
HAL Id: hal-00523653
https://hal.science/hal-00523653v1

Submitted on 5 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

You Should Better Enforce than Verify
Yliès Falcone

To cite this version:
Yliès Falcone. You Should Better Enforce than Verify. International Conference on Runtime Verifi-
cation, Nov 2010, Malta, Malta. pp.91–108. �hal-00523653�

https://hal.science/hal-00523653v1
https://hal.archives-ouvertes.fr

You should Better Enforce than Verify⋆

Yliès Falcone
Ylies.Falcone@inria.fr

INRIA, Rennes - Bretagne Atlantique, France

Abstract. This tutorial deals with runtime enforcement and advocates
its use as an extension of runtime verification. While research efforts in
runtime verification have been mainly concerned with detection of misbe-
haviors and acknowledgement of desired behaviors, runtime enforcement
aims mainly to circumvent misbehaviors of systems and to guarantee
desired behaviors. First, we propose a comparison between runtime veri-
fication and runtime enforcement. We then present previous theoretical
models of runtime enforcement mechanisms and their expressive power
with respect to enforcement. Then, we overview existing work on run-
time enforcement monitor synthesis. Finally, we propose some future
challenges for the runtime enforcement technique.

Runtime verification [1, 2] is a well established technique which consists in
using a monitor to supervise, at runtime, the execution of an underlying program
against a set of expected properties. A monitor is a decision procedure with an
output function (e.g., a state machine when dealing with regular properties)
processing (step by step) an execution sequence of the monitored program, and
producing a sequence of verdicts (truth values of a truth-domain) indicating
fulfillment or violation of a property. Whilst the detection might sometimes be
a sufficient assurance for some systems, the occurrence (resp. non-occurrence) of
property violations (resp. validations) might be unacceptable for others.

Runtime enforcement [3–6] of the desired property is a possible solution to
ensure expected behaviors and avoid misbehaviors. Within this technique the
monitor not only observes the current program execution, but also modifies it. It
uses an internal memorisation mechanism, in order to ensure that the expected
property is fulfilled: it still reads an input sequence but now produces a new
sequence of events in such a way that the property is enforced. The precise
and formal relation between input and output sequences is usually ruled by
two constraints: soundness and transparency. From an abstract point of view,
those constraints entail the monitor to minimally modify the input sequence
in order to ensure the desired property. When the program behaves well, the
enforcement monitor lets the program execute with the least influence. If the
program behavior is about to exhibit a deviation w.r.t. the expected property, the
monitor uses its internal memorization mechanism to prevent the misbehavior.

Practical applications of runtime enforcement. There have been many practi-
cal applications of the theory of runtime enforcement (e.g., in [7–9] for pro-
gram safety, or in [10, 11] for access control policies). Most of them are built on

⋆ A longer version with more results and examples is available on the author’s webpage.

Schneider’s model of security automata. Although in this tutorial we will see an
ideational difference between enforcement and verification, in practice there is
not always a clear distinction between these disciplines. As so, even early run-
time verification frameworks were often designed to, say, “execute some code”
when a property is violated; hence modifying the initial program execution. For
instance, when a property gets violated:

– JPAX [12], RMOR [13] allow to specify call-back functions that get called;
– Temporal Rover [14] allows to specify a bunch of code to be executed;
– MOP [15] augments monitors with exception handlers.

Nevertheless, reactions to errors are seldom used or at least lacks a systematic
and formal study. Furthermore, it is clear that preventing bad behaviors would
be more desirable than providing reactions to them (“better safe than sorry”).

Tutorial outline. This tutorial focuses on the efforts towards building a theory
of runtime enforcement which is, as we believe, emerging as a new activity. We
advocate its use as an important complementary activity to runtime verification.

1 Underlying concepts

Given an alphabet E, a sequence σ on E is a total function σ : I → E where
I is either the interval [0, n] for some n ∈ N, or N itself. The empty sequence
is denoted by ǫ. We denote by E∗ the set of finite sequences over E and by Eω

the set of infinite sequences over E. E∗ ∪Eω is noted E∞. We will assume some
familiarity with the notions of sequence, prefix, and continuation. We will use
σ···n, for n ∈ N \ {0}, to denote the prefix of σ of length n.

Execution sequences. In runtime verification and enforcement techniques, as
we are not aware of the program specification, the monitored program is often
regarded as a generator of sequences. Thus, the runtime activity focuses on a
restricted alphabet Σc of concrete events or operations the program can perform.
Such sequences can be made of e.g., resource-access events on a secure system, or
kernel operations on an operating system. In a software context, these events may
represent a relevant subset of instructions (e.g., variable modifications or proce-
dure calls). These operations determine the truth value of properties. Thus, in
order to compare program’s executions with the property, these concrete events
should be abstracted in a finite set of abstract events Σa. This abstraction is an
underlying correspondence Σc ↔ Σa, mapping every occurrence of a concrete
event to the occurrence of an abstract event1. To simplify notations, in this tuto-
rial we will talk uniformly about execution sequences, and use a unified alphabet
Σ. Execution sequences, i.e., possibly non-terminating runs, range over Σ∞.

Policies vs properties. As often referred in the verification literature, a pro-
perty is a set of single execution sequences, i.e., a property partitions the set
of possible execution sequences. Schneider [3] distinguishes properties from poli-
cies. A policy is defined over sets of execution sequences, i.e., a policy partitions

1 This is exactly the purpose of program instrumentation (cf. Section 2.1). Note also
that the problem might be slightly more complex when dealing with parametric

events, events that also depend of concrete execution values (see. [16] for instance).

2

the set of sets of execution sequences. Properties thus represent a subset of the
set of policies. Only properties are suitable for a monitoring approach since they
can be decided on single executions; through a predicate applying on execution
sequences in isolation. On the contrary, policies which are not properties cannot
be monitored since they would require information from other executions. For
instance [3], forbidding information flow from two variables in a program is a
policy and not a property since checking it would require many executions to de-
termine if values are correlated. Moreover, in this tutorial, as we are dealing with
runtime techniques, we will consider only properties defined on linear executions,
excluding specific properties defined on branching execution sequences [17]. Run-
time frameworks have considered properties on finite, infinite, or both finite and
infinite sequences. We will note Π the property under scrutiny and Π(σ) when
the sequence σ belongs to Π.

1.1 Classification of properties

In the validation community, two classifications of properties have been mainly
used: the Safety-Liveness and the Safety-Progress classifications.

The Safety-Liveness dichotomy. Noticing that different properties lead to
different kinds of proofs on programs, Lamport suggested in [18] that two classes
of properties should be distinguished:

safety [18] properties stating that something bad does not happen (e.g., dead-
lock-freedom, partial correction, FIFO ordering);

liveness [19] properties stating that a good thing eventually happens (e.g.,
starvation-freedom, program termination).

From an abstract point of view, the difference between these properties is as
follows. When safety properties are falsified it is always by a finite sequence.
However, liveness properties cannot be falsified by finite sequences. That is to
say, for a liveness property, any finite sequence is the prefix of an infinite one
satisfying the property. For more results detailing the organization of properties
within this class, we refer the reader to [19–22].

The Safety-Progress hierarchy. Pnueli et al. introduced the Safety-Progress
classification of properties [23, 24], as a hierarchy between regular (linear time)
properties defined as sets of infinite execution sequences. Unlike the Safety-
Liveness dichotomy, the Safety-Progress classification is a hierarchy, and pro-
vides a finer-grain classification in a uniform way according to four views [25]: a
language-theoretic one (seeing properties as sets of sequences), a logical one (see-
ing properties as LTL formulas), a topological one (seeing properties as open or
closed sets), and an automata one (seeing properties as accepted words of Streett
automata [26]). Connections between the various views endow this classification
with means to translate and see a given property differently.

The Safety-Progress classification first defines basic classes over infinite exe-
cution sequences. Classes are informally defined as follows. Safety properties are
the properties for which whenever a sequence satisfies a property, all its prefixes
satisfy this property. Guarantee properties are the properties for which whenever
a sequence satisfies a property, there are some prefixes (at least one) satisfying

3

this property (e.g., total correctness, program termination). Response properties
are the properties for which whenever a sequence satisfies a property, an infinite
number of its prefixes satisfy this property (e.g., success of all processes enter-
ing critical section or weak fairness). Persistence properties are the properties
for which whenever a sequence satisfies a property, all but finitely many of its
prefixes satisfy this property (e.g., entering nominal regime).

Reactivity

Obligation

Safety

Progress

Safety

Guarantee

Response Persistence

Furthermore, two extra classes can be defined as (finite) Boo-
lean combinations (union and intersection) of basic classes.
Obligation properties are combinations of safety and gua-
rantee properties (e.g., exceptions). Reactivity properties are
combinations of response and persistence properties (e.g., strong
fairness). This latest is the most general class containing all

linear temporal properties [23]. See [25, 27] for more details.

2 Runtime verification vs runtime enforcement

In this section, we compare runtime verification and runtime enforcement. We
first give an abstract picture of runtime verification and its main concepts. These
concepts are mostly shared with runtime enforcement. Second, we introduce
runtime enforcement and exhibit differences between the two fields.

2.1 Runtime verification

We shall now introduce runtime verification at an abstract level. For more de-
tails, the reader may refer to surveys [1, 2]. A candidate definition of “runtime
verification” may be formulated as follows:

Definition 1 (Runtime Verification). Runtime Verification is the discipline
of computer science dedicated to the analysis of system executions (possibly leve-
raged by static analysis) by studying specification languages and logics, dynamic
analysis algorithms, system instrumentation, and system guidance.

However, the following definition has been the most admitted one [2]:

“Runtime verification is the discipline [...] that allows to determine whether a
run of a system satisfies or violates a given correctness property.”

This definition leaves aside the topic of program guidance that runtime verifi-
cation took into account early in its scope [28]. However, we believe that this
definition is representative of the research efforts in the past decade: determining
how a run of the system under scrutiny gives information about a property.

Flavors of runtime verification. Two kinds of approaches are usually distin-
guished in runtime verification [29]:

Detection of concurrency errors: Debugging is hard to achieve on multi-threaded
systems due to the large numbers of possible behaviors and the difficulty to
establish causality between events. Runtime verification techniques for con-
currency errors extract information from the run of the system in order to
determine if such transient errors may happen on other executions (even if
the current execution exhibited no errors). For instance, several methods and
tools were proposed to detect data races (e.g., [30, 31]), deadlocks (e.g., [32]),
or atomicity errors (e.g., [33]).

4

Verification of user-provided specifications: It consists in checking whether or not
the system satisfies a given specification. Several approaches were proposed
from verification of simple assertions at a single location in the program to the
verification of temporal assertions at several locations in the program. We refer
to [1] for a study and a classification of existing approaches.

Basic concepts. As one can notice from examining Definition 1, and as seve-
ral authors [2, 4, 34] pointed out, runtime verification has been only concerned
with sequence recognition. Let us now elaborate more on the basic principles of
runtime verification by depicting its ingredients.

Trace. In order to analyze a program at runtime, its concrete execution needs to
be abstracted. In this perspective, the program under scrutiny is instrumented
so as to produce a sequence of concrete events, a trace. An hypothesis is that the
vocabulary of concrete events Σc should match with the vocabulary Σa in which
the property is expressed. Program instrumentation then consists in inserting
code at relevant places in the program to capture the occurrence of events in Σc

and associate each of them with an event in Σa. The various locations in the
program, where events are picked up, are named locations. Determining these
locations relies on an analysis of the program, either manual or automatic. When
manual, it consists in manually inserting monitor’s code in relevant places in the
program. When automatic, the instrumentation relies on an analysis that can be
either static, dynamic, or both. Several approaches for program instrumentation
were considered (e.g., manually in [12], with Aspect-Oriented Programming [35],
or byte-code insertion [36]). All these methods share the common objective to
be simple, efficient, with limited impact to program’s performance. Moreover,
instrumentation may be realized on source code or on object code.

The monitor and its placement. Once settled, the trace is fed to one of the cen-
tral concept in runtime verification: the verification monitor. There are various
alternatives for monitor placement wrt. the program [37]. Usually the monitor
runs in the same memory space as the program: inline placement. In this case,
the monitor’s code can be inserted within program’s code either at observation
points or by routine calls. In the second case, the monitor is placed in another
memory space: outline placement (e.g., in a thread or different process).

The monitor may also analyze the program in different ways, in a lock-step
manner or a posteriori, i.e., a verdict is either incrementally produced (online
analysis) or once the program is terminated (offline analysis).

The monitor’s purpose. The monitor behavior amounts to translate an execution
sequence σ ∈ Σ∞ into a sequence of verdicts ω ∈ B

∞, for a truth domain B.

events verdictsMonitor

σ |= Π?
Π

Verification

ω ∈ B
∞σ ∈ Σ∞

B

A monitor, for a property Π, behaves as a function
[[Π]]B(·) : Σ∞ → B

∞ that provides an evaluation
ω = [[Π]]B(σ) for an execution sequence σ in the truth-
domain B under consideration. Thus, one of the pro-

blems to be addressed is that each partial evaluation [[Π]]B(σ···n) = ω···n of a
finite sequence should not only give some relevant information on Π(σ···n), but
also possibly on Π(σ). In this context, the principle expressing whether or not it
is worth monitoring a property, i.e., monitorability, get raised several definitions.

5

What is monitorable - definitions of monitorability. The first characte-
rization of monitorable properties was given by Viswanathan and Kim in [38].
Monitorable properties were characterized as a strict subset of safety proper-
ties. The authors showed that, due to the undecidability of some problems, a
verification monitor is limited by some computability constraints. Monitorable
properties are precisely defined as the safety decidable properties2.

Pnueli et al. gave a more general notion of monitorable properties [39] relying
on the notion of verdict determinacy for an infinite sequence.

Definition 2 (Monitorability [39]). Considering a finite sequence σ ∈ Σ∗,
a property Π ⊆ Σ∞ is negatively determined (resp. positively determined) by
an execution sequence σ if σ and each of its possible extension does not satisfy
(resp. does satisfy) Π. Then, Π is σ-monitorable, i.e., monitorable after reading
σ, if σ has an extension s.t. Π is negatively or positively determined by this
extension. Finally, Π is monitorable, if it is σ-monitorable for every σ ∈ Σ∗.

The idea is that it becomes unnecessary to continue the execution of aΠ-monitor
after reading σ if Π is not σ-monitorable. In [40], Bauer et al. gave a first under-
approximation of monitorable properties following this definition. They noticed
that, in the Safety-Liveness classification, safety and co-safety3 properties are
monitorable according to this definition. Later in [41, 27], Falcone et al. tack-
led the question of monitorability within the Safety-Progress classification of
properties. They established a characterization of monitorable properties as a
super-set of obligation properties. Furthermore, they provided a syntactic crite-
rion on Streett automata to determine whether or not the property recognized
by an automaton is monitorable.

Noticing that the classical definition of monitorability may lead to inconsis-
tencies, Falcone et al. proposed an alternative definition of monitorability [27,
41]. Indeed, following the classical definition of monitorability, for some obliga-
tion properties, some correct and incorrect execution sequences would not be
distinguishable. They proposed a definition of monitorability, parameterized by
a truth-domain B, allowing to discard properties leading to ambiguities in B.

Definition 3 (Monitorability [41]). A property Π is said to be monitorable
with the truth-domain B iff ∀σgood ∈ Π, ∀σbad /∈ Π : [[Π]]B(σgood) 6= [[Π]]B(σbad).

A propertyΠ is monitorable wrt. the truth-domain B, if it possible to distinguish
correct from incorrect sequences within this truth domain. In other words, a
property is monitorable, for a truth-domain, if it is possible to build a monitor
that would not produce the same verdict for incorrect and correct sequences.

Synthesis of runtime verification monitors. Generally, runtime verification
monitors are generated from LTL-based specifications, as seen in [15, 42]. Alter-
natively, ω-regular expressions have been used as a basis for generating monitors,

2 A non-decidable safety property is a safety property for which the test used to decide
whether a given sequence belongs to the property is not computable.

3 A property Π is a co-safety property if its negation ¬Π is a safety property.

6

as for example in [43]. To the author’s knowledge, RuleR [44] is the system ac-
cepting the most expressive specification formalism. In RuleR, specifications are
written as a set of rules and are then translated into an automaton-like language.
An exhaustive list of works on monitor synthesis is far beyond the scope of this
tutorial. We refer to [1, 2, 28] for more information on this topic.

Summary. All in all, runtime verification is a technique mainly used to de-
tect expected or unexpected behaviors of a program at runtime. It consists in
instrumenting the underlying program in order to be able to observe relevant
events. These events are then fed to a decision procedure, a monitor, that states
a verdict regarding property fulfilment or violation.

2.2 Runtime enforcement

Runtime enforcement [3–6] is an extension of runtime verification that aims
at answering the following questions, which are often left unanswered during a
runtime verification process4:

– What happens when the property is violated ?
– Is it possible to prevent program’s misbehaviors?

We propose a definition of runtime enforcement:

Definition 4 (Runtime Enforcement). Runtime enforcement is technique
dedicated to ensure that a run of a system satisfies a given desired property.

Basic concepts. Runtime verification and runtime enforcement share many
concepts together. The concepts of trace, monitor placement, previously pre-
sented in Section 2.1, still apply for runtime enforcement. The main conceptual
differences lie in the monitor and his purpose.

eventsevents Monitor

memory

σ |= Π? o |= Π

Enforcement

Op
Π

The used mechanism is an enforcement monitor. It
shares the same features with a verification monitor.
In particular, it is also dedicated to a property Π, but
it is augmented with a memorisation mechanism M.

It still reads an input sequence σ ∈ Σ∞ but outputs a new sequence o ∈ Σ∞.
To do so, the monitor is endowed with a set Op of enforcement primitives that,
by operating on the memorisation mechanism M, are used to suppress or insert
actions using the memory content and the current input, i.e., each op ∈ Op is a
function op : M×Σ∗ → M×Σ∗. The upshot is that the monitor behaves as a
function [[Π]]Op(·) : Σ

∞ → Σ∞ providing o = [[Π]]Op(σ) when input σ.

Property Enforcement. The relation between input and output sequences should
adhere the two following constraints that were enunciated in the work of Schnei-
der, Bauer, Ligatti, and Walker:

soundness: the output sequences should be correct wrt. the property;
transparency: the input correct sequences should not be modified.

4 Reaction to specification violation was originally in the scope of runtime verifica-
tion [28]. Our point is that not much attention has been given to perform reactions
in a completely formal and systematic way.

7

Thus, the enforcement monitor and its use of the memorization mechanism
should be designed so as to guarantee those constraints. According to how an
enforcement monitor transforms input sequences, several definitions of property
enforcement5 were proposed [4, 45, 34, 46]. We shall now present them with the
unified view of an enforcement monitor as a function that transforms sequences.

Definition 5 (Property enforcement). An enforcement monitor dedicated
to a property Π, abstracted as a function [[Π]]Op(·) : Σ∞ → Σ∞ is said to
enforce Π conservatively when (1), precisely when (2), delayed-precisely when
(3), effectively wrt. the equivalence relation ≈ when (4); where (1), (2), (3), (4)
are defined, for all σ ∈ Σ∞, as follows:

∃o ∈ Σ
∞ : [[Π]]Op(σ) = o ∧Π(o) (1)

(1) ∧Π(σ) ⇒ σ = o ∧ ∀i < |σ| : [[Π]]Op(σ···i) = σ···i (2)

(1) ∧Π(σ) ⇒ σ = o ∧ ∀i < |σ|, ∃j ≤ i : [[Π]]Op(σ···i) = σ···j (3)

(1) ∧Π(σ) ⇒ σ ≈ o (4)
An enforcement monitor enforces a property:
– conservatively when it adheres only to soundness;
– precisely when it follows soundness, transparency, and it produces outputs

in a lock-step manner with the input sequence and stops outputting actions
as soon as the current input deviates from the property;

– delayed-precisely when it follows soundness, transparency, and it produces
outputs in a lock-step manner with the input sequence and it can suppress
actions and later insert them (when becoming correct again);

– effectively when it follows soundness and transparency related to an equiva-
lence relation ≈.

Note that, when the considered equivalence relation is the equality, effective
enforcement amounts to delayed-precise enforcement, except that effective en-
forcement relaxes the constraints on the output sequence when input an incorrect
sequence which does not have any correct continuation.

In the remainder of this tutorial, we will discuss some questions presented for
runtime verification in the scope of runtime enforcement. We first present the
models of enforcement monitors. Then we will review known result in the study
of enforceable properties that corresponds to the study of the monitorability of
properties in runtime verification. We will also present some enforcement monitor
synthesis approaches.

3 Models of Enforcement Monitors

We first present the main models6 of enforcement monitors. Then we present
derived models that take memory limitation into account.

3.1 General models

We shall give a perspective on the main models of runtime enforcement monitors.

5 Property enforcement amounts to monitorability in runtime verification.
6 We only give informal pictures of the various models we introduce. These models
will be formally presented during the tutorial presentation.

8

Security Automata. In his seminal work [3], Schneider introduced Security Au-
tomata (SA) as the first runtime mechanisms dedicated to property enforcement.
SA are a variant of Büchi automata that execute in parallel with the underlying
program. These automata are endowed with the ability to stop the underlying
program as soon as a violation of the considered property is detected.

Edit-Automata. Ligatti et al. [4, 47] later introduced Edit-Automata (EA). They
noticed that, by only halting the program, Schneider’s SA were too restricted.
According to its current input and its control state, an EA can either:

– insert an action (by either replacing the current input or inserting it), or
– suppress the current input (possibly memorized in the control state for later).

Variants of EA have been defined: Insertion Automata (only inserting actions),
Suppression Automata (only suppressing inputs). In EA-like enforcement mech-
anisms, memorization of events (i.e., suppression) is realized using control states.

A hierarchy of Edit-Automata. Bielova and Masacci [34] noticed that edit-
automata generated by Ligatti et al. with the provided algorithm in [47] are
of a restricted form. While EA have no restrictions on the order of enforcement
operations they can perform, Bielova and Masacci noticed that EA generated
by Ligatti’s construction run their enforcement operations in such a way that,
when they are input an incorrect execution sequence, they always output the
longest correct prefix. Following this observation, [34] built a hierarchy of EA
according to the enforcement ability they are endowed (i.e., how enforcement op-
erations can be performed). Delayed-Automata are constrained Edit-Automata
that always output a prefix of their input. In other words, they can only insert
previously suppressed actions. All-or-Nothing automata are a more constrained
form of EA, i.e., they are constrained Delayed-Automata. On each transition
they can only either output all suspended events or suppress the current event.
The kind of automata actually synthesized by Ligatti are named Ligatti’s Au-
tomata by the authors of [34]. These automata are All-or-Nothing automata that
always produce the longest correct prefix of the input.

Generic Enforcement Monitors. In [6, 46], independently from [34], Falcone et
al. proposed the mechanism of Generic Enforcement Monitors (GEMs) as an
alternative to EA. Contrary to EA, their memorization is realized through a
specific memory mechanism completed with a set of operations. Moreover, the
proposed automata differ in several points by offering novel features regarding
enforcement monitoring. We recall some of them.

First, finding and encoding an enforcement mechanism using edit-automata
is not an intuitive operation. As exposed in [34], synthesized automata using
the transformation proposed in [48] may produce unexpected results for bad se-
quences. Second, compared to EA, GEMs propose a clear distinction between
control states (used for property recognition) and the sequence memorization
(when the current execution deviates from the property) in the memory device
for potential replay (if the execution meets the property again). Edit-Automata
use a potentially infinite number of control states for property recognition and

9

sequence memorization. Thus, even for a simple guarantee property e.g., “even-
tually b” an edit-automaton needs an infinite number of states to memorize the
potential incorrect sequence of events built on Σ \ {b}. Furthermore, one can
notice that the size of an EA is hardly dependent on the vocabulary Σ under
consideration. Hence such a mechanism is easier to implement, as they are given
a restricted set of control states. Meanwhile, linking the proposed mechanism to
their implementation is more compatible with formal reasoning. This provides
more confidence in the implementation of such mechanisms.

3.2 Models taking into account memory constraints

While previously presented models of enforcement monitors provide good basis
for the design of enforcement mechanisms, they are supposed to be able to me-
morize an unbounded number of events: through a potentially infinite number
of control states for EA and its derivatives, with an unbounded-size memory in
GEMs. In order to get more insights on the suitability of such mechanisms for
practical purposes, several models were derived.

Shallow-History automata. Fong [49] studied the effect of restraining the ca-
pacity of the runtime execution monitor using an information-based approach.
Shallow History Automata (SHA) keep as history a set of access events the un-
derlying program made and do not keep any information about the order of
their arrival. Then, Fong generalized the result by using abstraction by an ho-
momorphism α on a variant of Schneider’s automata. Fong defined the notion of
α-SA that intuitively abstracts previously accepted events at each transition it
performs. It raised up an information-based lattice of enforcement mechanisms.
At the top of this lattice are the α⊤-SA keeping history of all events (α⊤ distin-
guishes all elements of Σ∗). At the bottom of this lattice are the “memory-less”
α⊥-SA, not tracking the history (α⊥ does not distinguish any sequence of Σ∗,
i.e., they are one-state mechanisms that prohibit a given set of events). Further-
more, the class of SA built using the abstraction function αocc that captures the
occurrence of events in an execution sequence corresponds to the class of SHA.

Bounded History Automata. In [50], Talhi et al. proposed Bounded Security Au-
tomata (BSA) and Bounded Edit-Automata (BEA) as restricted versions of SA
and EA. These models manipulate a bounded space to record a limited history.
Given a fixed size to track histories, their states represent a bounded history of
valid execution execution sequences. At each performed step, the transition func-
tion of a Bounded Security Automaton abstracts the current history (state) along
with the read event in order to produce the next history (state). In Bounded
Edit-Automata, states are refined into pairs distinguishing the accepted prefix
and the suppressed suffix of the input sequence. Thus, the transition function ab-
stracts the concatenation of the current accepted prefix with the supressed suffix
along with the read event in order to produce the new state. A BSA (resp. BEA)
whose the maximum size of a history is k is said to be a k-BSA (resp. k-BEA).
As expected, enforcement power of Bounded History Automata raises up with
the available memory (the maximum size of a history), i.e., for k, k′ ∈ N, when
k < k′: k′-BSA (resp. k′-BEA) are more powerful than k-BSA (resp. k-BEA).

10

Summary. We report comparisons [50] related to runtime enforcement mecha-
nisms taking into account memory limitation in the figure below.

lattice

SHA

chain

et al’s
Talhi

Security Automata

differentiating events
with same action set

SHA

Fong’s

α
’s
in
crea

sin
g
d
iff
eren

tia
tin

g
p
o
w
er

s.t. |Σ| = k
for Σ

k-BSA

k
∈
N

in
crea

sin
g

α
⊤-SA

N-BSA

k-BSA

on Σ

α
⊥-SA

0-BSA

αocc-SA

α-SA

Classes of enforcement mechanisms are repre-
sented in a hierarchical manner. For any BSA,
one can find an α-SA enforcing the same pro-
perty. Moreover, for any α-SA, there exists a
k-BSA s.t. k is the size used to encode the
results of α. Moreover, for a given alphabet
Σ of size k, k-BSA are more powerful than
SHA. However, note that those limited-memo-
ry models assume an infinite number of states.

4 Enforcement abilities of enforcement monitors

4.1 Power of general runtime enforcement mechanisms

Security Automata and decidable safety properties: Schneider announced that
the set of precisely enforceable properties with SA is the set of safety properties.
Then in [5], Hamlen et al. refined the set of enforceable properties and showed
that these SA were in fact restrained by some computational limits. Indeed, as
Viswanathan noticed in [51], the class of enforceable properties is impacted by
the computational power of enforcement monitors. As the enforcement mecha-
nism can implement no more than computable functions, the enforceable proper-
ties are included in the decidable ones. Hence, authors of [5] showed that the set
of safety properties is a strict upper limit of the power of enforcement monitors
defined as SA (the unsatisfiable safety property is also not enforceable [45]).

Edit-Automata and infinite renewal properties: The properties effectively en-
forced wrt. the equality by edit-automata are called infinite renewal properties.
They have been defined, in the Safety-Liveness classification, as the properties
for which every infinite valid sequence has an infinite number of valid prefixes [4].
The set of renewal properties is a super set of safety properties and contains some
liveness properties (but not all). Moreover, Ligatti et al. showed that insertion
and suppression automata can enforce two different proper subsets of the set of
enforceable properties by Edit-Automata.

Finite edit-automata and memory-bounded properties. In [52], Beauquier et al.
studied the effective enforcement ability wrt. equality of finite-state edit au-
tomata. Focusing on regular languages, they proved that enforceable properties
are memory-bounded properties. Furthermore, they provided a syntactic crite-
rion on generalized Muller automata [53] to determine if the property recognized
by a given automaton is memory-bounded and thus enforceable; this criterion is
checkable in time O(n2), where n is the number of states in the automaton.

Generic enforcement monitors and response properties. In [46], Falcone et al.
showed that GEMs, instantiated with a set of enforcement operations similar
to insertion and suppression, can delayed-precisely enforce the set of response
properties within the Safety-Progress classification of properties. Moreover, they
proved that the set of response properties is the upper-bound for any enforcement
mechanism with a finite number of states (but with an unbounded memory).

11

4.2 Power of memory-limited runtime enforcement mechanisms

Shallow History Automata and an information-based lattice of enforceable poli-
cies. Fong showed in [49] that these automata can precisely enforce a set of
properties strictly contained in the set of properties enforceable by SA. Regar-
ding the lattice of enforcement monitors defined as α-SA, Fong showed that they
give raise to a lattice on the space of all congruence relations over Σ∗ which is
ordered by the tracked information. Fong’s classification has a practical interest
by studying the effect of a practical programming constraint (limited memory)
from an information point of view. It also shows that some classical security
policies remain enforceable using such Shallow History Automata.

Bounded-History Automata and locally testable properties. In [50], Talhi et al.
showed that there exists a taxonomy of effective enforceable properties wrt.
equality based on the size limitation affecting the memory. As expected, for both
BSA and BEA enforcement ability raises with the available space. Moreover, they
related the enforcement ability of BHA to locally testable properties. Intuitively,
a property is said k-locally testable if it can be recognized by an automaton with
a finite memory and examining a sequence chunk of a fixed size k. According to
which part of the sequence the chunk represents, several classes of locally testable
properties can be defined. Intuitively, a property is prefix-testable (resp. suffix
testable, prefix-suffix testable, strongly locally testable) if it is recognizable by
examining a prefix (resp. suffix, both prefix and suffix, a factor) of limited size.
Locally testable properties are linked to Bounded History Automata as follows:

– For BSA: prefix-closed k-prefix locally testable properties and k-strongly locally
testable properties are enforceable with a memory of size k; suffix testable and
prefix-suffix testable properties are not enforceable.

– For BEA: k-prefix locally testable properties are enforceable with a memory of
size k; k-strongly locally testable are enforceable (no bound is given on the me-
mory); suffix testable and prefix-suffix testable properties are not enforceable.

5 Synthesis of runtime enforcement monitors

In [54], Martinelli and Matteucci tackle the synthesis of enforcement mechanisms
as defined by Ligatti. More generally, the authors consider security automata and
edit-automata. The monitor is modeled by an algebraic operator expressed in
CCS. The program under scrutiny is then a term Y ⊲K X where X is the target
program, Y the controller program and ⊲K the operator modeling the monitor
where K is the kind of monitor (truncation, insertion, suppression or edit). The
desired property for the underlying system is formalized using µ-calculus. In [55],
Matteucci extends the approach in the context of real-time systems.

In [48], Ligatti et al. announced a construction of Edit-Automata from fi-
nitary properties defined using a predicate on finite sequences for effective en-
forcement. However, as shown by [34], this construction actually affords a Ligatti
automaton that delayed-precise enforce the finitary property.

In [56, 46], Falcone et al. defined class-specific transformations for the classes
of enforceable properties within the Safety-Progress classification of properties.

12

The monitor synthesis procedures were defined from Streett automata. Besides,
due to the connections between the views in the classification, their transforma-
tion indirectly provides enforcement monitor synthesis from LTL formula and
properties defined using language-based operators. In [27], the authors generali-
zed the class-specific transformations in an independent one.

In [52], Beauquier et al. defined translation of generalized pruned Muller
automata [53] (for memory-bounded properties) to finite edit-automata (i.e.,
edit-automata whose set of states is finite).

In [57], Chabot et al. synthesize Schneider’s security automata from pro-
perties expressed by Rabin automata [53]. Authors provide a construction from
safety properties in the general case, and for more than safety when leveraged
with static information gathered from the program. However, full expressiveness
of Rabin automata is left aside for non prefix-closed properties.

6 Practical problems and future challenges

We now describe some future challenges for runtime enforcement. Advances in
runtime verification (see [1, 2]) will also surely benefit to runtime enforcement.

6.1 Theoretical open questions

An open question is how static information on the program can leverage runtime
enforcement. As suggested in [57], having a specification of the program under
scrutiny allows to slightly increase the space of enforceable properties. However,
the study has been conducted only for safety properties and security automata.
Thus, it remains to study how static information on the program would leverage
enforcement, for others classes than safety and using more powerful mechanisms.

As exposed in Section 4, effective enforcement abilities of Generic Enforce-
ment Monitors and Edit-Automata is unknown. Moreover, as exposed in [34],
provably correct synthesis of enforcement monitors, beyond safety properties,
is only effective for delayed-precise enforcement, both for Edit-Automata and
Generic Enforcement Monitors. A working direction is, in this respect, to find
more expressive formalisms, and associated monitor synthesis techniques.

Another working direction would be to adapt runtime verification frameworks
dedicated to detection of errors on multi-threaded programs and use the principle
of runtime enforcement so as to provably prevent those errors.

Soundness and transparency along with precise and delayed-precise enforce-
ment indicate exactly how good and bad sequences should be processed by an
enforcement monitor. By contrast, effective enforcement leaves the monitor free
to act on bad sequences. For this purpose, one should find relevant remedial
actions to be taken, e.g., completion of bad sequences into good ones.

6.2 Practical challenges

A current working direction is to make the runtime enforcement technique more
able to cope with practical limitations in order to deal with largescale examples.
In particular it is likely that not all events produced by an underlying program
can be freely observed and/or controlled by the enforcement mechanisms. More-
over, regarding the objective of limiting the resources consumed by the monitor,

13

it might be interesting to study how to store in memory only an abstraction of
the observed sequence of events for effective enforcement and a suitable equiva-
lence relation. From a theoretical point of view, this means to define enforcement
up to some abstraction preserving trace equivalence relations.

Similarly, it would be of interest to study the notion of enforcement when
weakening the transparency constraint. In this case, the most general form of
edit-automata and our generic EMs could be used. Their complete enforcement
potentials remain to be studied. This perspective would involve to define other
relations between the input and the output sequences; and thus define other
enforcement primitives so as to enforce properties automatically. It seems to us
that such alternative constraints should be motivated by practical needs.

Finally, most of the practical and effective approaches to runtime enforcement
have been performed using security automata. Proposing a framework solving
practical implementation issues and staging the most expressive forms of runtime
enforcement mechanisms would certainly be an achievement.

Acknowledgement. This tutorial is partially built on previously published
material by the author and his colleagues J.-C. Fernandez and L. Mounier. Also,
the author is much in debt to K. Havelund for many enriching discussions on
runtime verification. Moreover, the author would like to thank H. Marchand, C.
Morvan, and S. Pinchinat for their comments on an early version of this tutorial.

References

1. Havelund, K., Goldberg, A.: Verify your runs. Verified Software: Theories, Tools,
Experiments: First IFIP TC 2/WG 2.3 Conference, VSTTE 2005. Revised Selected
Papers and Discussions (2008) 374–383

2. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78 (2008) 293–303

3. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security 3 (2000)

4. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Transaction Information System Security. 12 (2009)

5. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Programming Lang. and Syst. 28 (2006) 175–205

6. Falcone, Y., Fernandez, J.C., Mounier, L.: Enforcement monitoring wrt. the safety-
progress classification of properties. In: SAC ’09: Proceedings of the ACM sympo-
sium on Applied Computing. (2009) 593–600

7. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security monitor inlining for
multithreaded java. In: Genoa: Proceedings of the 23rd European Conference on
ECOOP — Object-Oriented Programming. (2009) 546–569

8. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. In: FM ’08:
Proceedings of the 15th int. symposium on Formal Methods. (2008) 262–277

9. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: NSPW ’99: workhop on New security paradigms. (2000) 87–95

10. Cirstea, H., Moreau, P.E., de Oliveira, A.S.: Rewrite based specification of access
control policies. Electron. Notes Theor. Comput. Sci. 234 (2009) 37–54

11. de Oliveira, A.S., Wang, E.K., Kirchner, C., Kirchner, H.: Weaving rewrite-based
access control policies. In: FMSE’07: Proceedings of the ACM workshop on Formal
Methods in Security Engineering. (2007) 71–80

14

12. Havelund, K., Rosu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods in System Design 24 (2003)

13. Havelund, K.: Runtime verification of C programs. In: TestCom’08: 20th IFIP int.
conf. on Testing of Software and Communicating Systems. (2008) 7–22

14. Drusinsky, D.: The Temporal Rover and the ATG rover. In: 7th Int. SPIN Work-
shop on SPIN Model Checking and Software Verification. (2000) 323–330

15. Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA’07: Object-Oriented Programming, Systems, Languages and
Applications. (2007) 569–588

16. Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In: TACAS’09: 15th

International Conference Tools and Algorithms for the Construction and Analysis
of Systems. (2009) 246–261

17. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B). (1990) 995–1072

18. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering 3 (1977) 125–143

19. Alpern, B., Schneider, F.B.: Defining Liveness. Information Processing Letters 21
(1985) 181–185

20. Manna, Z., Pnueli, A.: Adequate proof principles for invariance and liveness pro-
perties of concurrent programs. Sci. Comput. Program. 4 (1984) 257–289

21. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM
Transaction Programming Languages and Systems 4 (1982) 455–495

22. Sistla, A.P.: On characterization of safety and liveness properties in temporal logic.
In: PODC ’85: Proceedings of the 4th annual ACM symposium on Principles of
distributed computing. (1985) 39–48

23. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989).
In: PODC ’90: Proceedings of the 9th annual ACM symposium on Principles of
distributed computing. (1990) 377–410

24. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Automata, Languages and Programming. (1992) 474–486

25. Chang, E., Manna, Z., Pnueli, A.: The Safety-Progress Classification. Technical
report, Stanford University, Dept. of Computer Science (1992)

26. Streett, R.S.: Propositional Dynamic Logic of looping and converse. In: STOC ’81:
Proceedings of the 13th Symp. on Theory Of computing, ACM (1981) 375–383

27. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime ? Software Tools for Technology Transfer, special issue on Runtime Veri-
fication (2010) Invited Paper, under review. Preprint as Verimag TR-2010-5.

28. Runtime Verification. http://www.runtime-verification.org (2001-2009)
29. Colin, S., Mariani, L.: Run-time verification. In: Model-based Testing of Reactive

Systems. Volume 3472 of LNCS. (2005) 525–556
30. Chen, F., Şerbănuţă, T.F., Roşu, G.: jPredictor: a predictive runtime analysis

tool for Java. In: ICSE’08: Proceedings of the 30th International Conference on
Software Engineering. (2008) 221–230

31. Bodden, E., Havelund, K.: Racer: Effective race detection using AspectJ. IEEE
Transactions on Software Engineering (2009)

32. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Hardware and Software Verification and Testing, 1st International Haifa
Verification Conference. Revised Selected Papers. (2005) 208–223

33. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. (2004) 256–267

34. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? In:
FAST’08: 5th International Workshop on Formal Aspects in Security and Trust.
Revised Selected Papers. (2008) 287–301

15

35. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. (1997) 220–242

36. The Apache Jakarta Project: Byte Code Engineering Library.
http://jakarta.apache.org/bcel/ (2009)

37. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. on Software Engineering 30 (2004) 859–872

38. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems - fundamentals of the MaC language. In: ICTAC’04: 1st Int. Colloquium
on Theoretical Aspects of Computing. Revised Selected Papers. (2004) 543–556

39. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
FM’06: Proceedings of Formal Methods. (2006) 573–586

40. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Journal of Logic and Computation (2009)

41. Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification of safety-progress
properties. In: RV’09: Proceedings of the 9th Workshop on Runtime Verification.
Revised selected Papers. (2009) 40–59

42. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
Technical Report TUM-I0724, Technische Universität München (2007)

43. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Proceedings of
17th Int. Conference on Computer-aided Verification (CAV’05). (2005) 364 – 378

44. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time moni-
toring: From Eagle to RuleR. In: RV’07: 7th International Workshop on Runtime
Verification. Revised Selected Papers. (2007) 111–125

45. Ligatti, J.A.: Policy Enforcement via Program Monitoring. PhD thesis, Princeton
University (2006)

46. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities (2010) under revision
at Formal Methods in System Design. Preprint as Verimag TR 2008-7.

47. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with pro-
gram monitors. In: ESORICS’05 Proceedings of the 10th European Symposium on
Research in Computer Security. (2005) 355–373

48. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. Int. Journal of Information Security 4 (2005) 2–16

49. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings
of the 2004 IEEE Symposium on Security and Privacy. (2004) 43–55

50. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement for limited-
memory systems. In: PST’06: Proceedings of the International Conference on
Privacy, Security and Trust. (2006) 1–12

51. Viswanathan, M.: Foundations for the run-time analysis of software systems. PhD
thesis, University of Pennsylvania, Philadelphia, PA, USA (2000)

52. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite
edit automata. Electr. Notes Theor. Comput. Sci. 229 (2009) 19–35

53. Perrin, D., Pin, J.E.: Infinite Words, Automata, Semigroups, Logic and Games.
Elsevier (2004)

54. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata.
Electronic Notes in Theoritical Compututer Science 179 (2007) 31–46

55. Matteucci, I.: Automated synthesis of enforcing mechanisms for security properties
in a timed setting. Elec. Notes in Theoritical Comp. Science 186 (2007) 101–120

56. Falcone, Y., Fernandez, J.C., Mounier, L.: Synthesizing enforcement monitors wrt.
the safety-progress classification of properties. In: ICISS’08: Proceedings of the 4th

International Conference on Information Systems Security. (2008) 41–55
57. Chabot, H., Khoury, R., Tawbi, N.: Generating in-line monitors for Rabin au-

tomata. In: NordSec’09: 14th Nordic Conf. on Secure IT Systems. (2009) 287–301

16

