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Abstract

Automation in outdoor applications (farming, surveillance, military activities,

etc.) requires highly accurate control of mobile robots, at high speed, although

they are moving on low grip terrain. To meet such expectations, advanced

control laws accounting for natural ground specificities (mainly sliding effects)

must be derived. In previous work, adaptive and predictive control algorithms,

based on an extended kinematic representation, have been proposed. Satis-

factory experimental results have been reported (accurate to within ±10cm,

whatever grip conditions), but at limited velocity (below 3m.s−1). Neverthe-

less, simulations reveal that control accuracy is decreased when vehicle speed

is increased (up to 10m.s−1). In particular, oscillations are observed at curva-
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ture transition.

This drawback is due to delays in sideslip angle estimation, unavoidable at high

speed since only an extended kinematic representation was used. In this paper,

a mixed backstepping kinematic and dynamic observer is designed to improve

observation of these variables: the slow-varying data are still estimated from

a kinematic representation, which is then injected into a dynamic observer to

supply reactive and reliable sliding variable (namely sideslip angle) estimation,

without increasing the noise level. The algorithm is evaluated via advanced

simulations (coupling Adams and Matlab software) investigating high speed

capabilities. Actual experiments at lower speed (experimental platform maxi-

mum velocity), demonstrate the benefits of the proposed approach.

1 Introduction

The development of autonomous mobile robots acting at high speed in a natural environment

constitutes an important issue, considering the numerous fields of application (see (Siegwart

and Nourbakhsh, 2004)). From transportation to agricultural operations (Bruinsma, 2003)

(not to mention exploration, surveillance, military activities, etc.), the benefits brought by

such robots may indeed improve both the safety and the efficiency of the required tasks.

As a result, the robotic research related to such a topic is the object of increasing interest

(as highlighted in (Buehler et al., 2007)), bringing together many research areas, such as

sensing, planning or control.

This latter area has been addressed in the work of numerous researchers, but only a few have

specifically considered fast off-road mobile robots. Control of wheeled robots has indeed been

studied in depth for on-road vehicles, indoor robots or urban transportation systems (see for

instance (Micaelli and Samson, 1993)). In such a context, simplifying assumptions (mainly

pure rolling and non-sliding at tire/soil contact point) can be introduced, and control law

design can then be based on kinematic models. Alas, in off-road conditions, the complexity



of the phenomena encountered and their variability do not permit reliance on such hypothe-

ses. As a consequence, direct transfer of this work to the off-road context, and especially at

high speed, is impossible without a significant loss in terms of precision. Dynamic vehicle

representations (general dynamic vehicle models, as in (Unyelioglu et al., 1997), or partial

ones focused on tire/ground contact forces (e.g. (Ellouze and d’Andréa-Novel, 2000)), steer-

ing actuator dynamics (e.g. (Tai et al., 2004)), etc.) could account accurately for fast and

complex robot behaviors. However, they involve numerous parameters, and are therefore

tractable for control purposes only when vehicles move in structured and non-varying envi-

ronments, such as asphalted roads. As an alternative, some approaches consider the specific

phenomena encountered in a natural environment (mainly due to wheel skidding) as per-

turbations in the kinematic model to be rejected (see (Wang and Low, 2007) for instance).

Some robust control techniques are then designed to compensate for such perturbations (as

investigated in (Eaton et al., 2008), (Hao et al., 2005), or (Lucet et al., 2008)). However,

these approaches tend to be conservative, even at limited speed, and oscillating behavior can

be recorded when significant sliding occurs.

In previous work, another approach was used: additional variables, consistent with a dynamic

vehicle representation, are estimated on-line and then incorporated into what is called an ex-

tended kinematic model, from which control laws are designed. As detailed in (Lenain et al.,

2007) for agricultural vehicles, or in (Cariou et al., 2008) for more generic off-road mobile

robots, these observer-based adaptive and predictive control laws are relevant in an off-road

context: at the velocity range considered in these applications (up to 10 km.h−1), high

accuracy can be ensured whatever the grip conditions and terrain interaction encountered.

However, if higher speeds are expected (up to 40km.h−1 in the near future), the efficiency of

the proposed approach decreases: since the observer is designed from an extended kinematic

representation, a delay in the estimation of the sliding variables (homogeneous with sideslip

angles) progressively appears and is particularly disadvantageous from a control point of

view (oscillations can then be noticed, especially at curvature transitions). In order to allow

a significant increase in vehicle velocity, dynamic effects have to be taken into account in the



sliding observer, without however introducing parameters that are hardly measurable.

This paper addresses the design of such an observer. It can be broken down into two

steps. The first aims at adapting on-line the cornering stiffnesses (i.e. estimation of the

variations in grip conditions), to be injected into the second step, dedicated to sideslip angle

observation from a dynamic vehicle model. The previous observer (based on an extended

kinematic vehicle model) is still used in parallel, in order that no preliminary knowledge

with respect to the terrain may be needed. Such an approach dispenses with any need of

on-line direct measurement of grip conditions (hardly feasible at reasonable cost), when the

use of a dynamic model considerably reduces the delay in sliding variable estimation. As a

result, the accuracy of mobile robot motion in off-road conditions can be preserved, even at

high speed.

The paper is organized as follows: in the first part, previous work is recalled, including

extended kinematic modeling, preliminary sideslip angle estimation, and design of the adap-

tive and predictive control law, still used to demonstrate the capabilities of the approach. In

the second part, the proposed observer is introduced: dynamic modeling, cornering stiffness

adaptation, and the dynamic sideslip angle observer itself are successively presented. Ad-

vanced simulations, as well as experimental results, are then proposed to show the efficiency

of the algorithm at high speed.

2 Previous work

2.1 Kinematic modeling with sliding taken into account

Usually, vehicle motion is derived from a kinematic representation based on the assumption

of rolling without sliding at the tire/ground contact point (see for instance (Samson, 1995)).

If such a hypothesis is relevant in the urban vehicle context, its direct transposition to all-

terrain vehicle leads to inaccurate results. Consequently, low grip conditions have to be



properly modeled. In this paper, it is proposed to incorporate variables representative of

sliding phenomena, namely tire sideslip angles, into the kinematic model. These variables

(used in dynamic vehicle models to derive contact forces, see (Bakker et al., 1987) or (Ryu

et al., 2008)) denote the difference between wheel plane orientation and actual speed vector

direction.

Since in a kinematic framework, mobile robots are usually described as a bicycle (see Fig-

ure 1), two tire sideslip angles βF and βR are considered, respectively for the front and rear

axle. It is assumed that they are entirely representative of sliding effects. Moreover, as path

tracking control in off-road conditions is here addressed, vehicle modeling is derived with

respect to the path to be followed (denoted Γ). The notations used in the sequel (see also

Figure 1) are:

• F and R are respectively the centers of the front and rear axles, where the virtual

wheels of the bicycle model are located. R is the point to be controlled.

• v is the vehicle linear velocity at point R, assumed to be strictly positive and manually

controlled, and vF denotes the linear velocity at the center F of the front wheel.

• δF is the measured front steering angle obtained thanks to an angular sensor. It con-

stitutes the control variable and its measure permits both to feed observer algorithms

and to ensure the low level closed loop control of the steering actuator.

• βF and βR are the front and rear tire sideslip angles.

• M is the point on the reference path Γ, which is the closest to R. M is assumed to

be unique.

• s is the curvilinear abscissa of point M along Γ.

• A(s) denotes the curvature center of the path Γ at point M , so that c(s) is the

curvature of Γ at that point.

• y is the vehicle lateral deviation at point R with respect to Γ.

• θ is the orientation of vehicle centerline with respect to an absolute frame [O, XO, YO).



• θΓ(s) is the orientation of the tangent to Γ at point M with respect to [O, XO, YO).

• θ̃ = θ − θΓ(s) is the vehicle angular deviation with respect to Γ.

• L is the vehicle wheelbase.

Figure 1: Path tracking parameters

In this configuration, according to sign conventions, y, θ̃,

βR, βF have negative values, when δF has a positive value

It can be established (see (Samson, 1995) for model derivation in the non-sliding case

and (Lenain et al., 2006) for the integration of the sideslip angles) that:



































ṡ = v
cos(θ̃+βR)
1−c(s) y

ẏ = v sin(θ̃ + βR)

˙̃
θ = v [cos(βR)λ1 − λ2]

(1)

with: λ1 = tan(δF +βF )−tan(βR)
L

, λ2 = c(s) cos(θ̃+βR)
1−c(s) y

It can be observed that this model becomes singular when y = 1
c(s)

, i.e. when R is superposed

with A(s). This problem is not encountered in practice since, on the one hand actual path

curvatures are quite small, and on the other hand, the vehicle remains close to Γ when

properly initialized. The lateral deviation is thus always smaller than the radius of curvature



of Γ.

2.2 Preliminary sideslip angle estimation

In order to derive control laws from the model (1), sideslip angles have to be available. The

current robot state, as well as the modifications in terrain configuration (i.e. grip conditions),

have a significant impact on both these variables, particularly in an off-road context. As a

result, βF and βR must be estimated on-line.

To this end, it was proposed in (Lenain et al., 2007) to apply observer theory to the model (1).

Since two variables have to be estimated, two output variables were associated with the

model (1), namely Xobs = (y, θ̃)obs. The two sideslip angles were then seen as control vari-

ables, and a control law was proposed for these variables in order to ensure the convergence

of Xobs to the measured variables Xmes = (y, θ̃)mes.

Figure 2: Diagram of the preliminary extended kinematic observer

More precisely, the extended model (1), when its first equation is dropped, can be rewritten

as the non-linear state representation (2), where δF is considered as a known parameter

(supplied on-line by the sensor of the steering device), and u = (u1, u2) = (βF , βR) represents

the variables to be controlled:

Ẋobs = f(Xobs, δF , u) =









v sin(θ̃obs + u2)

v

[

cos(u2)[tan(δF +u1)−tan(u2)]
L

−
c(s) cos(θ̃obs+u2)

1−c(s)yobs

]









(2)

As sideslip angles do not exceed a few degrees in practice, this state equation can be linearized



with respect to the control vector u in the vicinity of zero (i.e. no sliding). It leads to:

Ẋobs = f(Xobs, δF , 0) + B(Xobs, δF )u (3)

with B(., .) denoting the derivative of f with respect to u, evaluated at u = (0, 0):

B(Xobs, δF ) =







0 v cos(θ̃obs)

v
L cos2 δF

v
c(s) sin(θ̃obs)
1−c(s)yobs

− v
L





 (4)

Matrix B is invertible provided θ̃obs 6=
π
2
, 3π

2
and v 6= 0. Such conditions are met in practical

path-following conditions. Equation (3) can then be exactly linearized by imposing:

u = B(Xobs, δF )−1 (m − f(Xobs, δF , 0)) (5)

with m denoting auxiliary control variables.

Finally, let us introduce the observation error e = Xobs −Xmes. Sliding parameters can then

be relevantly estimated by injecting m = G e+Ẋmes into (5), since the error dynamic is thus

given by ė = G e. The (2×2) matrix G, to be chosen as a Hurwitz matrix, constitutes the

observer gain imposing the settling times for the observed state. In the sequel, G is chosen

as a diagonal matrix, in order to decouple the convergence of the two observed variables.

The term Ẋmes is evaluated via numerical derivation, and therefore has to be slightly filtered

in order to ensure its relevance despite the measurement noise. Since convergence of the

observed state with the measured one has then been achieved, u can be regarded as a

relevant estimation of the sideslip angles.

2.3 Path tracking control algorithm

Since all the variables in the model (1) are now available, control law design can be addressed.

As this paper is mainly focused on sideslip angle observer design, the derivation of the path

tracking control law (the initial motivation for investigating sideslip angle reconstruction) is

only sketched below. Further details can be found in (Lenain et al., 2006).



2.3.1 Adaptive control algorithm

The model (1), like any mobile robot kinematic model, can be turned into an exact linear

form, named a chained system form (see (Samson, 1995)), via state and control transfor-

mations and a time-scale change (derivation with respect to curvilinear abscissa instead of

derivation with respect to time). Relying on this linear form, a classical PD control can

then be designed to ensure the convergence of the actual lateral deviation to zero, while

the angular deviation compensates the rear tire sideslip angle. The reverse transformations

finally provide the non-linear expression (6) for the steering control law for path tracking:

δF = arctan
(

tan(βR) + L
cos(βR)

( c(s) cos θ̃2

α
+ A cos3 θ̃2

α2 )
)

− βF (6)

with:


























θ̃2 = θ̃ + βR

α = 1 − c(s)y

A = −Kp y − Kd α tanθ̃2 + c(s)α tan2θ̃2

(7)

In a natural environment, grip conditions are always changing. The adapted sideslip an-

gle variables injected into the control law (6) are able to account for such fast modifications

more efficiently than standard approaches attempting to reject them asymptotically (such as

introducing an integral term into path tracking control laws designed for mobile robots mov-

ing without sliding). More accurate tracking performance can then be achieved, see (Lenain

et al., 2006).

2.3.2 Predictive algorithm

Nevertheless, when relying on the previous adaptive control law, transient overshoots in

lateral deviation can still be observed when the vehicle enters a curve. These overshoots are

mainly due to delays induced by the steering actuator, whose dynamic is not described in

the model (1). The steering angle value obtained by control law is indeed sent to a low level

control loop with its own delay and settling time (0.1s and 0.8s respectively) and servoing

is ensured thanks to an absolute angle encoder. In order to account for such delays and



then prevent transient overshoots in path tracking, a predictive curvature servoing has been

proposed in (Lenain et al., 2007), with the aim of sending the steering set point to the front

wheel actuator in advance. In order to impose such a behavior, the control law (6) is split

into two terms:

δF = δTraj + δDeviation










δTraj = arctan(g1)

δDeviation = arctan( g2

1+g1 g2+g2

1

) − βF

(8)

where:

g1 = L
cos (βR)

c(s) cos θ̃2

α

g2 = L
cos (βR)

A cos3 θ̃2

α2 + tan (βR)
(9)

This separation leads to a control expression split into two main tasks:

- δTraj : non-null term when deviations and sliding are equal to zero. This term mainly

depends on reference path curvature. It will be used to design the prediction algo-

rithm.

- δDeviation: null term when deviations and sliding are equal to zero. This term mainly

depends on sliding parameters and deviations (y, θ̃2) and ensures their convergence

to 0.

As sliding conditions are unpredictable, the prediction algorithm can only be applied to

δTraj . From the knowledge of the reference path, the future path curvature value at time

t+H is inferred and used to compute the objective δObj to be reached by δTraj at time t+H .

Then, relying on Model Predictive Control (MPC, see (Richalet, 1993)), a control sequence

for δTraj is computed with the aim of minimizing, on the time window [t, t+H ], the quadratic

difference between a chosen shape δRef joining δObj at t+H and the expected steering angle

δ̂actual computed from the actuator model, see Figure 3.

The first term of this optimum control sequence, called δPred
Traj , is then substituted for the



Figure 3: Notations and general description of Model Predictive Control

previous trajectory term δTraj , leading to the following overall control law expression:

δF = δPred
Traj + δDeviation (10)

Further details can be found in (Lenain et al., 2007).

2.4 Capabilities and limitations

As reported for example in (Lenain et al., 2007) or in (Cariou et al., 2008), such an approach

ensures highly accurate path tracking (close to the localization sensor accuracy, i.e. a few

centimeters when an RTK-GPS device is used), independently of the vehicle to be controlled

(farm tractor, off-road mobile robot, etc.), the shape of the path to be followed, grip con-

ditions or terrain geometry (flat or sloping field). Furthermore, the chosen representation

does not demand dynamic vehicle parameters, which are not so easy to measure and are

subject to change. Finally, control law performance is specified with respect to a curvilinear

abscissa, so that the vehicle’s behavior is independent of its velocity.

Nevertheless, these very satisfactory performances can be obtained only at quite limited

velocity (below 10km.h−1, from our experimental records). At higher speed, oscillations

may appear, especially at transient phases. Several reasons could explain this fact:

• Sampling frequency and sensor limitations. In previous work, the control law sam-

pling frequency was chosen with respect to the features of the sole exteroceptive sensor

used for guidance: an RTK GPS running at 10Hz. Naturally, such a choice restrains



the maximum reachable velocity, since the Shannon theorem has to be satisfied. Nev-

ertheless, this limitation (around 30km.h−1) is much higher than the velocities for

which oscillations have been experimentally observed (from 15km.h−1). Moreover,

simulation runs carried out with a 20Hz sampling frequency for both positioning

information and control law show similar oscillating behavior in low grip conditions.

• Kinematic representation. A pure kinematic representation cannot reflect dynamic

phenomena acting at high speed (inertial effects, tire/ground contact transitions, etc.)

Nevertheless, since an “extended kinematic model” accounting for skidding effects via

on-line adapted sideslip angles has been considered, an accurate description of off-road

mobile robot motion can be expected, as long as sideslip angles can be satisfactorily

estimated.

• Observer algorithm. The proposed sideslip angle observer is indeed the main limita-

tion at high speed. On the one hand, it disregards any dynamic phenomenon, and on

the other hand its settling time must be limited in order to filter out sensor noise. As

a consequence, sliding estimation is noticeably delayed and inaccurate at transient

phases (even if it supplies relevant steady values). At low speed, the influence of

this delay is negligible, but this is no longer true at higher speed. This can easily

be checked in simulation: if simulated sideslip angles (available in simulation) are

reported into control algorithms, then oscillations are no longer observed during path

tracking.

As a result, preservation of high accuracy path tracking at high speed demands the integra-

tion of dynamic features into the observer algorithm, in order to decrease estimation delays

and therefore improve guidance accuracy at transient phases.



3 Mixed kinematic and dynamic sliding estimation

3.1 Dynamic modeling

In order to incorporate dynamic effects into sideslip angle estimation, a dynamic model de-

scribing mobile robot motion in a yaw frame is first designed. As previously, a bicycle vehicle

is considered (see Figure 4) and the velocity is supposed to be slow-varying, so that longi-

tudinal forces can be disregarded. With respect to the extended kinematic representation

depicted in Figure 1, the additional variables and notations are:

Figure 4: Dynamic bicycle model with sliding parameters.

• G is the vehicle center of gravity,

• a and b are respectively the front and rear half-wheelbases,

• u is the linear velocity at the center of gravity,

• β is the vehicle sideslip angle,

• Ff and Fr are respectively the lateral forces generated at the front and rear tires.

• m is the total mobile robot mass.

• Iz is the moment of inertia about the vertical axis passing through the vehicle center

of gravity (i.e. at G).



Using these notations, a dynamic model describing robot motion in a yaw frame

(see (Schofield et al., 2006) or (Ellouze and d’Andréa-Novel, 2000)) is:


































































θ̈ = 1
Iz

(−aFf cos(δF ) + bFr)

β̇ = − 1
um

(Ff cos(β − δF ) + Fr cos(β)) − θ̇

βR = arctan
(

tanβ − bθ̇
u cos(β)

)

βF = arctan
(

tanβ + aθ̇
u cos(β)

)

− δF

u = v
cos(βR)
cos(β)

(11)

In order to design an observer from the model (11), lateral forces Ff and Fr have first to be

evaluated. Numerous models are available in the literature to compute such forces (see for

example (Bakker et al., 1987) or (Canudas de Wit et al., 1995)). Nevertheless, most of them

link the lateral forces to tire sideslip angles in a non-linear way, as depicted by the black

dashed line in Figure 5.
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Figure 5: Non-linear tire behavior, here modeled with varying cornering stiffness

Such relations rely on numerous parameters, difficult to identify and moreover varying with

the type of contact and terrain, tire load, etc. When considering all-terrain applications,

these numerous parameters cannot definitely be assumed as constant during vehicle motion.

As a result, in order to keep the model (11) tractable, Ff and Fr are here viewed as linear

functions of front and rear tire sideslip angles (βF and βR), but relying on varying cornering

stiffnesses CF and CR:










Ff = CF (vehicle/terrain config.) βF

Fr = CR(vehicle/terrain config.) βR

(12)



On-line estimation of CF and CR can take into account, not only varying grip conditions,

but also the non-linear parts of the tire model (as depicted with the blue dashed line in

Figure 5). Estimation algorithms have been proposed in (Bouton et al., 2008) or in (Msirdi

et al., 2008). An alternative one is presented in Section 3.3.

Injecting (12) into the model (11) then leads to:


































































θ̈ = 1
Iz

(−a CF βF cos(δF ) + bCR βR)

β̇ = − 1
u m

(CF βF cos(β − δF ) + CR βR cos(β)) − θ̇

βR = arctan(tan β − b θ̇
u cos(β)

)

βF = arctan(tan β + a θ̇
u cos(β)

) − δF

u = v cos(βR)
cos(β)

(13)

Considering now that, in practice, sideslip angles (βF , βR and β) are quite small and that non-

linear tire behavior has been taken into account via the adaptation of cornering stiffnesses,

the model (13) can be linearized around null sideslip angles, leading to the dynamic model

to be considered in the sequel:


































































θ̈ = 1
Iz

(−a CF βF cos(δF ) + bCR βR)

β̇ = − 1
u m

(CF βF cos(δF ) + CR βR) − θ̇

βR = β − b θ̇
u

βF = β + a θ̇
u
− δF

u = v

(14)

3.2 General algorithm description

The objective is now to derive on-line estimation of tire sideslip angles βF and βR from the

dynamic model (14), with the aim of eventually improving the reactivity of the overall path

tracking algorithm (with respect to what was previously obtained when βF and βR were

supplied by the observer (5), derived from the extended kinematic model (1)). As can be

seen from the model (14), βF and βR are directly related to yaw rate θ̇ and vehicle sideslip



angle β. The former variable can be measured by an on-board sensing system (either from

an RTK-GPS receiver or from a low cost gyrometer), but not the latter one. Moreover,

vehicle sideslip angle equation relies on cornering stiffnesses CF and CR, representative of

grip conditions, unknown and time-varying.

As a result, a mixed kinematic and dynamic observer is here proposed for sideslip angle

estimation. Its general principle is described in Figure 6. With respect to the previous

observer scheme shown in Figure 2, the control loop (top of the figure) is unchanged and

still fed with the estimated front and rear tire sideslip angles. In contrast, the observation

loop consists now of three successive steps, each one relying on the variable supplied by the

preceding step. This approach to observer design is therefore similar, to some extent, to the

celebrated backstepping control design technique. The three blocks shown in Figure 6 are

described below:

• Preliminary extended kinematic observer (red dashed box). This is the observer (5).

As discussed before, it can supply relevant tire sideslip angle estimation at low speed.

However, when higher speeds are considered, estimation is delayed, especially at tran-

sient phases, and is no longer suitable for vehicle control. Nevertheless, it constitutes

a preliminary slow-varying approximation of the targeted estimates, relevant in a

steady state. It is therefore used below as an input for the other two observation

steps.

• Cornering stiffness observer (green dotted box). This second step of the observation

loop is concerned with on-line adaptation of cornering stiffnesses, with the aim of re-

flecting grip condition variations. More precisely, stiffnesses are viewed as the control

variables, and a control law is designed to ensure that the observed yaw rate built

from the dynamic model (14) converges with the measured rate, and that the observed

vehicle sideslip angle converges with the value inferred from the observer (5). How-

ever, as mentioned above, the observer (5) supplies a delayed estimation for sideslip

angles, relevant only in a steady state. Therefore, a high priority is given here, via



gain tuning, to the convergence of the observed yaw rate (since yaw rate measure-

ment is reliable), in order to rely mainly on the dynamic model (14). CR and CF can

then reactively describe actual terrain conditions. This cornering stiffness observer is

detailed in section 3.3.

• Dynamic sideslip angle observer (blue dashed dotted box). This last step constitutes

the formal sideslip angle observer, derived from standard observer theory applied

to the dynamic model (14), where the cornering stiffness estimations obtained in

previous step have been reported. Once more, priority is given, via gain tuning,

to the convergence of the observed yaw rate, in order that sideslip angle estimation

shall mainly rely on the dynamic model (14), and not on the values supplied by

the preliminary observer (5). This dynamic sideslip angle observer is detailed in

section 3.4.

Figure 6: Scheme of the mixed kinematic and dynamic observer

3.3 Cornering stiffness observation

Let us denote β̄F and β̄R, the tire sideslip angle estimations supplied by the extended kine-

matic observer (5). A preliminary estimation of the vehicle sideslip angle, denoted β̄, can

then be immediately inferred from the model (14):

β̄ = b β̄F +a β̄R+b δF

L
(15)



A first observer model is then built from the dynamic model (14), by considering X1 =

[
˙̂
θ1 β̂1]

T as the observed state and u = [CF CR]T as the control vector. This leads to:

Ẋ1 = A1X1 + B1u (16)

where:

A1 =







0 0

−1 0





 , B1 =









−a β̄F cos(δF )
Iz

b β̄R

Iz

−
β̄F cos(δF )

u m
− β̄R

u m









(17)

Matrix B1 is well defined, provided that vehicle velocity is non-null, which is always assumed

in path tracking applications.

Cornering stiffnesses CF and CR are considered as the control variables, and a control law

has to be designed to force X1 to converge with X̄ = [ ˙̄θ β̄]T , where ˙̄θ is the measured yaw

rate and β̄ is given by (15). This latter variable can be seen as a consistent objective for β̂1,

especially in a steady state. In transient phases, the priority put on the measured yaw rate

(via observer gain tuning) limits the influence of the delays attached to β̄. Convergence of

X1 to X̄ can easily be obtained by choosing :

u = B−1
1 [ G1 ǫX + ˙̄X − A X1 ] (18)

with ǫX = X1 − X̄ and G1 a positive definite matrix, since injecting (18) into (16) leads to:

ǫ̇X = G1 ǫX (19)

The only difficulty concerns the inversion of matrix B1 required in (18). As can be observed

in (17), B1 is singular when sideslip angles are null, and badly conditioned when sideslip

angles are close to 0. Such cases occur when mobile robots move in a straight line on even

ground, which is quite a standard situation. Therefore, in the sequel, the conditioning of

matrix B1 is tested prior to activating cornering stiffness estimation: if B1 is badly condi-

tioned (i.e. the robot does not turn), the previous cornering stiffness values are used as input

values for dynamic sideslip angle observation (this is not a serious concern, since sliding is

very limited in such situations). Cornering stiffness observation is turned on again when the

system is excited sufficiently to allow relevant estimation.



3.4 Sideslip angle estimation

Since relevant values of CR and CF are supplied on-line by the observer (18), all the pa-

rameters in the dynamic model (14) are now known. Standard observer theory can then be

applied to this model in order to estimate sideslip angles. Since the dynamic effects are de-

scribed in the model (14), it is expected that this second sideslip angle observer will display

higher reactivity than the observer (5), previously built from extended kinematic model (1).

Let us first inject the third and fourth equations in (14) into the first two. The dynamic

model (14) can then be presented as a linear state space form, with X2 = [θ̇ β]T as state

vector and δF as control variable:

Ẋ2 = A2 X2 + B2 δF (20)

where:

A2 =









−a2 CF−b2 CR

u Iz

−a CF +b CR

Iz

−a CF−b CR

u2m
− 1 −CF +CR

u m









, B2 =







a CF

Iz

CF

u m





 (21)

(it has also been assumed that cos δF ≈ 1)

The standard observer equation associated with model (20) is:

˙̂
X2 = A2 X̂2 + B2 δF + G2 X̃2 (22)

where X̂2 = [
˙̂
θ2 β̂2]

T is the observed state, X̄ = [ ˙̄θ β̄]T is the measured state (measured yaw

rate and preliminary vehicle sideslip angle estimation (15)) and X̃2 = X̂2− X̄ is the observer

error. From (20) and (22), it can be deduced that:

˙̃
X2 = (A2 + G2) X̃2 (23)

Convergence of the observer error X̃2 to zero is clearly achieved, provided that G2 is chosen

such that A2 + G2 is negative definite. Of course, the settling time of the cornering stiffness

observer (18) has to be set shorter than the settling time of this observer, in order that

relevant values for CR and CF may be available in the A2 and B2 matrices.



Once more, β̄ has been chosen as the measurement associated with the second observed

state, since its steady state value is always correct. In order to avoid misestimation of

sideslip angles at transient phases, priority has again to be given (when tuning G2) to the

convergence of
˙̂
θ2 (whose associated measurement is reliable) with respect to the convergence

of β̂2, such that the proposed observer essentially relies on the dynamic model (14).

Finally, the front and rear tire sideslip angles to be used in the control law (10) can be

obtained by injecting β̂2 into the third and fourth equations in (14):










β̂R = β̂2 −
b

˙̂
θ

u

β̂F = β̂2 + a
˙̂
θ

u
− δF

(24)

The equations (24) constitute the mixed kinematic and dynamic sideslip angle observer. As

demonstrated below, when off-road mobile robots move at high speed, observer (24) permits,

with respect to the observer (5), improvement in the robustness and reactivity of sideslip

angle estimation, and therefore the performances of path tracking.

4 Advanced simulation results

The capabilities of the mixed kinematic and dynamic sideslip angle observer (24) were first

investigated through simulations, in order that the same conditions could be reproduced in

several runs with different settings. Simulations were carried out using Adams multibody

dynamic simulation software coupled with MatLab/Simulink software.

4.1 Simulation description

4.1.1 Mobile robot definition

A virtual mobile robot was designed with the celebrated Adams simulation software.

Its properties were chosen to match the features of the actual experimental device to be

presented in section 5. This robot, depicted in Figure 7, is composed of a suspended chassis



Figure 7: Simulated robot

attached to four wheels. The two front ones are steerable, while the rear ones are motorized

and then impose robot velocity (to be precise, it is their angular acceleration that is actually

controlled). The geometric and inertial parameters of this virtual robot (which can easily be

modified) are:

Chassis mass (m) 300kg

Wheel mass 17kg

Yaw inertia (Iz) 270kg.m2

Wheelbase (L) 1.2m

Rear half-wheelbase (b) 0.6m

Track 1.3m

Table 1: Simulated robot parameters

4.1.2 Path tracking scenario

The reference path, see Figure 8, is composed of a short straight line, continued with a long

curve of constant curvature. The connexion between these two parts consists of a clothoid

curve, in order to ensure curvature continuity and therefore path kinematic admissibility.

The radius of curvature of the circular part of the reference path is 8m. In view of the

robot’s geometric features, the expected steering angle, if motion without sliding could be



achieved, would be 8.5◦.
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Figure 8: Path to be followed in simulation

Several path tracking simulations have been run, considering two vehicle velocities (v =

4m.s−1 and v = 8m.s−1) and the following three control strategies:

• CWoS - Control law without sliding compensation. Control law (10) is used, but

sliding is neglected (βF and βR are set to zero). The resulting control law could also

have been derived from a classical Ackermann model. In the following figures, the

results related to CWoS are depicted with a black plain line.

• CWSKinObs - Control law with sideslip angles estimated via the extended kinematic

observer (5). In the following figures, the simulation results related to CWSKinObs

are depicted with a red dotted line.

• CWSDynObs - Control law with sideslip angles estimated via the mixed kinematic

and dynamic observer (24). In the following figures, the simulation results related to

CWSDynObs are depicted with a magenta dashed line.

For each test, the mobile robot starts 50cm away from the reference path.



4.1.3 Grip conditions

The grip conditions were entered via the contact interface of the Adams software, which

allows specification of general non-linear behaviors at the tire/ground contact area. Terrain

with low adherence was investigated. For the simulation runs carried out with v = 4 m.s−1,

the contact parameters are representative of a wet grass terrain. If the contact conditions

are kept unchanged when v is set to 8m.s−1, then the simulated robot spins round during

the curved part of the reference path shown in Figure 8. Slightly more adherent ground

was therefore considered for the simulation runs carried out with v = 8 m.s−1 in order to

ensure the controlability. The parameters entered in the Adams Coulomb Friction model in

both cases are listed in table 2 and the cornering stiffnesses mentionned are issued from the

contact parameters entered into Adams for each simulation case.

Parameter name Value at 4m.s−1 Value at 8m.s−1

Static Coefficient 1 1

Dynamic Coefficient 0.95 0.95

Stiction transition velocity 1500 mm.s−1 500 mm.s−1

Friction transition velocity 4000 mm.s−1 1500 mm.s−1

Equivalent cornering stiffness 8000 N/rad 40000 N/rad

(i.e. value during steady state phases)

Table 2: Simulated grip condition parameters

4.1.4 Control and observer settings

The control and observer settings used in the simulation runs, as well as in the experiments

to be described in forthcoming section 5, are listed in table 3.

Control gains ( Kd , Kp ) are used to specify the desired settling distance of the path-following

control law (6), i.e. the distance (evaluated along the reference path) to be covered by the

vehicle to converge to the reference path from any starting configuration (see (Lenain et al.,



v = 4m.s−1: v = 8m.s−1:

Control gains Kd = 0.3 Kd = 0.15

Kp = 0.0225 Kp = 0.0056

Horizon of prediction H 0.8s

Preliminary sideslip angle observer (G)







10 0

0 5







Cornering Stiffness observer (G1)







5 0

0 0.5







Dynamic sideslip angle observer (G2)







0.5 0

0 0.05







Table 3: Control and observer settings

2006)). Imposing a settling distance rather than a settling time is advantageous at low

speed: from any given initial conditions, the vehicle’s trajectory towards the reference path

is then identical, whatever its velocity, and even if its velocity varies. In contrast, at high

speed, actuator limitations can quickly be faced when trying to satisfy some given settling

distance. Control law performance must then be specified as a settling time, to be chosen

consistently with respect to the steering actuator dynamics. Since the pure delay and the

settling time of the actuation device of our experimental platform are respectively 0.1s and

0.8s, the settling time of the control law (6) was set to 5s. Consequently, ( Kd , Kp ) were

tuned, see table 3, in order to impose respectively 20m and 40m settling distances when

v = 4m.s−1 and v = 8m.s−1.

In contrast, the observer settings can all be straightforwardly interpreted as settling times

(see (5), (19) and (23)): their tuning can then be specified independently of the vehicle’s

velocity. The chosen matrices G1 and G2, listed in table 3, are consistent with the require-

ments introduced in Section 3.2: on the one hand, in both matrices, the gains associated

with the observed yaw rate are ten times higher than the gains associated with the observed



vehicle sideslip angle. This permits greater confidence to be placed in the reliable yaw rate

measurement than in the inevitably delayed vehicle sideslip angle supplied by the prelimi-

nary kinematic observer (5). On the other hand, the gains of the cornering stiffness observer

(i.e. matrix G1) are ten times higher than those of the dynamic sideslip angle observer (i.e.

matrix G2). The settling time of the former observer is then much shorter than the settling

time of the latter one, which is very much to be expected, since the latter observer depends

on the values supplied by the former.

4.2 Results with respect to path tracking accuracy

Path tracking relying on the three control strategies was first performed at a speed of 4m.s−1

(path tracking errors are compared in Figure 9(a)), and then at a speed of 8m.s−1 (tracking

errors are reported in Figure 9(b)).
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Figure 9: Comparison of tracking errors at different speeds

The importance of taking sliding into account in path tracking algorithms devoted to off-

road mobile robots moving at high speed (and performing ample maneuvers) can easily be

demonstrated: the tracking error resulting from the CWoS control algorithm is far from

negligible, reaching a 50cm steady value when the robot’s velocity is 4m.s−1, and stabilizing

around 1m when it is 8m.s−1. Such errors are unsatisfactory and may be dangerous, de-

pending on the application considered. In contrast, the two control strategies accounting for

sliding effects (CWSKinObs and CWSDynObs) display limited lateral deviation, despite

sliding phenomena.

Nevertheless, whatever the vehicle velocity, overall path tracking performance is clearly more



attractive when sideslip angles are estimated with the mixed kinematic and dynamic ob-

server (24). When v = 4 m.s−1, the lateral deviation converges asymptotically to small

values in the curved part of the reference path with both control strategies, but CWS-

DynObs ensures faster convergence (lateral deviation returns to values less than 10cm from

t = 13s, compared to t = 15s with CWSKinObs) with no negative overshoot (while a 20cm

negative overshoot is recorded with CWSKinObs). The differences between the two control

strategies are accentuated when robot speed is increased. When v = 8 m.s−1, the delay in

the estimation of sideslip angles with the preliminary kinematic observer (5) significantly

perturbs the robot’s trajectory: when relying on CWSKinObs, a 1m overshoot is recorded

when the robot enters the curve, and it then follows the reference trajectory with quite large

oscillations. In contrast, when relying on CWSDynObs, both the initial overshoot and

the oscillations are satisfactorily reduced, so that the robot can quickly return close to the

reference path (the lateral deviation values are inferior to 10cm beyond t = 8 s) despite low

grip conditions.

4.3 Results on cornering stiffness and sideslip angle estimation

Such an improvement clearly follows from an increased reactivity of sideslip angle estimation,

as can be observed in Figure 10: in the simulation run with v = 8 m.s−1 and CWSDynObs

control strategy, the front and rear tire sideslip angles supplied by the preliminary kine-

matic observer (5) and the mixed kinematic and dynamic observer (24) were both recorded.

Figure 10 shows that the latter observer is able, at transient phases (beginning/end of the

curve) to describe sideslip angle variations reactively without adding any noise. The “actual”

rear tire sideslip angle reconstructed from Adams software internal variables, shown in Fig-

ure 10(b), clearly highlights the relevancy of the estimated value supplied by observer (24).

Of course, in a steady state, both observers supply approximately the same signal, as ex-

pected.

The capabilities of the cornering stiffness observer (18), used in CWSDynObs control strat-



2 3 4 5 6 7 8 9 10
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

β
F
 (

°
)

Estimated via CWSDynObs

Estimated via CWSKinObs

Curve

(a) Front tire sideslip angle

2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

β
R

 (
°

)

Estimated via CWSDynObs

Estimated via CWSKinObs

Reconstructed β
R

(Adams)

Curve

(b) Rear tire sideslip angle

Figure 10: Comparison of sideslip angle estimations

egy, are more specifically investigated in Figure 11: the front and rear cornering stiffnesses

delivered by observer (18) in the previous simulation (CWSDynObs control strategy with

v = 8 m.s−1) are reported, as well as the “actual” rear cornering stiffness reconstructed from

Adams software internal variables. As long as the robot moves in a straight line (i.e. until

t = 5.5 s), the cornering stiffness adaptation is frozen, since matrix B1 is badly conditioned:

CR and CF are then equal to the chosen initial value 50 000 N/rad. When the robot enters

the curve, the adaptation becomes effective and estimates grip conditions quickly and realis-

tically: after a transient phase when the steering actuator acts to bring the robot back to the

reference path, CR and CF tend to almost constant values, as expected since the curvature of

the reference path is constant. Their order of magnitude is then quite correct, in view of the

rear cornering stiffness reconstructed from Adams data. Although the harsh grip conditions

in this sharp curve correspond to the non-linear part of the tire/ground contact model, the

observer (18) delivers relevant cornering stiffness values, and in turn enables accurate sideslip

angle estimation and accurate path tracking.

4.4 Sensitivity to dynamic parameters

The mixed kinematic and dynamic observer (24) brings significant improvements in sideslip

angle estimation, and consequently in path tracking accuracy, when off-road mobile robots

move at high speed. Nevertheless, with respect to the extended kinematic observer (5),

additional parameters are required: the longitudinal position of the center of gravity (a and
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Figure 11: Adaptation of cornering stiffnesses

b), the robot mass m and its inertia Iz with respect to the vertical axis. Parameters a, b

and m can easily be measured, but this is not the case for Iz. In order to investigate the

sensitivity of the proposed approach to poorly known dynamic parameters, simulations with

v = 8 m.s−1 were run injecting an erroneous mass m = 500kg and an erroneous inertia

Iz = 200kg.m2 in CWSDynObs (their exact values, as well as the other parameter values

are listed in table 1). Figure 12(a) compares the lateral deviation recorded with these wrong

parameters to the tracking error obtained in the ideal case (i.e. when correct parameter

values are used), and Figure 12(b) presents the influence of wrong parameters on the adapted

cornering stiffnesses.
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Figure 12: Results with wrong dynamic parameters

It can be observed that the tracking error is not significantly modified when wrong mass and

inertia are introduced. It was also demonstrable that sideslip angle estimation is unaltered

too. In fact, path tracking accuracy is preserved thanks to the adaptation of cornering

stiffnesses: it can be observed that cornering stiffness values in Figure 12(b) (with wrong



dynamic parameters) and in Figure 11 (with correct dynamic parameters) are not identical

in the transient phase (from t = 5 s to t = 8 s), as in steady state (beyond t = 8 s, cornering

stiffness values in both figures differ by around 10 000 N/rad). Thanks to these differences,

sideslip angles can be equivalent in both simulation runs. Observer (24) appears therefore

insensitive to erroneous inertial parameters. The same result holds for geometric parameters:

path tracking accuracy is preserved if small errors (a few centimeters) are introduced into

parameters a and b. Nevertheless, larger errors in these parameters (more than 15cm) lead

to a deterioration in path tracking accuracy: a 25cm error on half-wheelbases leads to a

20cm steady lateral deviation at the speed of 8m.s−1 under consideration.

5 Experimental results

5.1 Experimental mobile platform

The experimental platform is shown in Figure 13. It consists of an electric off-road vehicle,

whose weight and maximum speed are respectively 350kg and currently 5m.s−1 . This vehicle

can climb slopes up to 45◦.

Figure 13: Experimental platform

The main exteroceptive sensor on board is a Dassault-Sercel dual frequency “Aquarius 5002”



RTK-GPS receiver, which can supply an absolute position accurate to within 2cm, at a 10Hz

sampling frequency. The GPS antenna is located vertically above the center of the rear axle,

so that the absolute position of point R (i.e. the point to be controlled, see Figures 1 and

4) is straightfowardly obtained from the sensor. The vehicle heading is then inferred via

a Kalman filter. In addition, a gyrometer supplying a yaw rate measurement accurate to

within 0.1◦.s−1 is fixed on the chassis, to provide the cornering stiffness observer (18) and

dynamic sideslip angle observer (24) with this information.

The data supplied by these sensors are sent via an RS232 serial communication port to a

computer, where they are processed with a dedicated software framework managing unsyn-

chronized sensors and delayed observations (see (Tessier et al., 2006)) and then considered

by the observer and control algorithms implemented in high level language (C++). The

front wheel steering angle delivered by these algorithms is then sent to an inner closed loop

driving the steering actuator (the actual front wheel angle is measured via an absolute en-

coder). The steady state error of the inner closed loop is less than 0.1◦. Its initial delay and

settling time are respectively equal to 0.1 second and 0.8 second.

Finally, preliminary measurements and calibrations have supplied the following dynamic

parameter set for this robot, to be reported in the observer algorithms:

Total mass m =350kg

Yaw inertia Iz = 270 kg.m2

Wheelbase L=1.2m

Rear half-wheelbase b=0.58m

Table 4: Experimental robot dynamic parameters

5.2 Description of the experiments

First of all, with the experimental platform described above, a reference trajectory was

manually recorded: once more, it is composed of a straight line connected smoothly to a



curve with a constant 4.5m radius of curvature, see Figure 14. The robot steering angle in

the circular part of the path is close to δF = 15◦.
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Figure 14: Reference trajectory manually recorded

Path tracking experiments were performed at v = 3m.s−1 and v = 4m.s−1. The three control

strategies described in section 4.1.2 were considered successively. The color code associated

with each strategy in the forthcoming experimental results is identical to the one introduced

in section 4.1.2. The control and observer settings are those used in the simulations where

v = 4 m.s−1, listed on table 3. A video-sequence showing a trial at 4m.s−1 is available on the

following website (https://projetfast.cemagref.fr/avancees/essai-tests-en-boucle-ferme/suivi-

clermont-4ms/view).

5.3 Path tracking results

The tracking errors recorded during each experiment are compared in Figure 15. Once

more, it can be observed that the tracking error resulting from CWoS (i.e. when low grip

conditions are not taken into account) is not negligible: a 1m overshoot and a 60cm steady

value when v = 3 m.s−1, a 1.5m overshoot and more than 60cm when covering the curve

at v = 4 m.s−1. These results differ to some degree from those obtained in the simulation

(Figure 9), since the actual grip conditions could not obviously be reproduced accurately

and the radius of curvature of the reference path is smaller here.
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Figure 15: Comparison of tracking errors with different control strategies at different speeds

Path tracking performances are, of course, significantly improved when sliding effects are

taken into account, and just as in simulation section 4, it can be verified that the more

attractive performances are obtained when the sideslip angles are estimated with the mixed

kinematic and dynamic observer (24). When v = 3 m.s−1 (Figure 15(a)), both CWSKi-

nObs and CWSDynObs control strategies ensure asymptotically small lateral deviations

in the curved part of the reference path. However, on the one hand, the overshoot observed

when relying on CWSDynObs is significantly smaller (30cm against 80cm with CWSKi-

nObs), and on the other hand the tracking accuracy when describing the curve is more

satisfactory with CWSDynObs: the lateral deviation values stay under 10cm from s = 18

m to s = 25 m, when the robot moves away from the reference trajectory by 30cm with

CWSKinObs (at s = 23 m).

When v = 4 m.s−1 (Figure 15(b)), the CWSKinObs control strategy is no longer able

to keep the robot tightly close to the reference path in the curved part: the delay in the

estimation of the sideslip angles with the preliminary kinematic observer (5) leads to large

oscillations, just like those already observed in simulation with v = 8 m.s−1 (Figure 9(b)).

In contrast, the CWSDynObs control strategy still enables satisfactory path tracking: the

overshoot is limited to 55cm and then the robot returns close to the reference path (the lateral

deviation values stay under 15cm beyond s = 16 m), despite the difficult grip conditions

and the small radius of curvature of the reference path.



5.4 Observer performance

Figure 16(a) and 16(b) present respectively the front and rear tire sideslip angles supplied

by the mixed kinematic and dynamic observer (24) and by the preliminary kinematic ob-

server (5), recorded during the experiment with CWSDynObs control strategy and v = 4

m.s−1.
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(a) Front tire sideslip angle
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(b) Rear tire sideslip angle

Figure 16: Comparison of observed sideslip angles

It can be observed, just as in simulation section 4, that the mixed kinematic and dynamic

observer (24) can follow sideslip angle variations reactively when the robot enters the curve.

Since relevant sideslip angle values are available, the CWSDynObs control strategy can

quickly compensate for sliding phenomena and can therefore ensure highly accurate path

tracking, as verified in Figure 15(b). In contrast, the delay in the estimation of sideslip

angles with the preliminary kinematic observer (5) leads, in these harsh conditions, to largely

erroneous sideslip angle values for the first half of the curved part of the reference path. If

these erroneous values were used in control law (6) (CWSKinObs control strategy), then

sliding phenomena would no longer be properly compensated. Figure 15(b) has shown that

the robot would then display oscillating behavior, which in turn reinforces sliding phenomena

and consequently the negative impact of the delay in the sideslip angle estimation supplied

by the observer (5), in a vicious circle. Finally, as Figure 16 shows, the higher reactivity

presented by observer (24) is obtained without any increase in noise level on the sideslip

angle signal (this is possible because a partial dynamic model is used), so that this signal

can actually be sent to the control law (6). It contrasts with what is obtained when the

gains of the observer (5) are increased in an attempt to improve its reactivity.
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Figure 17: Adapted cornering stiffnesses

The cornering stiffnesses supplied by the observer (18) are reported in Figure 17. Once

more, when the robot moves in a straight line (i.e. until s = 7m), the adapted stiffnesses are

constant (the adaptation is frozen, as matrix B1 defined in (17) is badly conditioned. CR

and CF are then equal to the chosen initial value 5 000N/rad). As soon as the robot enters

the curve, the adaptation turns active and can describe grip condition variations. As can

be seen in Figure 17, the grip conditions are rather similar for both front and rear axles, as

is to be expected since the center of gravity is close to the robot center, and they tend to

almost constant values, since the curvature of the reference path is constant.

6 Conclusion and future work

This paper proposes a mixed kinematic and dynamic sideslip angle observer designed for

high speed path tracking in an off-road environment. With respect to pure kinematic ap-

proaches, the use of a dynamic representation for the estimation of grip conditions improves

reactivity in sliding variable adaptation and consequently in path tracking accuracy. This

improvement appears to be significant at high speed, since any delay in sliding estimation

leads to oscillating behavior. The kinematic part of the overall observer enables operation

without a perfect knowledge of the vehicle’s dynamic parameters (and especially tire/ground

contact properties), which would have been unrealistic in practical applications.

Full scale experiments are reported. For the present, the maximum velocity of the exper-



imental vehicle is 5m.s−1. Nevertheless, even at this speed, when the robot has to track

paths with small radii of curvature on ground where adherence is low, then the relevance of

the proposed approach is demonstrable: significant improvements in robot behavior and in

path tracking accuracy can be recorded. An upgrade of the experimental platform, allowing

a maximum velocity of 8m.s−1 to be attained, is under development and will enable further

investigation of the benefits and relevance of the approach, already indicated in advanced

simulations carried out with Adams multibody simulation software.

Beyond the improvement in path tracking accuracy at high speed in an off-road context, one

of the results derived from the proposed algorithms is that grip conditions can be accurately

estimated on-line (through cornering stiffness adaptation). Such information is attractive,

not only from a motion control point of view, but also with respect to stability preservation.

As already pointed out in previous work, grip conditions directly impact the risk of rollover

and overturn, which has obviously to be considered in fully autonomous applications, espe-

cially at high speed and in a natural environment. The developments proposed in this paper

open the way to an integrated control algorithm, able to manage robot motion as well as its

integrity, thus providing the robot with a high degree of autonomy.
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