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Abstract

The conservation of momentum, when averaged over the phase of surface
gravity waves can take two forms, whether or not the momentum variable
contains the wave pseudo-momentum. Various published equations give dif-
ferent vertical profiles of the resulting wave-induced forces, even in adiabatic
conditions. The differences for the total momentum equations are due to dif-
ferent approximations of the wave-induced vertical flux of momentum. These
differences are made explicit for all wave-averaged equations, using a generic
form of the conservation equations. The effects of these approximations is
revealed here, for cases with exact numerical solutions, using a coupled wave-
current three-dimensional model based on WAVEWATCH III (Tolman 1998,
2009) and MARS3D (Lazure and Dumas 2008). The necessary modifications
of the MARS3D flow model are detailed, and may be applied to any other
primitive equation model. In realistic conditions, all published models for
the total momentum that are based on local wave quantities yield spurious
velocities over a sloping bottom. Without any viscosity, these currents are
independent of the slope. These spurious velocities are reduced but are still
significant when a realistic vertical mixing is applied. It is concluded that
models for the total momentum based on local wave quantities are likely to
have large errors for cross-shore fluxes outside of the surf zone. Such errors
are found using the equations from Mellor (2003) or Mellor (2008b). In the
latter case, the depth-integrated equations also appear inconsistent. For all
such models, the errors can be traced to inconsistent approximations of the
vertical flux wave momentum. In contrast, the quasi-Eulerian mean momen-
tum does not suffer from this inconsistency, and accurate numerical models
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can be developed.

Keywords: wave-current coupling, radiation stresses, MARS3D,

WAVEWATCH III

Three-dimensional oceanic flows can be strongly forced or modified by
waves, in particular in the nearshore (e.g. Newberger and Allen, 2007a)
and the coastal ocean (Lentz et al., 2008). Yet the numerical modelling
of these complex flows is only slowly coming of age, with recent works using
quasi-three dimensional (Haas et al., 2003) or fully three dimensional models
(Uchiyama et al., 2009). Although models capable of resolving the wave mo-
tion are becoming feasible on small scales, as shown by Lubin et al. (2006),
the demands of coastal zone management in terms of coverage and resolution
are still barely met by depth-integrated models in which the wave motion is
averaged over the phase of at least the short waves (e.g. Reniers et al., 2004).
There has thus been a large effort to develop models of intermediate com-
plexity, capable of resolving the vertical structure of the mean flow which
may be needed to account for mixing and dispersion (Svendsen and Putrevu,
1994) while still keeping the hydrostatic approximation for the mean flow.
Also, the wide community of users of numerical models for the ocean circu-
lation such as POM and ROMS (Blumberg and Mellor, 1987; Shchepetkin
and McWilliams, 2003) are calling for minor modifications to such tools to
make them capable of representing the effects of waves.

A large body of often conflicting theoretical results have been published
on the form of the wave-modified primitive equations that would be suitable
for such models. We may cite, in chronological order, Dolata and Rosenthal
(1984), Jenkins (1989), Weber and Melsom (1993), Rivero and Arcilla (1995),
Péchon and Teisson (1994), Groeneweg and Klopman (1998), Mellor (2003),
McWilliams et al. (2004), Xia et al. (2004), Newberger and Allen (2007b),
Ardhuin et al. (2008b), Ardhuin et al. (2008a), Mellor (2008) ... Although
each of these work is based on a particular set of hypotheses, for example
some assume a horizontally uniform wave field, it is expected that all theories
should agree on the most simple cases that they are supposed to cover. As
we will show here, this is not the case.

Our purpose is not to blame this or that author for inconsistencies, lim-
itations, or mistakes. The goal of the present paper is really to help people
implement correctly the effect ot waves in a primitive equation model. We
thus explain why some of the wave-averaged equations may appear different



but still represent correctly the same reality, and to give a general set of
constraints that should be obeyed by wave-averaged equations so that each
developer of a numerical model can make her or his own judgement of the
published equations, sometimes even before implementing them.

Still, we will not escape our responsibility, and we shall point out specifi-
cally details or more important features that are not consistent in some of the
most recent published results. We thus warn the many scientist that have
chosen the equations by Mellor (2003, hereinafter M03) or Mellor (2008,
hereinafter M08) that even the minor inconsistency in M03 or the larger
one in M08 can produce strong artefacts. These artefacts are (re-)derived
theoretically (see Ardhuin et al., 2008a, hereinafter AJB0S8, for a first dis-
cussion of M03), and illustrated using a coupled numerical model. Although
these errors in the underlying theoretical model are likely to be dwarfed by
parametrization errors in the case of strongly dissipative environments like
the surf zone, they may still explain some of the differences found between
various models (e.g. Haas and Warner, 2009).

We also take the present opportunity to present the approximated Gen-
eralized Lagrangian Mean equations (glm2 — z) by Ardhuin et al. (2008b)
(hereinafter ARBO8) in a more readable form, giving details on how they
were implemented in the MARS3D (Lazure and Dumas, 2008) flow model,
used here. These steps have already been pioneered by McWilliams et al.
(2004) and Uchiyama et al. (2009) with equations that are mathematically
consistent with those in Ardhuin et al. (2008b). Yet, these more theoretical
presentation are often obscured by their desire to be more general and more
complete. We shall thus here present the equations and implementation in
the most simple form, as a modification of the primitive equations, warning
the reader when the simplification causes a loss of generality.

We focus here on non-dissipative conditions where exact solutions are
most easily found, and we refer to Uchiyama et al. (2010) for further discus-
sion of wave breaking, mixing and bottom friction parametrizations.

1. Theoretical analysis of wave-averaged equations

The various published theories can be categorized according to two crite-
ria (Figure 1). The most simple is the depth integration: the equations are
integrated or not. For the depth-integrated equations, with some approxi-
mations related to wave non-linearity, the problem is clear. The momentum
balance can take two forms (Longuet-Higgins and Stewart, 1964; Garrett,



1976; Smith, 2006). One form is for the total momentum in the water col-
umn (M in Phillips’ 1977 notation), and the other is for the momentum of
the mean flow only (M™ in Phillips 1977). As shown by Smith (2006), the
two forms are equivalent, and one only has to be careful that the two mo-
mentum variables do not represent the same physical quantity. In the case
of M, it is the mass transport velocity, which naturally arises when working
with fluxes of well-mixed solutes. For the special case of a mean current u
that is uniform below the level of wave troughs, the other is approximately
M™ = p,uD where D is the mean water depth and p,, is a depth-averaged
water density. We note that the wave momentum® is simply the difference
MY = M — M™, and it is a horizontal vector. Hence, M™ may be more
closely related to the mean current measurable by a fixed instrument. This
interpretation, however, has to be considered with caution, since there may
be different ways to extend the definition of w from the trough to the crest
level, as needed when one wishes to model the surf zone.

These details are usually happily forgotten when considering depth-integra-
ted equations, but they cannot be avoided when one wishes to discretize these
two sets of equations, for the total momentum p,,U or the mean flow momen-
tum p,,u. Just like in the two dimensional (2D) case, Andrews and McIntyre
(1978) have derived exact equations for U and u that are equivalent. Un-
fortunately these exact equations are highly implicit and must be translated
into usable form, as was done by Groeneweg and Klopman (1998) for the to-
tal momentum form or Ardhuin et al. (2008a) for the mean flow momentum
form.

Thus, at the same order of approximation, we cannot have more than two
sets of equations, one for U and the other for # and both are equivalent. Any
other equation must have some internal inconsistencies. We shall illustrate
this statement for M03 and MOS8, because these are the most widely used
equations, and we leave it to the reader to do the same for, for example, Xia
et al. (2004) or any other proposed set of equation.

Any theory for wave-averaged equations goes through three steps. First,
the control volume in which the momentum is averaged must be defined.
For depth-integrated equations, this is simply the full water column. For

!'The wave pseudo-momentum is defined as a quantity that only involves the zero-
mean displacement of the water particles, and may differ from other definitions that could
include the mean flow response, as explained by McIntyre (1981). For simplicity, we shall
call 'momentum’ the pseudo-momentum.
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Figure 1: Relationships between wave-averaged theories according to their choice of mo-
mentum variable and depth integration. An arrow from a to b indicates a derivation link:
b can be derived from a. In the case of McWilliams et al. (2004) and Ardhuin et al.
(2008b), the second derivative in the vertical current profile is neglected in the second,
while the first is only adiabatic. Names that appear in red correspond to theories that are
not fully consistent with their originating hypotheses. In the case of 3D theories for the
total momentum, the problem generally comes from the vertical flux of momentum and
may only arise on a sloping bottom, not explicitly considered by Groeneweg (1999).

three-dimensional equations, there is a vertical discretization. The control
volume may be moving, following all or part of the wave motion (Figure 2).
The mean position x = (z,y, z) of the volume, is associated with the actual
position

X +§('T7y7z’t) = (ZL’ + gl(xayvzvt)?y + 52(‘7:7:% Z,t)72 + 53(‘%‘7:% th>> : (1>

The boundaries of the volume at time ¢, are the surfaces © = xo+A+& (xo+
Ay, z,t0), y = yo+ A+&(x, yo+ A, 2, 1), and z = 2o+ A+&3(x, y, 20+ A, to),
with A = A, /2 for the top, and A = —A, /2 for the bottom surfaces, with
similar definitions for the sides.

For the Eulerian average, the volume does not move, and £ = (£, &2,&3) =
0. For the average defined by Mellor (2003), the horizontal displacements are
zero, &1 = 0 and & = 0, and &3 follows the wave motion.

Second, the momentum balance of the volume is the result of the body
forces and the momentum fluxes through the boundary. These fluxes involves



an advective part (pu® for the horizontal advection of horizontal momentum
and puw for the vertical advection) and a stress part that is the product of
the stress tensor with the unit vector normal to the boundary. Neglecting
shear stresses for simplicity leaves only the pressure p for the stress. For
& # 0, the control volumes have tilted facets, with a flux of horizontal mo-
mentum through the sloping bottom and top. The corresponding flux of
the z-component of the momentum is pd¢s/0x. Fluxes due to sloping iso-
coordinates are often forgotten (e.g. Xia et al. 2004, Mellor 2008b?) or poorly
approximated (e.g. Mellor 2003).

Last, the averaged equations can be transformed to another coordinate
system, such as terrain-following coordinates. Averaging can cause an im-
plicit distortion of the coordinates, for example the mean flow may appear
divergent although the original flow is not. This effect may be easily cor-
rected (see e.g. Ardhuin et al., 2008b, for the transformation of approximated
Generalized Lagrangian Mean equations to Cartesian and terrain-following
coordinates).

Because of the large difference in density between air and water, the
use of a standard Eulerian average, used by Rivero and Arcilla (1995) or
Newberger and Allen (2007b) is problematic in the region between crests
and trough where both air and water are to be found. A strict Eulerian
average produces a continuously varying density p from about 1.29 kg.m™3
to 1026 kg.m =3, which is not compatible with the usual primitive equation
models. Mathematical extension of the velocity field across the interface
have been used by McWilliams et al. (2004), but it provides quantities that
are difficult to interpret physically since they do not a priori correspond to
a known averaging operator. Yet, Ardhuin et al. (2008b) showed that the
resulting velocity actually corresponds to the quasi-Eulerian velocity (u, v, )
first introduced by Jenkins (1989): this is the mean Lagrangian velocity
(U, V, W) minus the wave-induced drift (U, Vi, W),

(6767 @) = (U7 V? W) - (Us,‘/;,Ws>. (2>

This definition requires a wave-following coordinate system. The averaging is
also connected to the choice of the momentum variable, which varies between
different theories, as summarized in Figure 1.

2In that work, the control volume is identical to the one in M03, but an Eulerian
average of the pressure is taken, making the averaged equations inconsistent.



u(u-d&,/dt)-p d&,/dx

L 4
'

u(w-d&5/dt) -p d&s/dx

Figure 2: Illustration of the momentum fluxes into a moving control volume defined by
the (possibly moving) position vector of the control volume, =(z,y, z,t) = x + & Here
the control volume moves in a circle and is shown for 4 wave phase, ¥ = 0°, ¥ = 90°,
1 = 180° and ¥ = 270°. The fluxes are the sum of advective fluxes through the facets
and the pressure acting on the possibly sloping facets. For the advective part the velocity
is relative to the moving facet, which leads to terms like —ud¢3/0t.

Neglecting buoyancy, Earth rotation, mixing and viscous effect, the generic
conservation equation for the mean momentum pu, with motion restricted to
a vertical plane is

opu) | O(pu)  O(pu w)
ot ox 0z
with F' a forcing term due to waves and water levels.
The rate of change of the momentum (the first term on the left hand
side of eq. 3) equals body forces (such as gravity, absent for the horizontal
momentum pu), plus the divergence of fluxes of momentum. The mean flow

advective fluxes appear in the left hand side of (3), the other fluxes constitute
the forcing term F'. For a generic control volume, F' is

~F (3)

F:Fuu+Fuw+pr+Fp37 (4>
with the horizontal advection
d(pu?)
Fuu = i)
5 (5)



u is the horizontal velocity associated to the wave propagation such as
u = kac [exp(kz)cos(kx — ot)]. (6)
where k is the wavenumber, a is the wave amplitude, ¢ is the phase speed, o
is the frequency (More in Mellor (2003)).
The vertical advection (where w is the vertical velocity associated to the

wave propagation such as w = kac[exp(kz)sin(kz — ot)])

o | (w—0&/0t) pu
Fww = K 0(Z+53)) } ®)

is important for fixed (Eulerian) control volumes (e.g. Rivero and Arcilla,
1995) but is negligible for the M03-AJB08 volume, designed to make w —
93/ 0t as small as possible.

The last two terms are the pressure gradient across the sides of the vol-
ume, here assumed vertical?,

3
pr = %7 (8)

and the vertical divergence of the pressure-induced flux through the sloping
iso-surfaces of the vertical coordinate,

9S8, 0

Fpy = 52 = o~ [5(06/0m)]. )

which is zero in Eulerian averages, for which s = 0. We recall that p can
be different for different control volumes, i.e. in the case of M03-AJB08 the
pressure is nearly hydrostatic, which is not the case of a fixed control volume
for which a —p@? correction occurs. So far the M03 theory is correct. Using
the notations of that paper, s =& =&, £ =0, & = 0.

1.1. Inconsistencies in M0O3

The equation of motion, where we have neglected the Coriolis force, den-
sity stratification, and mixing, are given by Mellor (2003) and correspond to

3These sides actually have an angle in the case of the Generalized Lagrangian Mean
(GLM), giving more complex equations.



equation (3) that is similar to the following equation. Rewritten in a terrain
following vertical coordinate, ¢, it is

ou ou WoU F
E+Ua_x+58_§_5. (10)

The force on the right hand side is the sum

F=F,+F,+F; (11)

0 ~
of the hydrostatic pressure gradient, F,, = —gD—n, with 77 the mean sur-

face elevation, and the divergences of the horizontal and vertical fluxes of
momentum, F,, and F3, given in Appendix D. Because Mellor (2003) used
only Airy theory over a flat bottom to solve for the wave motion, he ob-
tained an erroneous estimation of Fp3 (see Appendix D). Over a sloping
bottom in finite water depth, F,, is of the order of the bottom slope €5, and
a consistent solution of eq. (3) requires an approximate of Fj,3 to the same
order. This requires O(g2) estimates of both p and s, for which Airy theory,
used by MO03, is not sufficient. As a result the total force F' according to
Mellor (2003) integrates to zero over the vertical, but it has a vertical profile
that can exceeds 150% of the pressure gradient F),,, instead of the correct
value of zero. A correct but prohibitively expensive numerical method for
the estimation of Fj3 was given by AJB08. AJB08 showed that this problem
with F)3 arises from the wave momentum flux. This difficulty is thus absent
from equations for the quasi-Eulerian momentum u, which does not contain
the wave momentum.

1.2. Inconsistencies in MOS8

The equations of motion for the M08 model are similar to (10) based on
the same vertical coordinate ¢ but with a different forcing F' at the lowest
order. Thus one of the two equations is incorrect. Since (10) was verified by
Ardhuin et al. (2008b) with a proper approximation of the different terms, it
follows that M08 must be incorrect. Let us see why. The forcing term for a
generic control volume is given by equation (4). In comparison with the M03
model, Fj,3 is absent and F}, includes an additional Eulerian-like pressure
correction (Fy/%%29) defined by

M08, add
FMOS,add — §8D aSac:c
pT

ox s ’ (12)

9



with the additional radiation stress term in x-direction (S208, add)

Sp% 24 = _kEFscFss + Ep, (13)

where FE is the wave energy, Fss and Fsc are non-dimensional functions of
kz and kD (see M03). Ep is defined by

nt

E
Ep=0 ifz;éﬁand/ EDdZZ§7 (14)

—h

where h is the depth at the bottom and 7 is the mean surface elevation.
The MO8 radiation tensor term in x-direction (S*%)contains the usual
term from the velocity squared, but now also the SM0:add term

/{Z2
Sta” = kE {k—chchc} —kEFscFss + Ep . (15)
~ ~~ MO8, add
as in M03 Saa term

Mellor (2008) mentions that the vertical integral fi SM8z is equal to the
SPTT term given by Phillips (1977),

g k2 C c 1
Mos g, _ oPTT _ p | (M) . (G Cg 1 1
[ sua: = st Kk) (C)+(C 2)] (16)

where ¢, is the group velocity and c is the phase velocity.

This is very well, but the depth-integration of the M08 model does not
correspond to Phillips (1977) because the forcing is not SL7” but ST /.
Namely,

m SMos OSETT s oh
/_h—(,% dz = 5y — S (z-—h)%
an
or’

—SH%(: = 7)

(17)

Thus the depth integration of the M08 equation give a spurious acceleration
SMO8(» = —h)Oh/dz that can be very large.

10



2. Equations for the quasi-Eulerian momentum

In order to facilitate the implementation of quasi-Eulerian equations, we
give here a short and simplified account of Ardhuin et al. (2008b). Start-
ing from the general equations of Andrews and McIntyre (1978), Ardhuin
et al. (2008b) have given an approximation to second order in the wave
non-linearity and transformed the equations with a change of the vertical
coordinate, so that the Jacobian associated with the averaging procedure is
equal to identity, and both the resulting quasi-Eulerian flow field (u, v, w)
and Lagrangian-mean flow field (U, V, W) are non-divergent.

The quasi-Eulerian flow field does not contain wave momentum, and this
is the main difference with the M03 and M08 models that apply to the La-
grangian flow field which does contain the wave momentum. Solving (u, v, W)
removes the problem of the approximation of the vertical fluxes of wave mo-
mentum that occur when wave propagation over varying currents and water
depths. The influence of waves on the mean quasi-Eulerian current appear as
forcing terms (A1, A2, B1, B2, C1, C2, C3 in the equations (18),(19),(21)).

We shall here consider the case in which the wave bottom boundary layer
is not resolved. For a discussion of this, see Ardhuin et al. (2008a). To
simplify the equations we generally give the wave forcing expressions for
monochromatic waves as a function of the surface elevation variance E. In
the case of quasi-linear random waves the corresponding forcing is simply
the sum of the monochromatic wave forcing with E replaced by the spectral
density E(f,0), as detailed in Appendix C. The following GLM equations
use the Cartesian z coordinate. However, the most of coastal hydrodynam-
ical models use equations in terrain-following coordinates, then we detailed
these equations for MARS3D in Appendix A. We notice that the classical
formulation of the advection terms in momentum equations allow for straight-
forward numerical implementation of the vortex terms. On the other hand,
the coastal hydrodynamical models make frequent use of flux-divergence for-
mulation of the advection terms in momentum equations (Marsaleix et al.
(2008), Blumberg and Mellor (1987), Shchepetkin and McWilliams (2004)).
Even though the momentum equations for the both formulations of advec-
tion terms are equivalent, the expressions of (Us, Vi, Wy) depending forces
has been modified (see Appendix B).

11



2.1. Momentum, mass, and tracer conservation

For simplicity we neglect the effect of the vertical current shear and partial
standing waves in the wave forcing term, so that eq. (42) in Ardhuin et al.
(2008b) becomes

Oi G0 G0 G0 g 1OPT
ot ox dy 0z p Ox
~ ov  Ou ou 0J ~ ~
= F — = — —Wy— —— +F, F 1
m,x+ |:f+ (835 8y>:| V; Wsaz\ 8$+ d,:c"’ b,z/a ( 8)
pel A2
and
8_6 + a8_@+68_ﬁ+@0_@+fa+l%
ot or oy 0z p Oy
~ ov  Ou o J0J ~ ~
= Fy— lf+ <8_x — a—y)} Us _Ws&ja_y+Fd’y+Fb’?i’ (19)
Bl B2

where the left hand side is the classical primitive equation model for the quasi-
eulerian velocity (@, v, @) with pf the hydrostatic pressure, (Fy,., Fin,) the
mixing effects (that redistribute momentum), (ﬁd,x, ﬁdﬁy) the source of quasi-
Eulerian momentum that is equal to the sink of wave momentum due to
breaking and wave-turbulence interaction, (Fy ., F},) the source of quasi-
Eulerian momentum that is equal to the sink of wave momentum due to bot-
tom friction, which should only be included when the wave bottom bound-
ary layer is resolved, J the wave-induced mean pressure (eq. (26)), and
(Us, Vi, W) the three-dimensional Stokes drift*. Mixing is also influenced by
waves, but this aspect will not be discussed here (see Craig and Banner, 1994;
Groeneweg and Klopman, 1998; Rascle and Ardhuin, 2009; Uchiyama et al.,
2010). The second lines in eq. (18)—(19) contain the vortex force introduced

4 Although the vertical component of the Stokes drift may not be familiar to the reader,
it appears, just like the horizontal components, in the general definition of the wave pseudo-
momentum (Andrews and McIntyre, 1978; Ardhuin et al., 2008b). In particular for inviscid
conditions over a sloping bottom it is physically obvious that the drift of water particles
must follow the bottom and thus must have a vertical component. In practice Wy can
be computed from (Us, V;) as the full Stokes drift flow is non-divergent (Ardhuin et al.,
2008b)

12



by Garrett (1976) in this context, and further discussed by Lane et al. (2007)
and Smith (2006).
The mass conservation is

ou 0v Ow
D i H 2
Ox * oy + 0z 0 (20)

and the evolution of a conservative passive tracer concentration C is,

oc 0 0 0

C Ll @rue| +— |G ve| +— [@+we| =0, (21

at+8$ (u—i_\z./ +8y <v+\\2./ +8z (w—i_\,)_/ ( )
c1 c2 c3

All four conservation equations are valid from the bottom z = —h to the

local phase-averaged free surface 7).

However, with the mode splitting, there is another important modification
that is made through the barotropic mode. The surface kinematic boundary
condition is given by

on
ot

]
ox

on
— = ) 22
9 w + W, (22)

+ U+ Us) o~ + @0+ V)
It thus appears that, as in McWilliams et al. (2004) or Newberger and Allen
(2007b) there is a source of mass at the surface that compensates the conver-
gence of the Stokes drift. In surface-following coordinates there is no velocity
through the surface and w + W, vanish, leaving only the convergence of the
Stokes drift to force the usual mass conservation equation (see Appendix A:
eq. (A.3)).

For tracers, because the equations are unchanged (only for the explicit
appearance of the Lagrangian mean velocity), the boundary conditions are
unchanged from classical primitive equation models.

2.2. Wave-induced forcing terms

The three-component Stokes drift (Us, Vi, W), wave-induced pressure
term J, and momentum source due to wave dissipation (ﬁdﬁz, ﬁd,y), can all be
computed from only a few local parameters. These include the wave-induced
surface elevation variance E, the phase-averaged water depth D = h + 7,
the wavenumber vector k = k(cosf,sin#), the intrinsic radian frequency

o = y/gktanh(kD), the water depth D. For random waves, these expression

13



are easily extended by summing over the spectrum and replacing E by the
spectral density E(f,6) (see Appendix C).
The horizontal Stokes drift vector (U, Vj) is given by,

cosh(2kz + 2kh)
sinh?(kD)

(Us, Vy) = ok(cosf,sinb)E (23)

At the lowest order, the full Stokes drift flow is non-divergent and verify,

oU, N oV N oW
ox oy 0z

= 0. (24)

As a result, the less well-known vertical Stokes drift component is given,
at lowest order (e.g. Ardhuin et al., 2008a), by the horizontal divergence of
(Usa VS)>

oh oh 20U, 0V
+

Wilz) = = Ul gy = Voleng, = | 32 3,

dz. (25)

In adiabatic conditions, the only other term is the wave-induced mean pres-

sure J,
kE

~ Ysinh 2kD’

In the coupled system, the horizontal Stokes velocity is computed in the
coupler from the frequency spectrum of the surface Stokes drift, which is
provided by WWATCH, so that the wave model does not need to know the
depths of the flow model levels. This also allows to force the flow model with
a stored wave output that is independent of the flow model vertical resolution
(see http://tinyurl.com/2wr6hoa for details). The vertical component W is
obtained by solving equation (25).

No definite theory exists for the force induced by wave dissipation (ﬁd@, ﬁdg),
as only the depth-integrated force is known (e.g. Smith, 2006). An empir-
ical parametrization for the vertical profile must be used. We may clearly
distinguish between the force due to wave breaking and that due to bottom
dissipation (Walstra et al., 2000). We know S, the amount of energy given
up by waves as they break, either in finite depth or deep water (e.g. Thorn-
ton and Guza, 1983; Ardhuin et al., 2009b), and Sy the loss of energy due to
bottom friction (Ardhuin et al., 2003b, e.g.). With a strong vertical mixing
due to breaking waves the vertical distribution of the momentum source is
not very important (Rascle et al., 2006). One may parametrize the effect of

(26)
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wave dissipation as a surface stress, with a vertical profile given by the delta

function 9, 5,

(F\d,ﬂm ﬁd,y)(fz) = (Toc,r7 Toc,m)(sz,ﬁ
k
- / X (cos 6, 5in 8)S,u( £, ). d f 6,
o
(27)
where S,.(f,0) is the spectral density of the waves-to-ocean energy flux (e.g.

Ardhuin et al., 2009b), approximately equal to the dissipation source function
in the spectral wave energy balance. We have rather used a linear profile for

~ ~ HT'mS
(Faz, Fuy), spread over a vertical distance of 5 (Walstra et al., 2000).

2.3. Boundary conditions at the bottom

The bottom friction is absent in the test cases presented here. However,
for case with bottom friction, the following equations can be used.

Starting from the bottom, at 2 = —h, for a non-resolved wave bottom
boundary layer, the momentum lost by waves due to bottom friction is
lost in the bottom (Longuet-Higgins, 2005) and should not be added in the
water column, and the horizontal velocity should be prescribed as velocity
at the bottom given by the streaming solution of (Longuet-Higgins, 1953),
still approximately valid for turbulent bottom boundary layers (e.g. Marin,
2004),

(@,0)] .y = 1.5 (Us, Vi)l (28)
and the vertical velocity is naturally
Oh Oh
W=—U——0—. 29
W u pe v o (29)

If the wave bottom boundary layer were resolved then the bottom
stress can be parametrized as

2

Kzg—“ - K—]Au\/Ag A2 (30)
z

In[(z4h)/z

where A, = u(z) and A, = 7(z), and K, is the (varying) eddy viscosity. The
vertical velocity is given by equation (29).
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In this case, one should introduce the source of momentum

(Fyzy Fyy)(2) = / S(COSH,Sin(?)Sbf( £,0)G(2)dfdo, (31)

near the bottom, where G(z) is a function that integrates to 1 across the
wave bottom boundary layer. This may be re-written

(Foes Fo) (2) = (Tubos Tuna) G(2). (32)

The wave bottom stress vector (Typ.s, Twbe) corresponds to the momentum
lost by the wave field via bottom friction and can be computed by the wave
model. The vertical distribution function G(z) can be parameterized from
the bottom displacement a1, the bottom roughness zy and a friction factor
fw which can also be computed by the wave model (e.g. Ardhuin et al.,
2003a; Walstra et al., 2000). Another important condition is the energy lost
by waves due to bottom friction which is a source of turbulent kinetic energy
in the bottom boundary layer. The total energy is the same integral as eq.

(31), without the — factor and a profile that can be parametrized following
Mellor (2002).

2.4. Boundary conditions at the surface
At the surface, the stresses are imposed, giving the upper boundary con-

dition for the turbulent momentum flux,
ou
0z
where 7, , and 7., , are, respectively, the z-component of the wind stress and
of the wave-supported stress

Kz =Tazx — Taw,z (33)

(Tawes Tawy) = / K (03, 5in 0) S (£, 0)d fd. (34)
g

where Suim (f, 0) is the spectral density of the wind to wave energy flux (e.g.
Ardhuin et al., 2009a), approximately equal to the input source function in
the spectral wave energy balance. Here again the other boundary condition
for the flux of turbulent kinetic energy is given by loss of wave energy due to
breaking and wave-turbulence interaction the same integral as (27) without

k
the — factor, and it may also be distributed as a near-surface source.
o
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2.5. Lateral boundary conditions

When open boundary conditions are used, one may impose a zero mass
flux to facilitate the numerical convergence (Rascle, 2007), which takes the
form,

(ﬁv /U\) = <_Usa _Vs)' (35)
where () denotes the depth-integrated variable.

2.6. Summary of new terms introduced

The forcing of the wave field on the ocean circulation requires the knowl-
edge of all the fields listed in table 1.

Table 1: List of wave-forcing terms required to force an ocean circulation model solving for
the quasi-Eulerian velocity. The J term is a 2D field when the effect of the vertical shear
of the quasi-Eulerian current is neglected, as done here. In general J is a 3D forcing field
(Ardhuin et al., 2008a). The terms Ty, and Typ,, are only used when the wave bottom
boundary layer is resolved.

term type see eq.
Us 3D 23
Vs 3D 23
J 2D or 3D 26
Taw,z 2D 34
Taw,y 2D 34
Toc,x 2D 27
Tocy 2D 27
Twb,z 2D 32
Twb,y 2D 32

Compared to equations for the Lagrangian mean velocity, such as those by
Mellor (2003), the amount of data to be transferred is significantly reduced,
since the latter form requires, the 3D fields S,., S,, and S, as well as the
3D fields U, and V; to correct the velocities before applying the turbulence
closure (Walstra et al., 2000). This lower complexity of the quasi-Eulerian
equations for the 3D case is contrary to the 2D case, in which seven 2D fields
are needed, versus 3 to 5 (if properly dealing with the bottom boundary
condition) for the depth-integrated Lagrangian equations. In both cases, for
a full consistency of the ocean circulation and wave model, one should also use
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the wind stress of the wave model, and the surface flux of turbulent kinetic
energy as discussed by Janssen et al. (2004), and a proxy of the breaking
wave heights, possibly the wind sea wave height (Rascle et al., 2008).

The wave model can also be used to provide energy fluxes for the surface
flux of turbulent kinetic energy (Janssen et al., 2004), or the near-bottom flux
of turbulent kinetic energy (TKE) due to bottom friction (Mellor, 2002). For
the adiabatic conditions considered here all the stresses 7., Twp, Toe are zero,
together with these fluxes of TKE.

3. Example case of shoaling waves

3.1. Steady wave forcing

The first test of a 3D wave-forced model should be in conditions where
the results are known, typically in the absence of dissipative effects in order
to compare the solutions given by the difference models with the known
solution. So, we will be able to estimate the ability of the different models
to simulate the three-dimensional oceanic field flow in presence of waves.

Such a test was proposed by Ardhuin et al. (2008b) with steady monochro-
matic waves shoaling on a slope without breaking nor bottom friction and
for an inviscid fluid. The bottom slopes smoothly from a depth D = 6 to
D =4 m. Compared to Ardhuin et al. (2008b) the bottom was extend by its
symmetric, sloping back down to 6 m, in order to allow periodic boundary
conditions if needed (Figure 3). Taking the other parameters unchanged, we
consider small incident wave amplitude of 0.12 m and 0.36 m, and a period of
5.24 s and 13 s for numerical simulations with and without vertical mixing.
In similar case presented by Ardhuin et al (2008a) the wave amplitude and
the wave period are respectively equal to 0.12 m and 5.24 s and the vertical
mixing is absent. This was chosen to give a wave steepness €; = 0.0266, equal
to the maximum bottom slope €;. A numerical solution is given by Ardhuin
et al. (2008b) thanks to the code from Athanassoulis and Belibassakis (1999)
which solve the Laplace equation. In this paper, we compare the solutions
given by all the theoretical models described above, which have all been im-
plemented in the coupled model. For these shoaling waves the group velocity
varies little.

As aresult the group velocity varies a little (5.4%) from 4.89 to 4.64 m s,
due to the fact that the non-dimensional depth kD is close to unity. Because
the current is much less than the group speed, the waves propagate with a
nearly constant energy flux, resulting in a small increase of wave amplitude,
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by 2.7%, in the shallower part of the domain.The Eulerian analysis of that
situation was given by Longuet-Higgins (1967), who showed that the mean
water level should be 0.32 mm lower in the shallow region, and both stud-
ies by Rivero and Arcilla (1995) and Lane et al. (2007), clearly show that
there is no other dynamical effect: the Eulerian mean current is steady and
simply compensates for the divergence of the wave-induced mass transport.
Because the relative variation in phase speed is more important, from 6.54 to
5.65 m s~ !, it produces a strong divergence of the Stokes drift, which acceler-
ates in shallow water. The quasi-Eulerian velocity is irrotational, thus nearly
depth-uniform, and compensates the Stokes drift divergence by a strong con-
vergence. This situation is a stationary solution.

3.2. Some details about the numerical simulations

The numerical simulation are realized thanks to a new wave-current model
called MARS-WWATCH. Its a modelling system that combines the WAVE-
WATCH III™ numerical wave model (Tolman, 2008, 2009) and the MARS3D
ocean circulation model (Lazure and Dumas, 2008), coupled by the auto-
matic coupler PALM (Buis et al., 2008). This allows a two-way coupling
between the wave and circulation models. Within the scope of this study,
in order to simplify comparisons with previous work, disabled the feedback
from the flow to the waves. A depth-integrated (2D) version of this new cou-
pled model based on the Phillips (1977) equations was also developped and
validated with the data of the nearshore NSTS experiment (Bennis et al.,
2010).

In the present study, the numerical simulations are non-stationary: start-
ing from rest, a steady wave field propagates from left to right, quickly filling
up the entire domain, and then becoming stationary. The monochromatic
wave amplitude of 0.12 m translates in a significant wave height H, of 0.34 m
in the case of random waves with the same energy. We will also test the mod-
els with a higher amplitude of 0.36 m, i.e. Hy, = 1.02 m, still far from the
breaking limit in 4 m depth.

Our MARS3D model setting uses 100 sigma levels® regularly spaced, 5
active points in the y direction and 78 active points in the z direction. The
time step was set to 0.05 s for the H; = 1.02 m tests (and 1 s for H; = 0.34 m).

5The vertical resolution is specific to this study and the ARB0O8 model can be used
with coarser vertical resolution.
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The ARBO08 model has been tested with one active point in y-direction and
the time step was set to 1s for all numerical simulations. For the sake of
simplicity, the wave model time step is taken equal to the flow model time
step and they are coupled at each time step. The first tests are done without
any bottom friction nor internal mixing. The MARS3D model uses open
boundary conditions for the lateral boundaries (East and West).

o T T
] 0.02
1k — - |
%/ ﬁﬁ\\ty 0.015
I N
0.01
AYp— 0
—0.00¢
_5— |
-0.01
-5 100 20 30 400 500 600 700 U (m/s)
X (m)

Figure 3: Lagrangian velocity U for the inviscid sloping bottom case with H, = 1.02 m,
T = 5.24 s and without mixing, obtained from the quasi-Eulerian analysis as U = u + U,.
Contours are equally spaced from -0.01 to 0.025 m s~!. The thick black line is the bottom
elevation.

3.3. The M03 model (Mellor, 2003)

We now solve for the equations by Mellor (2003) (equation (10)), which,
if correct, should lead to the steady Lagrangian velocity shown in Figure
3. First, we validated our implementation of this model with the results
given by the temporal integration of equation (10) with W = 0 (the vertical
velocity is negligible for the considered time) that correspond to the following

expression,
¢ oU F
U(t) = /O (—Ua—x + 5) dt. (36)
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In our case the wave field is steady after about 5 minutes, which corre-
spond to the time needed for the waves to cross the domain. On the up-slope
the steady forcing produces a surface force F' in the direction of wave prop-
agation, and a reverse force at the bottom. Thus the Lagrangian velocity U
increases linearly until the advection becomes significant. The surface and
bottom accelerations produced by the coupled model are identical to the
simplified equation (36), which validates our implementation of M03 in the
coupled model (see Figure 4). Figure 5 also shows that the initial veloc-

ity evolution is simply given by the time integration of the forcing term —,

with later saturation due to the lateral advection. The red line with circles
correspond to the lagrangian velocity computed by MARS-WWATCH. This
simple interpretation of the MARS-WWATCH solution, in relation to the
forcing F' shows that the M03 equations were correctly implemented.

The surface velocity is associated to a counter-current below (Figure 4),
producing a circulation pattern very different from the known correct solu-
tion (Figure 3). In spite of the small bottom slope and wave steepness, the
resulting velocity reaches 17 cm s™! in only 15 minutes, which is about 10
times the correct solution shown in Figure 3. Further, if the model is inte-
grated for a longer time, the region of positive acceleration on the up-slope
meets the region of negative acceleration on the down-slope, resulting in large
vertical velocities and further strange model adjustments.

As shown by Ardhuin et al. (2008a), the force term F' is proportional
to gDe%e,, where £, is the wave steepness, €, is the bottom slope. For the
bottom shape and wave period chosen here, the maximum value of F' is
0.29gDe?e,. Obviously, the depth dependence of F' plays an important role
and F' becomes depth-uniform for kD — 0, so that one may expect that the
problem could vanish in shallow water.

Unfortunately, in practice, the velocity at which the current first stabilizes
(here after 15 minutes), is independent of €5, provided that the change in
water depth remains the same. If the bottom topography is stretched by a
factor 1/« in the x direction, the slope increases by a factor o and the change
advection compensates the local increase of F.. Mathematically, equation (10)
follows a Froude scaling: when z is replaced by 2/ = az and t by ¢ = o?t,
the equation is unchanged if F' = aF, and thus U(2',t") = U(z, t).

As a result, for any wave field approaching the shore from deep water,
even on a very gently sloping continental shelf, there will be a very large
spurious onshore velocity at the surface. Based on the present case, this
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velocity should be at least of the order of 10 to 20 times the Stokes drift.
This momentum is generated where kD ~ 1, and self-advects onshore.

Obviously, some realistic mixing will reduce this effect. Using a realistic
constant eddy viscosity of 2.8x 1073 m2.s~! only reduces the current by about
a factor 2 to 3 (see Table 2). This factor depends on the wave amplitude
since the introduction of viscosity breaks the Froude scaling.

T
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Figure 4: M03 model: Lagrangian velocity U solution of the coupled model after 15
minutes of integration (top panel) and simple integration in time of F/D — UOU/0x
(bottom panel). The thick black line is the bottom elevation. Hy = 1.02m, T = 5.26s,
K, =0m2s 1.

3.4. The M08 model (Mellor, 2008)
After acknowledging the problem in the M03 equations, Mellor (2003)
proposed a new set of equations. Unfortunately he did not keep the correct
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Figure 5: Lagrangian velocity U(t) at the surface z = 7, at the position z =200 m
and without vertical mixing. The MARS-WWATCH solution without advection terms
(blue line) is compared to the linear trend given by a constant acceleration F'/D, and
the numerical integration of F//D (black line). Red line: the entire solution computed by
MARS-WWATCH. H, =1.02m, T =5.26s, K, = 0m?2.s™!.

Table 2: Model results for the M03 model: Surface velocity at =200 m for different
model settings. The settings corresponding to the test in Ardhuin et al. (2008b) are given
in the second line Hy, = 0.34m, T = 5.6s, K,=0 m? s~!. The surface velocity values are
written for T'= 900 s where Hy, = 1.02m and for 7' = 2700 s where H; = 0.34 m.

Hy(m) T,(s) K,(m?s™ ') resulting U (m.s™t)
1.02 5.6 0 0.1698
0.34 5.6 0 0.0537
0.34 13 0 0.0110
1.02 5.6 2.8.1073 0.1094
0.34 5.6 2.8.1073 0.0185
0.34 13 2.8.1073 0.0026

part in M03 (before the approximation using Airy theory), and, as discussed
above, he produced another inconsistent set of equations. Both MO03 and
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MO8 model are similar in the sense that they are based on the same vertical
coordinate ¢ and apply to the total momentum U, but with a different forcing
F' (see section 1.2). We warn the reader that the result of these equations
should not be compared directly with results of other equations for the quasi-
Eulerian momentum u, such as given by Uchiyama et al. (2010), but rather
that U should be compared with u + U,.

Here we investigate the consequence of the inconsistency in the M08 equa-
tions, using the same test case and numerical set-up used for M03. The dis-
continuity of the forcing F, due to the Ep term generated some numerical
problems when we used a fine vertical resolution (here from 4 to 6 cm). In-
deed, the author of the MO8 model, explain in the paper that the Ep term
for finite difference scheme must be only applied in the top layer which has
a thickness equal to 6z without restrictions for dz such as

(()ED_la(E/Q)
or 6z Oxr

For 4cm < 4z < 6em, strongly oscillations are generated at the surface
(Figure 6: black line). These oscillations are absent at depths larger than
0.8 m, consistent with the zero values of F' below the surface. We note
that the vertical shear in the exact solution for U = u + U,, which comes
from Uy, in not reproduced by MO08. One solution for this problem could
be to diffuse the Ep term over the vertical. A realistic constant viscosity
K, = 2.8.107% m? s7! removes the oscillations by diffusing the positive Ep
term over the vertical. Yet Ep is a momentum source that produces velocities
one order of magnitude larger than the Stokes drift U,. The velocities given
by MO8 with a realistic mixing are thus comparable in magnitude with those
given by M03 without mixing, most pronounced for waves in intermediate
shallow water (Table 3). Moreover, the flow computed by M08 with mixing
and therefore without "numerical problem” due to dz (Figure 7) is similar
to the one given by the M03 model (Figure 4) with a bipolar structure that
differs from the reference flow (Figure 5). Also the wave-induced set down
in this case is 50% too large (Figure 8). Although these problems may be
secondary in the surf zone (Kumar et al., personal communication), they are
likely to be dominant on the shelf outside of the surf zone.

(37)

3.5. Results with the glm2 equations

In this section, we test the glm2 model on the same test case as previ-
ously. This model based on equations (18) and (19) has been implemented
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Figure 6: Comparison of vertical profiles of the lagrangian velocity U given by different
models at z = 200 m: M08 without mixing (solid black line), M08 with mixing (dashed
green line), exact solution (dashed red line). The wave parameters are H; = 1.02m and
T = 5.26s. All profiles are plotted after six minutes of time integration. The z-axis was
clipped, and the maximum velocities with MO8 reached 0.8 m s~!.

in the coupled model that solve now the quasi-Eulerian velocity (Lagrangian
velocity minus Stokes velocity). In order to compare with the reference solu-
tion (see Figure 3) which correspond to the Lagrangian velocity, we add the
Stokes drift, computed by the coupled model, to the quasi-Eulerian velocity
from the coupled model.

The glm2 equations give a quasi-Eulerian current solution u, and thus
differs from the M08 and MO03 models. The dynamic effect of the waves is
conveyed by dynamic forcing terms (see terms Ay, Az, By, Bs in equations
(18) and (19)) and an equivalent mass source at the surface (eq. (22)). The
depth-integration of the ARB08 model gives the Smith model (Smith, 2006)
and the sea surface elevation computed by the coupled model with ARBOS
is coherent with the one given by Longuet-Higgins (Figure 8). The quasi-
Eulerian current is nearly depth-uniform as expected (Figure 10). As a result,
the Lagrangian current given by the ARB08 model (Figure 9) is similar to
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Table 3: Model results with Mellor (2008b): Surface velocity at z =200 m for
different model settings. The settings corresponding to the test in Ardhuin et al. (2008b)
are given in the second line. The surface velocity values are written for the time ¢ = 900 s
except for the case without mixing (¢ = 360 s).

Hym) T,(s) K, (m?s™') U (ms?)
1.02 5.6 0 0.6116
034 5.6 0 0.2127
034 13 0 0.3164
1.02 5.6 2.8.1073 -0.1594
034 5.6 2.8.1073 -0.0256
034 13 2.8.1073 -0.0007
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Figure 7: M08 model: Lagrangian velocity U(m/s) of the coupled model after 15 minutes
of integration with Hy, =1.02m, T = 5.24 s, K, = 2.8.107>m?.s~!. The thick black line
is the bottom elevation.

the reference current (Figure 3). The flow structure and the intensity of the
flow are within a fraction of a percent.

The implementation of the ARB08 model in the coupled model is vali-
dated by these results and we can conclude that the ARB08 model correctly
simulates for this case the three-dimensional flow in presence of waves.
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Figure 8: Mean sea surface elevation: comparison between the MARS-WWATCH
solution with M08 (blue line with circle) and MARS-WWATCH solution with ARBO0S
(pink line with diamond) and the solution given by Longuet-Higgins (1967) (black line
with asterisk). Hy =0.34 m, T' = 5.24 s.

4. Conclusion

It was demonstrated here that equations for the three-dimensional wave-
forced circulation that are formulated in terms of the Lagrangian mean ve-
locity (total momentum) and use analytical functions of the local wave field
and topography produce spurious velocities that can be very large. This
result was anticipated by Ardhuin et al. (2008b) who showed that the ver-
tical flux of momentum is a non-local function of the water depth that may
be estimated from non-local evanescent wave modes. The magnitude of the
problem is revealed by the present study. In particular, the equations pro-
posed by Mellor (2003) et Mellor (2008) can produce solutions with order of
magnitude errors in adiabatic conditions, and still very large errors when a
reasonable vertical mixing is included. These error may become negligible in
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Figure 9: ABRO8 model: Lagrangian velocity U(m/s) of the coupled model when a
steady state is reached and with H, = 1.02 m, T = 5.24 s and K, = 0m?.s~!. The thick
black line is the bottom elevation.

the surf zone, and they still likely plays a big part in the differences in ver-
tical velocity profiles reported by Haas and Warner (2009), when comparing
a version of ROMS solving the Mellor (2003) equations with SHORECIRC
(see their figure 4). We also wish to point out another common source of
differences between model results. Some models, like SHORCIRC solve for
the quasi-Eulerian mean velocity U — U while the other model solves for the
Lagrangian mean velocity U. The difference between the two is the Stokes
drift, which can be very large in the surf zone, up to 30% of the wave phase
speed (Ardhuin et al., 2008b).

From the present model results, we conclude that there is no acceptable
short-cut to a three-dimensional equation for the Lagrangian velocity U: the
only possibility would be to solve for the wave motion to first order in the
bottom slope. This requires a model of the kind developed by Athanassoulis
and Belibassakis (1999) and Gerosthathis et al. (2005), with at least 10 verti-
cal modes. Given the large effort required for a 4 by 4 km region with only 3
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Figure 10: ABRO8 model: Quasi-Eulerian velocity u(m/s) of the coupled model when a
steady state is reached and with Hy, = 1.02 m, T = 5.24 s and K, = 0m?.s~!. The thick
black line is the bottom elevation.

modes (Magne et al., 2007), this is hardly a practical solution. The only prac-
tical solution is thus the use of a momentum equation for the quasi-Eulerian
velocity, such as proposed by McWilliams et al. (2004), Newberger and Allen
(2007b), or Ardhuin et al. (2008a). This approach has been applied to surf
zone problems by Rascle (2007) and Uchiyama et al. (2010).
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Appendix A. glm2 equations in sigma coordinates : Momentum,
mass, tracer conservation

Let (x,y,z,t) denote the cartesian coordinate system and (z*,y*,¢,t*)
the sigma coordinate system.

ou ou  _ou  —~ou ,. 1 (op" opff 0O
u u u u +_(p+p C)

o + ox* oy* W3_§ B ox* os Ox

v  0v 0O¢ ou O0u 0O
L
Wy, ou oJ 0J Og

D 0O¢ Oz* 8§8x+d+ +b (A1)

and
g—g + ﬁg—;—l—vg;: Wg“+f + - @p* +%-§—;)
e (S ) (0
—%-%—%—%-§;+de+me+Fby (A.2)
where
o ¢ = il is the sigma coordinate with 77 the mean elevation, h the

bottom depth and D = 7) + h the mean water column depth,

o« W= (g%—ﬁ@%—v%—l—E),
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° (ﬁbm ﬁb,y) are only used when the wave bottom boundary layer is re-
solved.

The depth-integrated continuity equation becomes
o7 0 [p@E+T)] o[pG+7.)]

0. A
T T oy 0 (A-3)

where (7) denotes depth-integrated variable.

The evolution of a conservative passive tracer concentration C is,

a(De) | AD(@+U,)C] | ADE+ V)] | 9wC)

ot O Oy* o (A.4)
where
w=w+ W +Da + D(u —|—U)a + D(v —|—V)a (A.5)
N ot Ox oy '

Appendix B. Flux formulations of the quasi-Eulerian glm2 equa-
tions in sigma coordinates : Momentum, mass, tracer
conservation

~ = ~ - = ~ H
oDu N J[D(u + Us)ul N O[D(v + Vy)u] N O(wu) - 1 op'! L7 op™ Js
at* ox* oy* S p \ Ox* ds Ox
ou  Jduds v v Og oJ  0J ds
= USD<ax* +a_g%) (f e a@) I e

+F\d,x + Fm,x + ﬁb,xa

and

0D oD@+ U)o ODE+Vy)o] owd) . 1 [opf  optoc
o o + o + o + fu+ > Lo + 9 0y
ov 0V 0s du ou ds oJ  0J 0
- 0 (Gt o)~ U205 5) U e

+Fyy + Fry+ Fyy.
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where w is defined by equation (A.5) and (ﬁb,za F\by) are only used when
the wave bottom boundary layer is resolved.

The continuity equation becomes

onp 0[D(u+U,)  9[DW+Vy)] Ow
— — =0 B.3
ot + Ox* + oy* + s ’ (B.3)
and the evolution of a conservative passive tracer concentration C is de-

fined by equation (A.4).

We notice that only the horizontal components of stokes drift (Us, V)
must be known with this formulation. The W depending terms are removed.

Appendix C. Explicit form of random wave forcing terms for the
quasi-Eulerian velocity

For random waves, eq. (23) becomes

cosh(2kz + 2kh)

D) dfdo, (C.1)

(Us, Vi) = /Jk(cose,siné)E(f, 0)

where E(f,0) is the spectral density of the surface wave elevation variance,
usually known as the wave spectrum, the state variable of most numerical
wave models, and the wave-induced pressure term becomes,

EE(f,0)

Appendix D. Forcing terms for the Lagrangian mean velocity

The horizontal and vertical radiation stresses in ¢ coordinate take the

form,
0S8 0 ds
= — i = —— u? n—0
Fo o 5 (Du +pa<> . (D.1)

Using Airy theory, S,, is given by,

Spw = / kDE(f,0) [cos® 0FcsFoc
+ (FCSFC'C - FSSFCS)] dfd@, (D2)
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and the vertical profile function Frg changes with f and is defined by

cosh [kD(1 +¢)]

F =
©s sinh (kD)

(D.3)

with similar definitions for Fgg (respectively Fge), replacing cosh in the
numerator (respectively sinh in the denominator) by sinh (respectively cosh).
The horizontal force that is given by the vertical divergence of S,3 is

0SS 0 (==
Fo3=— 9~ o <p8s/8x> . (D.4)

In this case, Airy theory is insufficient for a consistent approximation. Yet
Mellor (2003) still used Airy theory, thus producing the erroneous expression,

Spz = —/(FCC—FSS)
X [E( f, 9)8555 + & *295 aEéi ’ 9)} dfdo. (D.5)
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