D Alrajeh 
  
J Kramer 
  
A Russo 
  
S Uchitel 
  
  
Under consideration for publication in Formal Aspects of Computing Deriving Non-Zeno Behaviour Models from Goal Models using ILP

Keywords: Goal-oriented requirements engineering, zeno behaviour, operational requirements, model checking, inductive learning

One of the difficulties in Goal-Oriented Requirements Engineering (GORE) is the construction of behaviour models from declarative goal specifications. This paper addresses this problem using a combination of model checking and machine learning. First, a goal model is transformed into a (potentially Zeno) behaviour model. Then, via an iterative process, Zeno traces are identified by model checking the behaviour model against a time progress property, and Inductive Logic Programming (ILP) is used to learn operational requirements (pre-conditions) that eliminate these traces. The process terminates giving a non-Zeno behaviour model produced from the learned pre-conditions and the given goal model.

Introduction

Goal-Oriented Requirements Engineering (GORE) is an increasingly popular approach for elaborating software requirements. Goals are prescriptive statements of intent whose satisfaction requires the cooperation of software components and the environment. One of the limitations of GORE approaches [DvLF93, DvL96, LvL02, Ant97, GMS05] is due to the declarative nature of goals which hinders the application of a number of successful validation techniques based on executable models such as graphical animations, simulations, and rapid-prototyping. Goals are neither conceived for nor naturally support narrative style elicitation techniques, such as those in scenario-based requirements engineering. Additionally, they are not suitable for down-stream analyses that focus on design and implementation issues, which are of operational nature.

To address these limitations, techniques have been developed that construct behaviour models automatically from safety properties and scenarios [START_REF] Uchitel | Behaviour model synthesis from properties and scenarios[END_REF], and goal models [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF]. The core of these techniques is based on "temporal logic to automata" transformation algorithms developed in the model checking community. For instance, in [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF] Labelled Transition Systems (LTS) are built automatically from KAOS goals, which are safety goals expressed in Fluent Linear Temporal Logic (FLTL) [START_REF] Giannakopoulou | Fluent model checking for event-based systems[END_REF].

However, the key technical difficulty in constructing behaviour models from goal models is that the latter are typically expressed in a synchronous, non-interleaving semantic framework while the former have an asynchronous interleaving semantics. This mismatch relates to the fact that it is convenient to make different assumptions for modelling requirements and system goals than for modelling communicating sequential processes. One of the practical consequences of this mismatch is that the construction of a behaviour model from a goal model may introduce deadlocks and progress violations. More specifically, the resulting behaviour model may be Zeno, i.e exhibits traces in which time never progresses. Clearly these models do not adequately describe the intended system behaviour and thus are not suitable basis for down-stream analysis.

A solution is to construct behaviour models from fully operationalised goal models rather than from highlevel goals [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF]. This involves identifying system operations and extracting operational requirements in the form of pre-and trigger-conditions from the high-level goals [START_REF] Letier | Agent-based tactics for goal-oriented requirements elaboration[END_REF]. One disadvantage of this approach is that operationalisation is only partial supported, where such support comes in the form of pre-defined derivation patterns restricted to some common goal patterns [START_REF] Darimont | Formal refinement patterns for goal-driven requirements elaboration[END_REF].

This paper proposes a new approach for (systematic) computation of non-Zeno behaviour models from high-level goal models, using a combination of model checking and machine learning. The approach starts with a goal model and produces a non-Zeno behaviour model that satisfies all goals. First, a given goal model, formalised in Linear Temporal Logic (LTL), is automatically translated into a (potentially Zeno) Labelled Transition System (LTS). Then, via an iterative process, Zeno traces in the LTS are identified mechanically, elaborated into positive and negative scenarios, and used to automatically learn pre-conditions that prevent such traces from occurring. Identification of Zeno traces is achieved by model checking the LTS model against a time progress property expressed in LTL, while pre-conditions are learned using Inductive Logic Programming (ILP). As a result, the process not only constructs a non-Zeno behaviour model, but also computes a set of pre-conditions. These pre-conditions, in conjunction with the given high-level goals, ensure the non-Zeno behaviour of the system. Consequently, the approach also supports the operationalisation process of goal models described in [START_REF] Letier | Agent-based tactics for goal-oriented requirements elaboration[END_REF].

The paper is an extended version of [START_REF] Alrajeh | Deriving non-zeno behavior models from goal models using ilp[END_REF]. It provides relevant background notions on goal models, LTS and FLTL (Section 2). It describes, in Section 3, the problem of deriving non-Zeno behaviour models from goal models and defines a formal characterisation of the proposed approach. It presents, in Section 4, the approach in detail, proving that it satisfies its formal characterisation. In Section 5, it illustrates the process through a case study on the Safety Injection event-driven System defined in [START_REF] Courtois | Documentation for safety critical software[END_REF]. The approach is then compared with other existing related work in Sections 6, and a discussion of future work in Section 7 concludes the paper.

Background

In this section we discuss goal and behaviour modelling. The examples we use refer to a simplified version of the mine pump control system, described in [START_REF] Kramer | Conic: An integrated approach to distributed computer control systems[END_REF], in which a pump controller is used to prevent the water in a mine pump from passing some threshold and flooding the mine. To avoid the risk of explosion, the pump may only be on when the level of methane gas in the mine is not critical. The pump controller monitors the water and methane levels by communicating with two sensors, and controls the pump in order to guarantee the safety properties of the system.

Goal Models

Goals focus on the objectives of the system. They are state-based assertions intended to be satisfied, over time, by the system. By structuring goals into refinement structures, GORE approaches aim to provide systematic methods that support requirements engineering activities including conflict detection, goal operationalisation and responsibility assignment. Goals are expected to be refined into sub-goals that can be assigned to the software-to-be or environment. Goals assigned to the environment form domain assumptions while those assigned software-to-be are used to derive operational requirements, in the form of pre-, post-and triggerconditions, for the operations provided by the software.

In this paper, we define a goal model to be a collection of system goals, domain properties and operational requirements. We specify goals informally using natural language and formally using LTL [START_REF] Manna | The Temporal Logic of Reactive and Concurrent Systems[END_REF]. Following the KAOS [START_REF] Dardenne | Goal-directed requirements acquisition[END_REF] approach, we assume a discrete-model of time, in which consecutive states in a trace are always separated by a single time unit. The time unit corresponds to some arbitrarily chosen time unit for the application domain. We consider goals to be specified as safety properties. For instance, the system goal PumpOffWhenLowWater can be informally described as "when the water is below the low level, the pump must be off within the next time unit" and formally specified as

(¬HighWater → ¬PumpOn) (1) 
where is the temporal operator meaning always, is the next time point operator, and HighWater and PumpOn are propositions meaning that "the water in the pump is above the low level threshold" and "the pump is on", respectively.

LTL assertions are constructed using a set P of propositions, which refer to state-based properties, the classical connectives, ¬, ∧ and →, and the temporal operators (next), (always), ♦ (eventually) and U (strong until). Other classical and temporal operators can be defined as combinations of the above operators (e.g. φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), and φWψ ≡ ( φ) ∨ (φUψ)).

The semantics of LTL assertions is given in terms of traces (i.e. infinite sequences of states s 1 , s 2 , . . .). A proposition p is said to be satisfied in a trace σ at position i, written σ, i |= p, if it is true at the i th state in that trace (i.e. i th time unit). The semantics of Boolean operators is defined in a standard way over each state in a sequence. The semantics of the temporal operators is defined as follows:

• σ, i |= φ iff σ, i + 1 |= φ • σ, i |= φ iff ∀j ≥ i. σ, j |= φ • σ, i |= ♦φ iff ∃j ≥ i. σ, j |= φ • σ, i |= φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ
Given the above semantics, a formula p is satisfied at the i th state (or time unit) of a trace σ, if p is true at the (i + 1) th state (or time unit) of σ. An LTL assertion φ is said to be satisfied in a trace σ if and only if it is satisfied at the first state in the trace. Similarly, a set Γ of formulae is said to be satisfied in a trace σ if each formula ψ ∈ Γ is satisfied in the trace σ; Γ is said to be consistent if there is a trace that satisfies it.

Goal models may also include domain and (partial) required conditions of operations. An operation causes a system to transit from one state to another. Conditions over operations can be domain pre-condition and post-conditions and/or required pre-conditions and trigger-conditions. For instance, the operation switch-PumpOn has, as domain pre-condition and post-condition, the assertions ¬PumpOn and PumpOn. Required pre-conditions and trigger-conditions are prescriptive conditions defining, respectively, the weakest necessary conditions and the sufficient conditions for performing an operation. The set of required conditions on operations to be performed by the software are called operational requirements

Behaviour Models

Behaviour models are event-based representations of system behaviours. Different formalisms have been proposed for modelling and analysing system behaviours (e.g. [START_REF] Heitmeyer | Scr*: A toolset for specifying and analyzing requirements[END_REF], [START_REF] Sutcliffe | Supporting scenario-based requirements engineering[END_REF]), among which LTS is a well known formalism for modelling systems as a set of concurrent components [START_REF] Magee | Concurrency : State Models and Java Programs[END_REF]. Each component is defined as a set of states and possible transitions between these states. Transitions are labelled with events denoting the interaction that the component has with its environment. The global system behaviour is captured by the parallel composition of the LTS model of each component, that interleaves their behaviour and forces synchronisation on shared events. Definition 1. (Labelled Transition Systems) A Labelled Transition System (LTS) model is defined as a tuple T = (S, E, s 0 , R) where S is a finite non-empty set of states, E is a finite non-empty set of event labels, s 0 is the initial state, and R ⊆ S × E × S is a labelled transition relation. A transition (s, e, s ) ∈ R from a state s to a new state s labelled by e is denoted as sR e s .

A (possibly infinite) path σ in an LTS is a sequence of states and transitions, starting from the initial state, of the form s 0 R e1 s 1 R e2 s 2 ..., such that for each i ≥ 0 there is a transition relation (s i , e i+1 , s i+1 ) ∈ R, with label e i+1 . The event e i ∈ E is said to be at position i in σ, and to be the i th label in the path σ, whereas s i ∈ S is said to be the i th state in σ. The set of all paths in T starting from the initial state is denoted as Σ.

Definition 2. (Scenarios) Given a set of event labels E, a scenario is a finite sequence of events of the form e 1 , e 2 , ...e n where e i ∈ E. It is said to be a positive scenario, and denoted as σ + , if it represents a desirable behaviour of the system. It is said to be a negative scenario, and denoted as σ -, if at least one of the events in the sequence is an undesirable occurrence. Furthermore, a scenario is said to be accepted by an LTS T if there is a path σ = s 0 R e1 s 1 ...s n-1 R en s n in T where, for all 0 ≤ i < n, (s i , e i+1 , s i+1 ) ∈ R.

Note that, in this paper, we assume that the undesirable event occurrence will always be the last event in the sequence of a negative scenario. Furthermore, we use Σ + and Σ -to denote a set of positive and negative scenarios respectively LTSA [START_REF] Magee | Concurrency : State Models and Java Programs[END_REF] is a tool that supports various types of automated analyses over LTSs such as model checking and animation. The logic used by LTSA is the asynchronous linear temporal logic of fluents (FLTL) [START_REF] Giannakopoulou | Fluent model checking for event-based systems[END_REF]. This logic is an LTL in which propositions in P are defined as fluents. Fluents represent time varying properties of the world that are made true and false through the occurrence of events. A fluent can be either state-based or event-based. We denote the set of state-based fluents as P f , and the set of event-based fluents as P e . A fluent definition of a fluent f , denoted as f = I f , T f , is a pair of disjoint sets of events, referred to as the initiating (I f ) and terminating (T f ) sets, and an initial truth value. Events of the initiating (resp. terminating) set are those events that, when executed, cause the fluent to become true (resp. false). For instance, the fluent definition for the state-based fluent PumpOn would be PumpOn= {switchPumpOn},{switchPumpOff} meaning that the event switchPumpOn causes the fluent PumpOn to be true, and the event switchPumpOff causes the fluent PumpOn to be false. The fluent definition for an event-based fluent e is always defined as e = {e}, E -{e} . For instance, the fluent definition for the event-based fluent switchPumpOn would be switchPumpOn = {switchPumpOn}, E -{switchPumpOn} where E is the universe of events. An FLTL language is therefore defined in terms of a set P = P e ∪ P f of fluents and a set D of fluent definitions.

Given an FLTL language, an FLTL model is a pair T, V D where T is a LTS and V D a valuation function. The set of events in T is isomorphic to the set P e of event fluents in the FLTL language, and the valuation function V D assigns truth value to fluents over paths in T according to their fluent definition. Specifically, a fluent f is said to be true at position i in a path σ if and only if either of the following conditions hold: (i) a state-based fluent f is initially true and no terminating event has occurred since; and (ii) some initiating event has occurred before position i and no terminating event has occurred since. Note that event-based fluents are always initially false. Hence, given a path σ and a position i, the valuation function V D returns the set of fluents that are true at i in σ with respect to D. As the satisfiability of fluents depends on their fluent definition, we use σ, i |= D f to denote that f is satisfied in σ at position i with respect to a given set D of fluent definitions. As formalised in the following definition, the satisfiability of asynchronous FLTL assertions over an FLTL model is also defined with respect to positions in a given path and given fluent definitions.

Definition 3. (Satisfiability in FLTL) Given an FLTL language with propositions P and set D of fluent definitions, an FLTL model T, V D and a path σ in T , the satisfiability of an FLTL formula φ at a position i ≥ 0 of the path σ with respect to D, denoted σ, i |= D φ, is defined inductively as follows:

• σ, i |= D f iff f ∈ V D (σ, i), where f ∈ P • σ, i |= D ¬φ iff σ, i |= φ • σ, i |= D φ ∧ ψ iff σ, i |= φ and σ, i |= ψ • σ, i |= D φ iff σ, i + 1 |= φ • σ, i |= D φ iff ∀j ≥ i. σ, j |= φ • σ, i |= D φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ
Furthermore, an FLTL formula φ is said to be satisfied in a path σ, denoted σ |= D φ if and only if σ, 0 |= D φ. Given a set Γ of FLTL assertions, Γ is said to be ssatisfied in a path σ, if and only if every formula φ ∈ Γ is satisfied in the path σ. An FLTL model T, V D is said to satisfy a formula φ, if φ is satisfied in every path σ in T . Similarly, the model is said to satisfy a set Γ of FLTL formulae, if it satisfies every FLTL formula φ ∈ Γ. Definition 4. (Entailment in FLTL) Given an FLTL language with propositions P and set D of fluent definitions, and an FLTL model T, V D , let Γ be a set of FLTL assertions, called also theory, and φ an FLTL formula. The formula φ is said to be entailed by the theory Γ, and denoted as Γ |= D φ, if and only if in every path σ where Γ is satisfied, the formula φ is also satisfied.

FLTL language can also be used to formalise the notion of scenarios. Note that we use symbol i to denote i number of the temporal operator .

Definition 5 (Scenario properties). A positive scenario σ + = e 1 , ..., e m + can be formalised as the FLTL positive scenario property 1≤i≤m-1 i e i ∧ m e m , whereas a negative scenario σ -= e 1 , ..., e n can be formalised as the FLTL negative scenario property 1≤i≤n-1 i e i → n ¬e n .

Note that, by slight abuse of notation, σ + and σ -will also be used to denote the FLTL properties for positive and negative scenarios respectively, and Σ + and Σ -to denote a set of positive and negative scenario properties respectively.

Problem Formulation

In this section we discuss and exemplify why the construction of behaviour models from goal models can result in models with Zeno executions. We then formally characterise the problem that this paper addresses in Section 4.

From Goal Models to Behaviour Models

LTS models are untimed. To support the derivation of behaviour models from goal models, which are timed models, time must be represented explicitly in the LTSs [START_REF] Magee | Concurrency : State Models and Java Programs[END_REF]. We adopt the approach to discrete timed behaviour models proposed in [START_REF] Letier | Fluent temporal logic for discrete-time in event-based models[END_REF]. An event tick is used to model the global clock with which each timed-process synchronises. The occurrence of this event signals the end of a time unit (as assumed by the goal model) and the beginning of the next. This event does not initiate or terminate any state-based fluent.

A state-based fluent Occurs e is also used, where needed, to denote that the event e has occurred within the last time unit. Its fluent definition is given by the tuple Occurs e= {e},{tock } , where tock is an event that always immediately follows a tick event to terminate the Occurs e fluent.

In a timed behaviour model states are classified as either observable or non-observable. The former are states with an in-going tick transition, and the latter are any other state. LTL assertions are assumed to be evaluated only at observable states. All timed behaviour models have a tick transition as first transition. This forces the first observable state of the model to have the same state-based fluents as those at the initial state. In this way, the evaluation of LTL assertions at the first observable state captures the synchronous LTL satisfiability at an initial state. To "simulate" synchronous LTL semantics within the context of timed behaviour models, LTL assertions are translated into asynchronous FLTL formulae, adopting the methodology given in [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF] and briefly described below.

The transformation of a goal model, G s , into a set, G a , of asynchronous FLTL assertions, requires translating the LTL goals and operational requirements that are in G s into FLTL formulae. Goal assertions, written in LTL, are translated into semantically equivalent asynchronous FLTL expressions using the event fluent tick. The translation T r : LT L → F LT L Async is defined as follows (where φ and ψ are state-based LTL assertions):

T r( φ) = (tick → T r(φ)) T r(φUψ) = tick → T r(φ) U (tick ∧ T r(ψ)) T r(♦φ) = ♦(tick ∧ T r(φ)) T r( φ) = (¬tick W (tick ∧ T r(φ)))
The translation of the synchronous (LTL) next operator (see T r( φ)) exemplifies well the difference between synchronous and asynchronous semantics. The synchronous formula φ asserts that at the next time point φ is true. The translation assumes that the formula T r( φ) is evaluated at the start of a time unit, in other words at the occurrence of a tick, and requires that no tick occurs from that point onwards until the asynchronous translation of φ holds and the tick event can occur. Consider the synchronous system goal PumpOffWhenLowWater formalised in (1) as (¬HighWater → ¬PumpOn). Its translation gives the asynchronous FLTL assertion

(tick → (¬HighWater → (¬tick W (tick ∧ ¬PumpOn))))
Operations specified in the goal model, G s , correspond to the events in the timed behaviour model; domain properties and operational requirements are then translated into asynchronous FLTL assertions using the associated event-based fluents. A domain pre-condition DomPre, for an operation e, in G s , is represented in G a by the following asynchronous FLTL assertion:

(tick → ((¬DomP re) → (¬e W tick))) (2) 
For instance, the domain pre-condition ¬PumpOn for the event switchPumpOn is expressed as

(tick → (¬(¬PumpOn) → (¬switchPumpOn W tick)))
The domain post-condition DomPost for an operation e, captured in G s by the fluent definitions, is represented in asynchronous FLTL as (e → (DomPost)). The FLTL formalisation of required pre-conditions, ReqPre, in G a is analogous to that of domain pre-conditions, namely

(tick → ((¬ReqP re) → (¬e W tick))) (3) 
where the FLTL representation of required trigger-condition, ReqTrig, for an operation e is given by

(tick → ((ReqT rig ∧ DomP re) → (¬tick W e))) (4) 
An LTS model can then be computed from the asynchronous FLTL representation of a given goal model. This is done using an adaptation [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF] of a "temporal logic to automata" algorithm used in model checking of FLTL [START_REF] Giannakopoulou | Fluent model checking for event-based systems[END_REF]. The technique for model-checking an asynchronous FLTL property φ over an LTS T involves constructing a Büchi automaton B(¬φ) that recognises all infinite traces, over the alphabet L, that violate φ and checking that the synchronous product of B(¬φ) with T is empty [START_REF] Giannakopoulou | Fluent model checking for event-based systems[END_REF]. When φ is a safety property, which is the case for goal models, B(¬φ) has only one accepting state that only has self-loop transitions as outgoing transitions. Thus, B(¬φ) can be viewed as an observer for φ, i.e., an LTS with an error state in which reaching the error state corresponds violating φ. Removing the error state and all transitions that lead to it yields an LTS that is as least constrained as possible, yet that is guaranteed to satisfy φ. Consider the model in Figure 1. This is the Büchi automata resulting from the formula

φ = (tick → (¬HighWater → (¬tick W (tick ∧ ¬PumpOn))))
which is the FLTL translation of the LTL goal (¬HighWater → ¬PumpOn). Removing the accepting state labelled -1, yields an LTS that is guaranteed to satisfy the formula φ.

The above-mentioned procedure for constructing LTS models from asynchronous FLTL representation of goal models can be applied to each assertion in the goal model individually. The resulting LTS models can then be composed in parallel, so capturing logical conjunction [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF]. However, in so doing, it is possible that the resulting LTS model may exhibit problematic behaviours in the form of traces in which a finite number of ticks occur. These traces, called Zeno traces or Zeno-executions, represent behaviours in which time does not progress. We refer to LTS models with Zeno traces as Zeno models.

The Problem with Zeno Models

To summarise, given a goal model, G s , as described in Section 2.1, it is possible to construct a timed LTS model that satisfies G s by transforming the goal model into a semantically equivalent set of asynchronous FLTL assertions, G a , and then computing an LTS model, using an adaptation [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF] of the temporal logic to automata algorithms in [START_REF] Giannakopoulou | Fluent model checking for event-based systems[END_REF], that satisfies G a .

However, the LTS models constructed from asynchronous FLTL goal assertions are not good models of a system behaviour. They constrain the event tick, which should not be constrained as it cannot be controlled by the system, and do not impose sufficient constraints on the system events. Such constraints are those introduced by the domain and required conditions for operations that are included in the initial goal model. So, if the considered goal model has insufficient conditions on the system events, as it is often the case in practice, then spurious executions may be exhibited by the LTS model generated from the goal model. For instance, the LTS model for the goal PumpOffWhenLowWater, given in Figure 1, includes the infinite trace tick, switchPumpOn, switchPumpOff, switchPumpOn, switchPumpOff,... . This trace does not exhibit a second tick events so violating the expectation that time progresses (referred to as time progress property). Such trace occurs because there is no restriction as to when the pump may be switched on or off (i.e. required pre-condition for switchPumpOn and/or switchPumpOff is missing). Therefore, although the LTS model constructed automatically from an asynchronous FLTL encoding of a goal model may satisfy all goals, it may contain Zeno executions due to missing conditions over system operations. Note that this is not a problem caused by the translation but rather caused by the under-specification in the synchronous description of what happens within the time units [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF].

The problem addressed in this paper is how to provide automated support for extending a goal model with required pre-conditions over system's operations in order to guarantee the construction of a non-Zeno behaviour model from a given goal model. In other words, given the asynchronous transformation G a of a synchronous goal model G s , we want to compute a set, {Pre i }, of required pre-conditions that is consistent with G a and such that the LTS model constructed from G a ∪ {Pre i } satisfies the time progress (TP) property (i.e. ♦tick ). This is formally defined below. Definition 6. (Correct Operational Extension) Let G a be an asynchronous goal model and TP be the time progress property defined as the FLTL assertion ♦tick. Then a set {Pre i } of required pre-conditions is said to be a correct operational extension of G a iff the following conditions hold:

• G a ∪ {Pre i } |= D TP • G a ∪ {Pre i } ∪ TP |= D f alse

The Approach

This section presents a novel approach for extending a goal model with the set of required pre-conditions necessary to generate a non-Zeno behaviour model that satisfies the given goal model. The approach uses model checking to analyse the LTS of the given goal model with respect to the time progress property and to generate automatically any existing Zeno traces, and uses ILP to compute the required pre-conditions that eliminate such traces. A brief overview of the framework is first given, followed by a detailed description of each of its phases.

Overview of the Approach

An overview of the approach is depicted in Figure 2. A goal model G s is initially transformed into an asynchronous model G a and a set of fluent definitions D. The computation of the correct operational extension of G a is then done by iterating over four phases. (1) The Analysis phase uses the LTSA model checking to construct an LTS model of G a with respect to D and then to check the LTS against the time progress property. If the property does not hold, a violation trace is generated. (2) The Scenario Elaboration phase requires the engineer to elaborate the violation trace into a set of positive and negative scenarios. (3) The Learning phase transforms the asynchronous goal model, fluent definitions and scenarios into a logic program and then uses an ILP system to find a set of required pre-conditions that cover the positive but none of the negative scenarios. (4) The Selection phase then requires the engineers to select the pre-condition(s) to be added to G a from those computed during the learning phase. These four phases are repeated until no more violation traces are detected. The final output is an extended FLTL goal model from which a non-Zeno behaviour model can be constructed.

The first step, as depicted in Figure 2, involves translating the synchronous goal model into an FLTL asynchronous goal model using the translation process presented in Section 3. In our running example, the full set G s includes the system goals given by the following LTL assertions: (5)

g[PumpOffWhenMethane]= (CriticalMethane → ¬PumpOn) (6) g[PumpOnWhenHighWaterAndNoMethane]= (¬CriticalMethane ∧ HighWater → PumpOn) (7) 
and the required pre-conditions (HighWater) and (CriticalMethane ∨ ¬HighWater) for the events switch-PumpOn and switchPumpOff respectively. The goal assertions are translated into the following asynchronous FLTL formulae:

g a [PumpOffWhenLowWater]= (tick → (¬HighWater → (¬tick W (tick ∧ ¬PumpOn)))) (8) g a [PumpOffWhenMethane]= (tick → (CriticalMethane → (¬tick W (tick ∧ PumpOn)))) (9) g a [PumpOnWhenHighWaterAndNoMethane] = (tick → ((¬CriticalMethane ∧ HighWater) → (¬tick W (tick ∧ PumpOn)))) (10) 
The required pre-condition are expressed asynchronously as follows:

(tick → (¬HighWater → (¬switchPumpOn W tick ))) (11) (tick → ((HighWater ∧ ¬CriticalMethane) → (¬switchPumpOff W tick ))) (12)

Analysis Phase

This phase takes as input an asynchronous FLTL encoding of a goal model and produces a Zeno trace if the goal model does not guarantee time progress.

The LTSA model checker is used to build automatically the least constrained LTS model from the asynchronous FLTL assertions [START_REF] Giannakopoulou | Fluent model checking for event-based systems[END_REF]. LTSA is then used to verify that time progresses by checking the property ♦tick against the model. The output of LTSA, in the case of a Zeno model, is an infinite trace in which, from one position onwards, no tick event occurs. The check is performed by assuming maximal progress of the system with respect to the environment (a standard assumptions of reactive systems), and weak fairness [START_REF] Magee | Concurrency : State Models and Java Programs[END_REF]. Fairness ensures that the environment will eventually perform tick instead of other environment controlled events (assuming the environment itself is consistent with time progress).

In our running example, the application of the analysis phase to the asynchronous FLTL goal model (i.e. equations ( 8)-( 12)) gives the following output, where the capitalised text on the right column indicates the fluents that are true after the occurrence of each event of the trace prefix on the left. The above is an infinite trace compactly displayed as a (finite) trace with the prefix tick,tock, signalCriticalMethane, signalHighWater, tick, tock, switchPumpOn, switchPumpOff followed by the cycle switchPumpOn, switchPumpOff, switchPumpOn,. . . , in which tick does not occur.

The trace indicates that a pre-condition for at least one of two system controlled events, switchPumpOn and switchPumpOff, is missing or requires strengthening. Indeed, consider the second tick of the trace, where HighWater and CriticalMethane are true. At this point the goals proscribe tick from occurring while PumpOn is still true. Hence, the occurrence of switchPumpOff is desirable. However, as soon as switchPumpOff happens, there are no pre-conditions preventing the pump being switched on again. Note that switching the pump back on does not violate any goals as the requirement is that the pump be off at the next tick and nothing is stated about the number of times the pump may be switched on during the time unit. A reasonable outcome of this analysis is to conclude that the pre-condition for switchPumpOn needs strengthening to prevent the pump being switched on unnecessarily.

Scenario Elaboration Phase

During this phase, the engineer elaborates the violation trace generated by the LTSA, and produces a set of positive and negative scenarios. The engineer is assumed to identify, within the violation trace returned by the LTSA, the event in the trace that should not have occurred at a particular position in that trace. The prefix starting from the initial state of that trace up to and including the undesirable event is denoted as a negative scenario. So, given a violation trace of the form w 1 , e, w 2 , where e is the undesirable event, a negative scenario would be w 1 , e , denoting that whenever the system exhibits w 1 then event e should not happen. The task of producing a negative scenario from the trace returned by the LTSA is believed to be an intuitive task that can be performed manually, in particular because the negative scenarios will always be sub-traces of the trace produced by the LTSA.

The engineer is also assumed to provide at least one scenario which shows a positive occurrence of e. This should be a scenario that starts from the same initial state, is consistent with the goal model and terminates with a tick (i.e. w 1 , e, w 2 , tick ), where w 1 and/or w 2 may well be empty. The same model generated by LTSA can be walked through or animated by the engineer to generate such positive scenarios, guaranteeing their consistency with the given goals and operational requirements. Note that because scenarios are finite traces, positive scenarios are not meant to exemplify non-Zeno traces. They merely capture desirable system behaviours which are consistent with the given goal model.

Returning to the example of Zeno trace described above, the engineer may identify the first occurrence of switchPumpOn as incorrect. A negative scenario could therefore be σ - 1 = tick, tock, signalCriticalMethane, signalHighWater, tick, tock, switchPumpOn stating that the pump should not have been switched on after high water and methane have been signalled. In addition, a positive scenario exemplifying a correct occurrence of switchPumpOn could be:

σ + 1 = tick, tock, signalHighWater, tick, tock, switchPumpOn, tick . This phase finishes when at least one positive and one negative scenarios have been identified. Note that more than one positive and/or negative scenarios can be provided during this phase (e.g. positive examples from previous iterations).

Learning Phase

This phase is concerned with the inductive learning computation of missing required pre-conditions with respect to a given collection Σ P ∪ Σ N of positive and negative scenarios. It makes use of an Inductive Logic Programming (ILP) framework, called non-monotonic Hybrid Abductive and Inductive Learning (XHAIL) [START_REF] Ray | Nonmonotonic abductive inductive learning[END_REF]. In general, an inductive learning task is defined as the computation of an hypothesis H that explains a given set E of examples with respect to a given background knowledge B [START_REF] Ray | A hybrid abductive inductive proof procedure[END_REF][START_REF] Muggleton | Inverse Entailment and Progol[END_REF]. The hypothesis H is called, in this case, an inductive solution for E with respect to B. Intuitively, within the context of learning pre-conditions, the background knowledge is the fluent definitions D and the goal model G a , generated during the analysis phase. The set of positive and negative scenarios constructed during the scenario elaboration phase form the examples. The learned (set of) asynchronous pre-conditions, P re, is the hypothesis that added to G a generates an LTS model that accepts the positive scenarios but none of the negative ones. This can be formally defined below with respect to the scenario properties.

Definition 7 (Correct Operational Extension with respect to Scenarios). Let G a be an asynchronous goal model and let Σ + and Σ -be, respectively, sets of positive and negative scenario properties. The (set of) asynchronous pre-conditions P re is said to be a correct extension of a goal model with respect to scenarios Σ + and Σ -, if the following conditions holds:

• G a ∪ P re |= D σ - for each σ -∈ Σ - • G a ∪ P re |= D ¬σ + for each σ + ∈ Σ + .
To apply XHAIL to the task of learning pre-conditions, the current asynchronous FLTL goal model G a (including pre-conditions computed in previous iterations), fluent definitions D, and the collection of positive and negative scenarios, Σ + ∪ Σ -, are encoded into a semantically equivalent Event Calculus (EC) [START_REF] Miller | Some alternative formulation of event calculus[END_REF] logic program Π and set of examples E.

Event Calculus Programs. Our EC programs include a sort A of events (e 1 ,e 2 ,...), a sort F of fluents (f 1 ,f 2 ,...), a sort S of scenarios (s 1 ,s 2 ,...), and two sorts P = (p 1 ,p 2 ,..) and T = (t 1 ,t 2 ,..) both isomorphic to the set of non-negative integers. Each of the sorts P and T represents, respectively, positions and time units along a trace. EC programs make use of the basic predicates happens, initiates, terminates, holdsAt, impossible and attempt. The atom happens(e,p,t,s) indicates that event e occurs at position p, within time unit t in scenario s, the atom initiates(e, f, p, s) (resp. terminates(e,f,p,s)) means that if, in a scenario s, event e were to occur at position p, it would cause fluent f to be true (resp. false) immediately afterwards. The predicate holdsAt(f,p,s) denotes, instead, that in a scenario s, fluent f is true at position p. The atoms impossible(e,p,t,s) and attempt(e,p,t,s) are used, respectively, to state that in a scenario s, at position p within a time unit t, the event e is impossible, and that an attempt has been made to perform e. The first four predicates are standard, whereas the last two are adapted from the EC extension presented in [START_REF] Miller | Some alternative formulation of event calculus[END_REF].

To relate positions and time units within a given scenario, the predicate posInTime(p,t,s) is used, which denotes that, in a given scenario s, a position p is within a time unit t. Specifically, the time unit of a position p ≥ 0 in a scenario is the number of tick occurrences between position 0 and p. A additional predicate next(x 2 , x 1 ) is also used to denote that x 2 is the next time (resp. position) unit after x 1 . For example, for the following scenario tick, tock, signalHighWater, tick, tock, switchPumpOn, tick

The EC program would include the following relations between position and time: posInTime(0,1,s). posInTime(1,1,s). posInTime(2,1,s). posInTime(3,2,s). posInTime(4,2,s). posInTime(5,2,s). posInTime(6,2,s). posInTime(7,3,s).

where s is a constant that uniquely represents the above sequence in the EC program, and the facts next(i+1,i), for every 0 ≥ i ≤ 6, which defines the ordering relation between time units and positions.

EC programs are equipped with a set of domain-independent core axioms suitable for reasoning about effects of events over fluents. clipped(P 1 ,F,P 2 ,S) :happens(E,P,T,S),

terminates(E,F,P,S), P 1 < P < P 2 .

(13) holdsAt(F,P 2 ,S) :happens(E,P 1 ,T,S), initiates(E,F,P 1 ,S), P 1 < P 2 , not clipped(P 1 ,F,P 2 , S).

holdsAt(F,P,S) :initially(F,S), not clipped(0,F,P,S).

(15)

happens(E,P,T,S) :attempt(E,P,T,S), not impossible(E,P,T,S), posInTime(P,T,S).

(16)

The three axioms (13)-(15) describe general principles for deciding when fluents hold or do not hold at particular time-points. 1 They formalise the common-sense law of inertia: a fluent that is true continues to hold until a terminating event occurs, and vice versa. The last axiom (16) captures the semantics of event pre-conditions. It states that an event E cannot happen if its pre-conditions are not satisfied (i.e. impossible is true) 2 . Furthermore, to capture the notion of synchronous satisfiability in terms of asynchronous semantics our programs make use of two new predicates holdsAtTick and notholdsAtTick. These are defined by the following additional domain-independent core axioms. holdsAtTick(F,T,S):-attempt(tick,P,T,S), next(P2,P1), holdsAt(F,P2,S).

(17) notholdsAtTick(F,T,S) :-attempt(tick,P,T,S), next(P2,P1), not holdsAt(F,P2,S).

Axioms ( 17) and (18) state that a fluent F holds (resp. does not hold) at the beginning of a time unit T in a scenario S if it holds (resp. does not hold) at the position P where the tick event is attempted.

In addition to the domain-independent core axioms, EC programs are equipped with domain-dependent axioms and integrity constraints. The former define the predicates initiates, terminates, impossible, 1 Axioms (13)-(15) are identical to those presented in [START_REF] Shanahan | Solving the Frame Problem[END_REF] apart from the extra argument T and S, for representing time units and scenarios. Axiom (16) extends the formalism in [START_REF] Shanahan | Solving the Frame Problem[END_REF] to support event pre-conditions. 2 The symbol :-is used in Prolog to denote the implication ←. attempt, and posInTime, depending on the particular problem in hand, and are automatically generated from the fluent definition D of the FLTL goal model as described below. The integrity constraints are instead used to express constraints over the holdsAtTick and notholdsAtTick predicates, which capture the FLTL goal models. These constraints are represented as denial rules -i.e. rules of the form :-φ 1 , . . ., φ n , where, φ i can in principle be any of the EC predicates.

From Goal Models to EC Programs. Given a goal model, G a , written in asynchronous FLTL, and a set D of fluent definitions, a mapping τ has been defined that automatically generates from G a and D an EC program. The definition of this mapping is given below. • initially(f i ,S), for each fluent defined to be initially true in D

• initiates(e i ,f,P,S), for each event e i ∈ I f in D

• terminates(e i ,f,P,S), for each event e i ∈ T f in D

• impossible(e,P,T,S):-(not)holdsAtTick(f 1 ,T,S),.., (not)holdsAtTick(f n ,T,S), posInTime(P,T,S) for each operational pre-condition (tick → ((

1≤i≤n (¬)f i ) → ( ¬e W tick))) in G a • :-(not)holdsAtTick(f 1 ,T,S),. . ., (not)holdsAtTick(f n ,T,S), next(T2,T), notholdsAtTick(g,T2,S) for each goal (tick → ((¬)f 1 ∧ . . . ∧ (¬)f n → ¬tick W (tick ∧ ¬g))) in G a • :-(not)holdsAtTick(f 1 ,T,S),. . .,(not)holdsAtTick(f n ,T,S), next(T2,T), holdsAtTick(g,T2,S) for each goal (tick → ((¬)f 1 ∧ . . . ∧ (¬)f n → ¬tick W (tick ∧ g))) in G a
• EC domain-independent axioms (13)-( 18 The learning phase provides also an automatic encoding of positive (Σ + ) and negative (Σ -) scenarios into two sets of EC facts. The first set, called N ar for narrative, includes the encoding of positions and time units ordering as facts of the form posInTime(p,t,s) and next(t+1,t), and the encoding of each event transition as a fact of the form attempt(e,p,t,s). The second set constitutes the set E of positive and negative examples that the learning system uses to compute new operational requirements, and it is defined later in the section.

A formal definition of the transformation of scenarios into narratives is given below.

Definition 9. (Encoding of scenarios into Narrative) Let σ = e 1 , e 2 , ..., e n be a scenario. A corresponding EC narrative is the program Nar composed of the facts attempt(e i , i-1, t, s) and posInTime (i-1,t,s) for each e i in s, where 1 ≤ i ≤ n, and t is the number of tick transitions in s from position 0 until position i inclusive in σ.

For example, consider the positive scenario σ + 1 : tick, tock, signalHighWater, tick, tock, switchPumpOn, tick +

The EC encoding gives the narrative N ar: attempt(tick,0,1,spos 1). attempt(tock,1,1,spos 1). attempt(signalHighWater,2,1,spos 1). attempt(tick,3,2,spos 1). attempt(tock,4,2,spos 1). attempt(switchPumpOn,5,2,spos 1). attempt(tick,6,3,spos 1). posInTime(0,1,spos 1). posInTime(1,1,spos 1). posInTime(2,1,spos 1). posInTime(3,2,spos 1). posInTime(4,2,spos 1). posInTime(5,2,spos 1). posInTime(6,3,spos 1). next(1,0). next(2,1). next(3,2). next(4,3). next(5,4). next(6,5).

Note that from now on, the constants sneg h and spos h are used to refer to the positive and negative scenarios σ - h and σ + h where h ∈ N . The following theorem proves that the encoding of FLTL goal models and scenarios into EC programs, given in Definitions 8 and 9 respectively, is sound.

Theorem 1. Let G a be a goal model expressed in asynchronous FLTL and T an LTS model that satisfies G a . Let e 1 , e 2 , . . . , e n be a scenario accepted by T , and σ its associated path in T . Let N ar be the corresponding encoding in EC of the scenario, and Π be the EC logic program Π = τ (G a , D) ∪ N ar. This program has a unique stable model I. Then, for each fluent f in the FLTL language and position p in the scenario, σ, p |= D f iff holdsAt(f, p, s) is true in I; for every event-based fluent e in the FLTL language, position p and associated time unit t in the scenario, σ, p |= D e iff happens(e, p -1, t, s), is true in I.

Proof:

The proof is by induction of the position i in time unit j in σ using the fact that Π is a locally stratified program and, as such, has a unique stable model. Let Π I be the reduct of the program Π, so that I is its minimal (Herbrand) model of Π I . We consider three base cases for positions i = 0, i = 1 and i = 2, respectively. The first base case is to prove the soundness with respect to state-based fluent propositions at the initial state (i.e. at position 0), the second is with respect to the tick event-based proposition at position 1 (as this is the only event-based fluent at position 1 different from those at position 0), and the third case is the actual based case for any arbitrary event-based and fluent-based proposition.

Base cases

• i = 0:

For any e ∈ P e , σ, 0 |= e by Definition 3, and no ground atom happens(e, -1, 0, s) is in I, since the time constant -1 is outside the scope of the EC sort P of positions. Hence, σ, 0 |= e iff happens(e, -1, 0, s) ∈ I. As for the case σ, 0 |= f iff holdsAt(f, 0, s) ∈ I, we consider the "if case" first and assume that σ, 0 |= f for a given state-based fluent f . Since our D includes complete information on the initial state, we have that f ∈ S 0 . Hence the program Π, and therefore I, will contain the ground atom initially(f, s). Moreover, clipped(0, f, 0, s) ∈ I, as there is no t, 0 < t < 0. Then, Π I will contain the ground clause holdsAt(f, 0, s) ← initially(f, s) so giving holdsAt(f, 0, s) ∈ I. For the "only if" case, we know that holdsAt(f, 0, s) ∈ I and assume, reasoning by contradiction, that σ, 0 |= f . Therefore, f is assumed to be initially false in D. In this case, Π will contain the ground atom initially(f, s), as well as any fact happens(e, -1, 0, s). Hence, the program Π I will have no ground definition of holdsAt(f, 0, s), which implies that holdsAt(f, 0, s) ∈ I, giving a contradiction.

• i = 1:
In this case, it is sufficient to show σ, 1 |= tick iff happens(tick, 0, 1, s) ∈ I. Let's consider the "if case". Given that the scenario is accepted by T and that σ, 1 |= tick, then there is a transition s 0 R tick s 1 in σ and tick is the first event in the scenario s. Therefore attempt(tick, 0, 1, s) and posInT ime(0, 1, s) are in I. Moreover, since G a does not contain any pre-condition for the event tick3 , the program Π I does not contain ground definitions of impossible(tick,0,1,s). So, by the domain-independent core axiom (16) in Π I , we have that happens(tick, 0, 1, s) ∈ I. Consider now the "only if" case and let us assume that happens(tick, 0, 1, s) ∈ I and, reasoning by contradiction, that σ, 1 |= tick. So the first transition in σ will be different from tick which contradicts the fact that every path in an asynchronous LTS T always starts with a tick transition.

We need now to show that σ, 1, |= f iff holdsAt(f,1,s) for any state-based fluent f different from tick. Assume that σ, 1 |= f , for an arbitrary fluent f different from tick. Since the first transition in σ is a tick, which does not initiate or terminate any state-based fluent different from tick, σ, 1, |= f iff σ, 0 |= f . Therefore, initially(f,σ) ∈ I. Moreover, since tick does not terminates f , terminates(tick,f,0,s) ∈ I and clipped(0, f, 1, s) ∈ I. Hence, holdsAt(f, 1, s) ← initially(f, s), 0 < 1 is in Π I , and then holdsAt(f, 1, s) ∈ I. The proof for the "only if" case is similar.

• i = 2:
We show that σ, 2 |= e iff happens(e,1,j,s) ∈ I for any event e. We consider the "if case" first and assume that σ, 2 |= e for an arbitrary event e. Then, there will be a transition s 1 R e s 2 in σ. We distinguish two cases, namely e is a tick event and e is a non-tick event. The proof for the first case is similar to the base case for (i = 1). Let us assume then that e ∈ P e -{tick}. This means that the antecedents of all pre-conditions in G a for the event e are false at position 1 (i.e. at the previous tick) in σ. Then, by the previous base case, impossible(e, 1, 1, s) ∈ I. Hence, by the domain-independent axiom (16) in Π I and the fact that attempt(e, 1, 1, s) and posInT ime(1, 1, s) are in I, we have that happens(e, 1, 1, σ) ∈ I.

We now show that σ, 2 |= f iff holdsAt(f,2,s) ∈ I. We assume that σ, 2 |= f for an arbitrary fluent f . This implies that f is either (a) initially true (i.e σ, 0 |= f ) and no event in T f occurs at 2, or (b) the fluent f has been initiated by an event in I f at 2. Consider case (a). The program Π I contains then the ground atom initially(f, s). Moreover, since σ, 2 |= e T f for any terminating event e T f ∈ T f then, by the second base case, happens(e T f , 1, j, s) ∈ I (where j = 1 if σ, 2 |= tick and j = 2 otherwise). Thus, clipped(0, f, 2, s) ∈ I, and Π I contains the ground clause holdsAt(f, 2, s) ← initially(f, s). Hence, holdsAt(f, 2, s) ∈ I. We now consider case (b). We have that σ, 2 |= e I f . Therefore, happens(e I f , i, 1, s) ∈ I4 . We also know that σ, 2 |= e for any e ∈ P e -{e I f }, including any event that terminates f . Hence, happens(e T f , 1, 1, s) ∈ I for any terminating event in T f . This implies that clipped(0, f, 2, s) ∈ I and

holdsAt(f, 2, s) ← initiates(e I f , f, 1, s), happens(e I f , 1, 1, s), 1 < 2 is in Π I . Since initiates(e I f , f, 1, s) ∈ I also holdsAt(f, 2, s) ∈ I.
The proof of the "only if" case is similar.

Inductive Hypothesis (IH):

We assume that for any position k, 0 ≤ k ≤ i -1 and for any event e, we have σ, k |= e iff happens(e, k -1, h, s) ∈ I where k -1 is position in time unit h, and for any fluent f σ, k |= f iff holdsAt(f, k, s) ∈ I. We want to show this is true for position k = i .

Inductive Step:

We want to show that σ, i |= e iff happens(e, i -1, h, s) ∈ I where i -1 is a position in time unit h. We consider the "if case" first and assume that σ, i |= e. This means that a transition s i-1 R e s i exists in σ. Then the antecedent of any pre-condition in G a for the event e is false at the previous tick in σ. Given that the program Π contains pre-condition clauses on e, by (IH) their respective antecedents are also not satisfied at the last tick and hence impossible(e, i -1, h, s) ∈ I for all pre-condition clauses on e. Now given that attempt(e, i -1, h, s) and posInT ime(i -1, h, s) are true in I, we can conclude that happens(e, i -1, h, s) ∈ I. For the "only if" case, we assume that happens(e, i -1, h, s) ∈ I and that, reasoning by contradiction, σ, i |= e. Since e is not satisfied at position i of σ, Π does not contain the fact attempt(e, i -1, h, s). So happens(e, i -1, h, s) ∈ I which contradicts the initial assumption.

We need now to show that σ, i |= f iff holdsAt(f, i, s) ∈ I. We consider the "if case" first and assume that σ, i |= f . Then either (a) σ, 0 |= f and σ, j |= e T f for all 1 ≤ j ≤ i and events e T f ∈ T f , or (b) σ, j |= e I f , for some j such that 1 ≤ j ≤ i and some e I f ∈ I f , and for all l, with j < l ≤ i, σ, l |= e T f for all events e T f ∈ T f . In case (a) we know that initially(f, s) ∈ I and for all 0 ≤ j ≤ i, σ, j |= e T f . Then, by (IH), happens(e T f , j -1, m, s) ∈ I, for all 0 ≤ j ≤ i where j -1 is a position in time unit m. Therefore clipped(0, f, i, s) ∈ I. The transformed program Π I will therefore include holdsAt(f, i, s) ← initially(f, s) and hence holdsAt(f, i, s) ∈ I. We consider case (b) and assume that an f -Initiating event has occurred at some j, with 1 ≤ j ≤ i (i.e. σ, j |= e I f ). Then, by (IH), happens(e I f , j -1, m, s) ∈ I where j -1 is in time unit m. Moreover, since no f -Terminating event occurs at any l where j < l ≤ i, Π I does not contain any atom of the form attempt(e T f , l -1, n, s) where l -1 is a position in time unit n and n ≤ h. Therefore, happens(e T f , l -1, n, s) ∈ I. This means that the ground atom clipped(j -1, f, i, s) ∈ I. The program Π I then contains the ground rule holdsAt(f, i, s) ← initiates(e I f , f, j -1, s), happens(e I f , j-1,m, s), j -1 < i. Hence, holdsAt(f, i, s) ∈ I.

We consider now the "only if" case and assume that holdsAt(f, i, s) ∈ I. We want to show that σ, i |= f . Reasoning by contradiction, we assume that σ, i |= f . Then, either (a) f is initially false and has not been initiated at any position j, with 0 ≤ j ≤ i, or (b) for every position j, 0 ≤ j ≤ i -1, where f is true there is a later position l, with j < l ≤ i such that σ, l |= e T f . We first consider the case (a). Since σ, 0 |= f , initially(f, s) ∈ I. Furthermore, because σ, k |= e I f for any event in I f , happens(e I f , j -1, m, s) ∈ I where j -1 is associated with time unit m. Thus, under the stable model semantics holdsAt(f, i, s) ∈ I which contradicts our initial assumption. Consider now case (b) and let k be the last position in σ such that σ, k |= f where 0 < k < i -1 and for which there is a later position l where j < l ≤ i where σ, l |= e T f for some event e T f ∈ T f . Then, by (IH), happens(e T f , l -1, n, s) ∈ I, where position l -1 is associated with time unit n, and clipped(j -1, f, i, s) ∈ I. Thus, under the stable model semantics, the following ground rules are not included in Π I :

holdsAt(f, i, s) ← initially(f, s), not clipped(0, f, i, s) holdsAt(f, i, s) ← initiates(e I f , f, j -1, s), happens(e I f , j -1, m, s), not clipped(j -1, f, i, s)
Hence, holdsAt(f, i, s) ∈ I which contradicts our initial assumption.

The above theorem can be generalised to a set Σ of finite paths, as shown in the following corollary.

Corollary 1. Let G a be a goal model in asynchronous FLTL language, T an LTS model that satisfies G a . Let Σ be a set of scenarios accepted by T with associated paths {σ h |1 ≤ h ≤ m}. Let N ar be the encoding in EC of Σ and let Π be the EC logic program Π = τ (G a , D) ∪ N ar. This program has a unique stable model I. Then for each σ h and for any event-based fluent e ∈ P e and position p ≥ 0, we have σ h , j |= D e iff happens(e, j -1, t j , s h ) ∈ I; for any fluent f ∈ P f , we have σ h , j |= D f iff holdsAt(f, j, s h ) ∈ I.

Learning Pre-conditions. As mentioned before, the translation of the positive and negative scenarios also contributes to the set E of examples that the learning algorithm uses to compute pre-conditions. This part of the translation, as shown below, depends on the event for which the pre-condition has to be learned.

Without loss of generality we assume that pre-conditions are to be learned always for the last event of each negative scenario.

Definition 10 (Encoding of scenarios into Examples). Given a set Σ + ∪ Σ -of scenarios, the corresponding set of examples is the program E given by:

• for each negative scenario σ - h = e 1 , ..., e n -in Σ - n -1 facts of the form happens(e i ,i-1,sneg h) with 1 ≤ i ≤ n -1 a fact of the form not happens(e n ,n-1, sneg h)

• for each positive scenario σ + h = e 1 , ..., e m + in Σ + m facts of the form happens(e i ,i-1,spos h) with 1 ≤ i ≤ m

For instance, a translation of the positive scenario:

σ + 1 = tick, tock, signalHighWater, tick, tock, switchPumpOn, tick + contributes the following facts to E.

happens(tick,0,1,spos 1). happens(tock,1,1,spos 1). happens(signalHighWater,2,1, spos

while a translation of the negative scenario σ - 1 = tick, tock, signalCriticalMethane, signalHighWater, tick, tock, switchPumpOn -

gives the following facts to E.

happens(tick,0,1,sneg 1). happens(tock,1,1,sneg 1). happens(signalCriticalMethane,2,1, sneg 1). happens(signalHighWater,3,1, sneg 1). happens(tick,4,2, sneg 1). happens(tock,5,2, sneg 1). not happens(switchPumpOn,6,2, sneg 1).

The search space, also referred to as Hypothesis Space (HS), of all possible pre-conditions is constrained by a language bias, which specifies the predicates that can appear in the hypothesis, H. In our learning task, the language bias defines the predicate impossible to appear in the head of the H rule, and the predicates holdsAtTick, notholdsAtTick and posInTime to appear in the body.

As shown in the definition below, an inductive solution is a hypothesis, of the form given by the language bias, that is consistent with the given background theory B and together with B entails a given set of examples E.

Definition 11. Let G a be a goal model expressed in asynchronous FLTL and T be an LTS model of G a . Let Σ + ∪Σ -be a set of positive and negative scenarios accepted by T . Let N ar be the encoding in EC of Σ + ∪Σ -, B be the normal logic program τ (G a , D) ∪ N ar and HS be the hypothesis space containing the set of clauses with the predicate impossible in the head, and any of the predicates holdsAtTick, notholdsAtTick and posInTime in the body. An inductive solution H ⊆ HS of the set E, of examples corresponding to Σ + ∪ Σ -, with respect to the background knowledge B, is a set of EC pre-conditions, for every event e n appearing as the last event in σ - h ∈ Σ -, of the form impossible(e n ,X,Y,Z) :-position(X), time(Y), scenario(Z), holdsAtTick(f 1 ,Y,Z), holdsAtTick(f r ,Y,Z), posInTime(X,Y,Z).

such that B, H |= E and B ∪ H |= false. Consider again our running example of the Mine Pump system, where the the goal model G a is given by ( 8)-( 12) with associated fluent definitions, and the positive and negative scenarios are as described in Section 4.3. Our learning system, XHAIL, would generate the ground rule: impossible(switchPumpOn,6,2,sneg 1) :-holdsAtTick(highWater,2,sneg 1), notholdsAtTick(pumpOn,2,sneg 1), holdsAtTick(criticalMethane,2,sneg 1), posInTime(6,2,sneg 1).

and generalises it into the hypothesis:

impossible(switchPumpOn,X,Y,Z) :-holdsAtTick(criticalMethane,Y,Z).

The generalisation process is based on a compression heuristic which favours hypotheses containing the fewest number of literals and is motivated by the principle of Occam's razor (which, roughly speaking, means choose the simplest hypothesis that fits the data). For a detailed description of the XHAIL learning algorithm the reader is refer to [START_REF] Ray | A hybrid abductive inductive proof procedure[END_REF]. This output is then translated back into the FLTL assertion (tick → (CriticalMethane → (¬switchPumpOn W tick)))

Selection Phase

The outcome of the learning phase consists of a set of required pre-conditions. Any of these solutions is formally correct, meaning that it removes the violation detected in the analysis phase, covering the positive but not the negative scenarios detected during the scenario elaboration phase. However, the choice of precondition to include in the extended goal model does impact on the overall elaboration process. For instance, a "too strong" pre-conditions (i.e.. a pre-condition that restricts the occurrence of events more than necessary) may constrain the new goal model too much and impair the learning process in subsequent iterations. On the other hand, "too weak" pre-conditions may just marginally constraint the specification and lead to a larger number of iteration steps before termination. The role of the engineer during this phase is therefore crucial. The engineer is prompted with the alternative collections of operational requirements and required to select among these the one that is considered to be more plausible. The selected set of pre-conditions is then added to the current goal model. If the engineer selects a weak pre-condition, more iterations will be required to obtain a non-Zeno model. On the other hand, if an excessively strong requirement is selected then in some future iteration, the engineer will find that the positive example he or she desires to propose as part of the scenario-elaboration phase is inconsistent with the erroneously introduced strong requirements. Having identified this situation, the engineer will have to "backtrack" to this iteration and select a weaker pre-condition.

The Cycle

At the end of each iteration, the learned pre-conditions are translated back into asynchronous FLTL and added to the goal model. The LTS resulting from the extended goal model is guaranteed not to exhibit the Zeno trace detected by the LTSA in that iteration and captured by the elaborated negative scenario. In addition, the LTS is guaranteed to accept the positive scenarios identified by the engineer and, of course, all previously elicited goals and operational requirements. The soundness of the learning step is formally captured by the following theorem and constitutes the main invariant of the approach.

Theorem 2. Let G a be an asynchronous goal model, D a set of fluent definitions, (T, V D ) an FLTL model of G a and Σ + ∪ Σ -a set of positive and negative scenarios. Let B = τ (G a , D) ∪ Nar where Nar and is the encoding of scenarios Σ + ∪ Σ -into a narrative. Let E be the set of examples corresponding to the scenarios Σ + ∪ Σ -, and HS be the hypothesis space containing the set of clauses with predicate impossible in the head, and any of the predicates holdsAtTick, notholdsAtTick and posInTime in the body. Let H ⊂ HS be an inductive solution for E with respect to B, such that B ∪ H |= E and B ∪ H |= false. Then the corresponding set P re of asynchronous FLTL pre-conditions, such that τ (P re) = H, is a correct extension of G a with respect to Σ + ∪ Σ -. means that the pre-condition for event e h must be included in P re, as otherwise this would contradict the fact that the path σ = s 0 R e1 s 1 ...s m-1 R em s m already exists in the LTS model of G a . Assuming now that P re includes a pre-condition for e h where the antecedent is satisfied at state s h-1 of a path accepting σ + 1 and there is no transition e h to state s h . Now, the program B ∪ H is equal τ (G a ∪ Pre)∪ Nar where Nar is the encoding of the scenarios Σ + ∪ Σ -. So by Corollary 1 we have that B ∪ H |= happens(e i ,i-1,t i , spos 1) where 1 ≤ i ≤ h -1, B ∪ H |= happens(e i ,i-1,t i ,spos 1) where h + 1 ≤ i ≤ m and B ∪ H |= not happens(e h ,h-1,t h ,spos 1), which is in contradiction with the fact that B ∪ H |= E. The remaining case to consider is that G a ∪ Pre includes a pre-condition for e m . Let's assume that G a includes such a pre-condition. The path s 0 R e1 s 1 ...s m-1 R em s m would then not exist already in the LTS model of G a , which is inconsistent with our initial assumption. Let's assume then that P re includes a pre-condition on e m . Consider the sub-path s 0 R e1 s 1 , ..., s m-2 R em-1 s m-1 in which e m does not occur. Now, the program B ∪ H is equal to τ (G a ∪ Pre, D) ∪ Nar. So by Corollary 1 we have that B ∪ H |= happens(e j ,j-1,t j ,spos 1) where 1 ≤ j ≤ m -1 and B ∪ H |= not happens(e m ,m-1,t m ,spos 1), which is in contradiction with the fact that Π ∪ H |= E.

The four phases described in this section are then repeated with respect to the extended G a . Assuming the initial set of violation traces in the LTS model generated from given G a is finite and that no further information (other than the learned event pre-conditions) is added to G a , then this cycle is repeated until all the pre-conditions necessary to guarantee, together with the initial goal model, the construction of a non-Zeno LTS model are computed. The termination of this cycle is based upon the invariant property that from one iteration to another, the number of violation traces for the Zeno property (T P ) progressively reduces. This means that assuming that two iterations are needed to satisfy the time progress property T P , the set of traces in the LTS model of G ai , that violate T P strictly includes the set of traces in the LTS model of G ai+1 that violate T P . This is because the addition of a learned pre-condition to the current goal model is guaranteed (as proved by the above theorem) to reduce the number of violation traces in the extended goal model. The application of our approach to two case studies, the Mine Pump System [START_REF] Kramer | Conic: An integrated approach to distributed computer control systems[END_REF] and Injection System [START_REF] Courtois | Documentation for safety critical software[END_REF], have so far successfully confirmed the termination of the cycle and its convergence to the computation of a correct extension of G a that accepts non-Zeno LTS models.

Case Study

This section presents the approach applied on a simplified version of the Safety Injection system originally described in [START_REF] Courtois | Documentation for safety critical software[END_REF][START_REF] Letier | Goal-oriented elaboration of requirements for a safety injection control system[END_REF]. This is a system for Nuclear Power Plant that prevents or mitigates damage to the core and coolant system on the occurrence of a fault such as a loss of coolant. The system monitors the water pressure level: If it drops below a predetermined set point "Low", the system sends a safety injection signal to the safety feature components which are responsible for dealing with the incident. A manual block (push-button) is provided in order to override the safety injection signal and to avoid actuation of the protection system during a normal start-up or cool down phase. A manual block is permitted if and only if the steam pressure is below a specified value (permissive). The manual block must be automatically reset by the system. A manual block is effective if and only if it is executed before the protection signal is present. Given the language above, the asynchronous goal model, G a1 , generated from the synchronous goal model in [START_REF] Courtois | Documentation for safety critical software[END_REF], is composed of the following FLTL formulae:

g a [SafetyInjectionWhenLowPressureAndNotOverridden] = (tick → ((PressureBelowLow ∧ ¬Overridden) → (¬tick W (tick ∧ SafetyInjection)))) (19) g a [SafetyInjectionOverriddenWhenBlockOccursAndPressureBelowPermit] = (tick → ((Occurs Block ∧ ¬PressureAbovePermit) → (¬tick W (tick ∧ Overridden)))) (20) g a [SafetyInjectionNotOverriddenWhenPressureBelowPermit] = (tick → (PressureAbovePermit → (¬tick W (tick ∧ ¬Overridden)))) (21) 
DomPre(sendSafetySignal) = (tick → (PumpOn → (¬sendSafetySignal W tick))) (22) 
DomPre(stopSafetySignal) = (tick → (¬PumpOn → (¬stopSafetySignal W tick))) (23) 
DomPre(overrideSafetySignal) = (tick → (Overridden → (¬overrideSafetySignal W tick))) (24) 
DomPre(enableSafetySignal) = ((tick → (¬Overridden) → (¬enableSafetySignal W tick))) (25) 
where ( 19)-( 21) specify the (asynchronous) goals and ( 22)-( 25) define the domain pre-conditions for the operations. Furthermore, we start our case study assuming the following required pre-condition is known.

ReqPre(sendSafetySignal) = (tick → ((¬PressureBelowLow ∨ Overridden) → (¬sendSafetySignal W tick)))) (26) 
What follows is a summary of some of the iterations resulting from the application of our approach.

Iteration 1

Analysis: Applying the analysis phase to G a1 results in the following violation trace. This trace exemplifies a possible system behaviour which violates the time progress property. In the above example a tick is not allowed to occur as its occurrence would result in a goal violation, specifically the goal g a [SafetyInjectionNotOverriddenWhenPressureBelowPermit] which requires the safety injection signal to be becomes: 

σ - 1 = tick,
Selection: The pre-condition (30) is then added to the goal model G a2 .

Iteration 3

Running the analysis phase again on G a3 = G a2 ∪ (30) gives the following output:

--States: 420 Transitions: 1370 Memory used: 3247K No LTL Property violations detected. LTL Property Check in: 0ms

Related Work

Automated reasoning techniques are increasingly being used in requirements engineering [START_REF] Van Lamsweerde | Inferring declarative requirements specifications from operational scenarios[END_REF][START_REF] Damas | Generating annotated behavior models from end-user scenarios[END_REF][START_REF] Damas | Scenarios, goals, and state machines: a win-win partnership for model synthesis[END_REF]. Among these, the work most related to our approach is [START_REF] Van Lamsweerde | Inferring declarative requirements specifications from operational scenarios[END_REF], where an ad-hoc inductive inference process is used to derive high-level goals, expressed as temporal formulae, from manually attuned scenarios provided by stake-holders. Each scenario is used to infer a set of goal assertions that explains it. Then each goal is added to the initial goal model, which is then analyzed using state-based analysis techniques (i.e. goal decomposition, conflict management and obstacle detection). The inductive inference procedure used in [START_REF] Van Lamsweerde | Inferring declarative requirements specifications from operational scenarios[END_REF] is mainly based on pure generalization of the given scenarios and does not take into account the given (partial) goal model. It is therefore a potentially unsound inference process by the fact that the generated goals may well be inconsistent with the given (partial) goal model. In our approach learned requirements are guaranteed to be consistent with the given goals. The work in [START_REF] Damas | Generating annotated behavior models from end-user scenarios[END_REF][START_REF] Damas | Scenarios, goals, and state machines: a win-win partnership for model synthesis[END_REF] also proposes the use of inductive inference to generate behavior models. It provides an automated technique for constructing LTSs from a set of user-defined scenarios. The synthesis procedure uses a grammar induction to generate an LTS that satisfies all given positive scenarios and none of the negative ones. Starting from this initial LTS model, the inference procedure attempts "generalizing" this model by merging states of the LTS and still preserving the initial set of scenarios. After each merge, the user is requested to categorize specific paths of the new LTS as positive or negative. To reduce number of scenarios to be classified, a goal specification is assumed and only paths satisfying the goals are queried to the user. The generalisation process is based on a bottom-up search. It starts with the most constrained LTS (i.e. the LTS that only contains paths that cover the initial set of scenarios) and progressively generalises it by merging states and therefore including more behaviors. This generalization process, however, depends on the order in which the states are considered for merging. On the other hand, the approach proposed in this paper considers a top-down search. It starts from the least constrained LTS model that satisfies the given specification, but that can exhibits Zeno traces behaviors, and it refines it adding pre-conditions on system events so to eliminate Zeno undesirable behaviors.

The technique in [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF] describes the steps for transforming a given KAOS goal and operational model into an FLTL theory that is used later by the LTSA to construct an LTS. Deadlock analysis reveals inconsistency problems in the KAOS model. However, the technique assumes these are resolved by manually reconstructing the operational model. Our approach builds on the goal to LTS transformation of [START_REF] Letier | Deriving event-based transitions systems from goal-oriented requirements models[END_REF] but does not require a fully operationalised model. Rather it provides automated support for completing an operational model with respect to the given goals, that does satisfy the non-Zeno property.

Conclusion and Future Work

The paper presents an approach for deriving non-Zeno behavior model from goal models. It deploys established model checking and learning techniques for the computation of required pre-condition from scenarios. These pre-conditions can incrementally be added to the initial goal model so to generate at the end of the cycle a non-Zeno behavior model. The pre-condition learned at each iteration has the effect of removing Zeno traces identified by the LTSA-based analysis of the goal model at the beginning of that iteration. The cycle terminates when no more Zeno traces are generated from the LTSA on the current (extended) goal model. A formal characterization of termination of the cycle is currently under investigation. But our experiments and case study results have so far confirmed the convergence of our process. Furthermore, the approach assumes, in the second phase, that the engineer will manually elaborate the violation trace into a set of scenarios. The possibility of automating the process of scenario elaboration process by using other forms of reasoning techniques (e.g. abduction) is being considered. Future work includes learning other types of operational requirements such as trigger-conditions, learning pre-conditions with time-bounded operators such as ♦ ≤h meaning some time in the future within time h and ≤h meaning always in the future within time h in [START_REF] Letier | Deriving operational software specifications from system goals[END_REF], as well as past operators (e.g. Back-to, B, and Since, S, operators) in [START_REF] Manna | The Temporal Logic of Reactive and Concurrent Systems[END_REF], and to integrate the approach within a framework for generating a set of required pre-and trigger-conditions that is complete with respect to a given goal model.

Fig. 1 .

 1 Fig. 1. Büchi automata constructed from the goal PumpOffWhenLowWater

Fig. 2 .

 2 Fig. 2. Overview of the approach

  Definition 8. (Encoding Goal Models into EC Programs) Given an asynchronous goal model G a and a set D of fluent definitions, the corresponding logic program Π = τ (G a , D) is the EC program containing the following (atomic) clauses:

)

  For example, the mapping function τ would generate from the fluent definition pumpOn ≡ {switchPumpOn}, {switchPumpOff} the facts initiates(switchPumpOn,pumpOn,P,S). terminates(switchPumpOff,pumpOn,P,S).from the required pre-condition(tick → (¬HighWater → (¬switchPumpOn W tick )))the clause impossible(switchPumpOn,P,T,S):-notholdsAtTick(highWater,T,S), posInTime(P,T,S). referred to as an EC pre-condition, and from the asynchronous FLTL goal PumpOffWhenLowWater(tick → (¬HighWater → (¬tick W(tick ∧ ¬PumpOn))))the integrity constraint :-notholdsAtTick(highWater,T,S),next(T2,T),holdsAtTick(pumpOn,T2,S).

  Assume the language consists of the state-based fluents {SafetyInjection, Overridden, PressureBelowLow, PressureAbovePermit, Occurs Block, Occurs Reset}, the event-based fluents {sendSafetySignal, stopSafe-tySignal, overrideSafetySignal, enableSafetySignal, lowerPressureBelowLow, raisePressureAboveLow, raise-PressureAbovePermit, lowerPressureBelowPermit, block. reset} as well as the following fluent definitions D: fluent SafetyInjection = <{sendSafetySignal},{stopSafetySignal}> fluent Overridden = <{overrideSafetySignal},{enableSafetySignal}> initially True fluent PressureBelowLow = <{lowerPressureBelowLow},{raisePressureAboveLow}> fluent PressureAbovePermit = <{raisePressureAbovePermit}, {lowerPressureBelowPermit}> fluent Occurs Block = <{block},{tock}> fluent Occurs Reset = <{reset},{tock}>

  tock, enableSafetyInjection, lowerPressureBelowLow, tick, tock, sendSafetySignal, reset, tick, tock, stopSafetySignal Two possible positive scenarios are: σ + 1 = tick, tock, enableSafetyInjection, lowerPressureBelowLow, tick, tock, sendSafetySignal, raisePressureAboveLow, tick, tock, stopSafetyInjection σ + 2 = tick, tock, enableSafetyInjection, lowerPressureBelowLow, tick, tock, sendSafetySignal, block, tick, tock, overrideSafetySignal, tick, tock, stopSafetyInjection Learning: The learning phase in this case results in the single pre-condition formally expressed as:

Pre 1 (stopSafetySignal) = (tick → ((¬Overridden ∧ PressureBelowLow) → ¬stopSafetySignal W tick))

This is because Ga is assumed to include only pre-conditions for system events.

Note that we can assume that non-tick event occurs at 1 and at 2 since tick does not initiates fluent f .

Acknowledgements

We acknowledge EPSRC EP/CS541133/1, ANPCyT PICT 11738, the Levehulme Trust and King Saud University for partially funding this work.

Proof:

The proof uses the following notation. For every position i in a given scenario, t i will be used to denote the number of tick transitions from position 1 until position i inclusive. Let σ + 1 = e 1 , ..., e m + and σ - 1 = e 1 , ...e n -be a positive and negative scenario respectively accepted in T , where e m = e n and such that σ + 1 ∈ Σ + and σ - 1 ∈ Σ -. Consider now the program B ∪ E. From the translation of the negative scenario, we know that E contains the ground facts happens(e i ,i-1,t i ,sneg 1) for all 1 ≤ i ≤ n -1, and the literal not happens(e n ,n-1,t n ,sneg 1), and from the translation of the positive scenario the literals happens(e j ,j-1,t j ,spos 1), for all 1 ≤ j ≤ m. We also know that B contains the ground literals attempt(e i ,i-1,t i ,sneg 1) for all 1 ≤ i ≤ n, and the ground literals attempts(e j ,j-1,t j ,spos 1) for all 1 ≤ j ≤ m. Hence, given the stable model I of B, happens(e i ,i-1,t i ,sneg 1)∈ I, for 1 ≤ i ≤ n, happens(e j ,j-1,t j ,spos 1)∈ I, for 1 ≤ j ≤ m. Therefore, B |= not happens(e n ,n-1,t n ,sneg 1) and B |= E.

H is defined as a set of EC pre-condition clauses. Hence given the mode declaration of H, then an inductive solution of E with respect to B is the single ground clause impossible(e n ,n-1,t n ,sneg 1):-(not)holdsAtTick(f 1 ,t n ,sneg 1), ..., (not)holdsAtTick(f r ,t n ,sneg 1).

such that holdsAtTick(f i ,t n ,sneg 1), 0 ≤ i ≤ r, appears in the body if the literals holdsAt(f i ,k,sneg 1), attempt(tick, k,t n ,sneg 1) and posInTime(k,t n ,sneg 1) for some 1 ≤ k ≤ n, are true in I. Similarly, the ground literal (not)holdsAtTick(f i ,t n ,sneg 1) appears in the body of the rule above, if the literal holdsAt(f i ,k,sneg 1) is not true in I and both the literals attempt(tick,k,t n ,sneg 1) and posInTime(k,t n ,sneg 1) are true in I.

The above rule is then generalised giving a (minimally compressed) hypothesis H that subsumes the rule impossible(e n ,X,Y,Z) :-(not)holdsAtTick(f 1 ,Y,Z),..., (not)holdsAtTick(f l ,Y,Z).

obtained by replacing the input ground terms with distinct variables. Now, given that Pre is the FLTL pre-condition such that τ (P re) = H, we need to show that the LTS model of G a ∪ Pre accepts σ + 1 but does not accept σ - 1 . The proof is by contradiction. • First suppose that the LTS model of G a ∪ Pre accepts σ - 1 . This means that there is a path in T of the form s 0 R e1 s 1 ...s n-1 R en s n . Consider the program B ∪ H = τ (G a ∪ Pre). From Theorem 1 we have B ∪ H |= happens(e i ,i-1,t i ,sneg 1) including the last event e n of the negative scenario σ - 1 . But we know that B ∪ H |= not happens(e n ,n-1,t n ,sneg 1) which is a contradiction. Hence G a ∪ Pre does not accept σ - 1 . • Now we suppose that G a ∪ Pre does not accept the positive scenario σ + 1 . So G a ∪ Pre must include a pre-condition for an event e h , with 1 ≤ h ≤ m, in σ + 1 . Assume G a ∪ Pre includes a pre-condition for an event e h where 1 ≤ h ≤ m -1. Since the positive scenario σ + 1 is assumed to be accepted in G a , then this enabled by the next tick.

Scenario Elaboration:

The overrideSafetySignal is identified as the undesirable event. The negative scenario hence becomes:

σ - 1 = tick, tock, enableSafetySignal, reset, raisePressureAbovePermit, tick, tock, overrideSafetySignal A possible positive scenario is: Learning: The learning phase produces the following three alternative pre-conditions for the system event overrideSafetySignal:

Pre 2 (overrideSafetySignal) =

Selection: The required pre-condition ( 27) is chosen an added to G a1

Iteration 2

The second iteration starts from the extended goal model G a2 = G a1 ∪ (27).

Analysis:

The following violation trace is identified in the second iteration. The above exemplifies another violation of the non-Zeno property caused this time by the occurrence of the event stopSafetySignal.

Scenario Elaboration: stopSafetySignal is indicated as the undesirable one. The negative scenario here