.
ETAPS/FASE08 Conference on Foundation Aspects of Software Engineering, 2008.

[CP93] P.J. Courtois and D. L. Parnas. Documentation for safety critical software. In Proc. of 15th ICSE Conference,
pages 315–323, 1993.

[DBLvL05] C. Damas, P. Dupont B. Lambeau, and A. van Lamsweerde. Generating annotated behavior models from end-user
scenarios. IEEE Transactions on Software Engineering, 31(12):1056–1073, 2005.

[DLvL06] C. Damas, B. Lambeau, and A. van Lamsweerde. Scenarios, goals, and state machines: a win-win partnership for
model synthesis. In Proc. of the Intl. ACM Symp. on the Foundations of Software Engineering, 2006.

[DvL96] R. Darimont and A. van Lamsweerde. Formal refinement patterns for goal-driven requirements elaboration. In
Proc. of the 4th ACM Symp. on the Foundations of Software Engineering, 1996.

[DvLF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition. Science of Computer
Programming, 20(1):3–50, 1993.

[GM03] D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems. In Proc. 11th ACM SIGSOFT
Symp. on Foundations Software Engineering, 2003.

[GMS05] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented requirements analysis and reasoning in the tropos
methodology. Engineering Applications of Artificial Intelligence, 18:159–171, 2005.

[HBGL95] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. Scr*: A toolset for specifying and analyzing requirements. In
Proc. of the 10th Annual Conf. on Computer Assurance, 1995.

[KMS83] J. Kramer, J. Magee, and M. Sloman. Conic: An integrated approach to distributed computer control systems. In
IEE Proc., Part E 130, 1983.

[Let02] E. Letier. Goal-oriented elaboration of requirements for a safety injection control system. Technical report,
Dèpartement d’Ingènierie Informatique, UCL, 2002.

[LKMU05] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Fluent temporal logic for discrete-time in event-based models. In
Proc. of the 10th European Software Engineering Conf., 2005.

[LKMU06] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transitions systems from goal-oriented
requirements models. Technical Report 02/2006, Imperial College London, 2006.

[LL02] E. Letier and A. Van Lamsweerde. Deriving operational software specifications from system goals. In Proc. 10th
ACM SIGSOFT Symp. on Foundations of Software Engineering, 2002.

[LvL02] E. Letier and A. van Lamsweerde. Agent-based tactics for goal-oriented requirements elaboration. In Proc. of the
24th Intl. Conf. on Software Engineering, 2002.

[LW98] A. Van Lamsweerde and L. Willemet. Inferring declarative requirements specifications from operational scenarios.
IEEE Transactions on Software Engineering, 24(12):1089–1114, 1998.

[MK99] J. Magee and J. Kramer. Concurrency : State Models and Java Programs. John Wiley and Sons, 1999.
[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer, 1992.
[MS02] R. Miller and M. Shanahan. Some alternative formulation of event calculus. Computer Science; Computational

Logic; Logic programming and Beyond, 2408, 2002.
[Mug95] S.H. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special issue on Inductive Logic

Programming, 13(3-4):245–286, 1995.
[Ray09] O. Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3):329–340, 2009.
[RBR04] O. Ray, K. Broda, and A. Russo. A hybrid abductive inductive proof procedure. Logic Journal of the IGPL,

12(5):371–397, 2004.
[Sha97] M.P. Shanahan. Solving the Frame Problem. MIT Press, 1997.
[SMMM98] A. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel. Supporting scenario-based requirements engineering.

IEEE Transactions on Software Engineering, 24:1072–1088, 1998.
[UBC07] S. Uchitel, G. Brunet, and M. Chechik. Behaviour model synthesis from properties and scenarios. In Proc. of the

29th IEEE/ACM Intl. Conf. on Software Engineering, 2007.

