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Torsional deformations in incompressible fibre–reinforced cylindrical pipes
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bUniversity of West Bohemia, Pilsen, Czech Republic
cDipartimento di Strutture, Università Roma Tre, Roma, Italy

Abstract

The first part of the paper deals with an extension of the classical Rivlin’s solution of the torsion problem of a neo-
Hookean pipe. The second part concerns a study of the passive torsional deformation processes in a fibre–reinforced
cylindrical dummy of the beating heart. Especially, the dependence of the torsional and volumetric stiffness of the
cylindrical pipe on different geometric and material parameters is discussed through a set of numerical simulations.

Key words: fibre–reinforced non-linearly incompressible elastic solids, finite torsion
PACS: 46.05.+b, 46.70.Lk

1. Introduction

In the last few years, fibre–reinforced materials have made a new comeback in a new and more appealing biome-
chanical flavour. In fact, quite a few living materials are characterized by mechanical responses which are strongly
anisotropic due to their fibred structure. Accordingly, much attention has been devoted to the modelling issues raised
by fibre-reinforced solids undergoing finite deformations (Merodio and Ogden, 2005; Holzapfel et al., 2005, 2004;
Gasser et al., 2006). Specifically, we are involved in an extensive work on the electromechanical modeling of left ven-
tricle and a key step of our work concerns the modeling of the passive and active response of cardiac tissue. Typically,
myocardium is modeled as an incompressible elastic material reinforced by cardiac muscle fibres which can contract
in response to electrophysiological stimuli. As is evident, the overall response of the left ventricle depends on the
modeling of both the passive and the active behavior of the cardiac tissue. Here, we deal with the passive behaviour of
a fibre–reinforced cylindrical dummy of the left ventricle under torsional deformations and arrange the paper in two,
basically disjoint even if related, parts.

The first part concerns homogeneous torsional deformations of helically wound fibre-reinforced incompressible
elastic pipes and the analysis of the corresponding non linear boundary value problem is developed explicitly. It
is related to the study developed in (Nardinocchi et al., 2009) where the mechanical response of the pipe has been
described through the standard quadratic reinforcement model (Merodio and Ogden, 2005). Here, we account for an
alternative reinforcement model, always proposed and discussed for special homogeneous deformations in (Merodio
and Ogden, 2005), more sensitive to shear deformations and discuss the effects of the two different, even if similar,
material models on the homogeneous solution of the torsion problem.

The second part is meant as a first step towards the analysis of the torsional deformation underwent by the left ven-
tricle during the cardiac cycle; the motivation being provided by the fact that left ventricular torsion has been recently
recognized as an important indicator of cardiac function (Taber et al., 1996; Nagel et al., 2000). Nevertheless, from a
mechanical point of view, little attention has been devoted to the pattern of twist during the cardiac cycle. Specifically,
we account for the inhomogeneous torsional deformations induced by a pressure field on the cylinder; still, we do not
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Teresi)

Preprint submitted to Elsevier May 7, 2009



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

care of the active behaviour of the muscle fibres (see (DiCarlo et al., 2009)) for the active behavior modeling) and
use the model to study the effects of various material and geometric parameters on the torsional behaviour of the pipe
with frozen fibres.

We see that the anisotropy due to the variation in muscle fibre angle across the wall of the pipe induces rotation
of one end with respect to the other; nevertheless, rotation is induced in absence of such variation, too, when the fibre
angles are fixed across the walls and far from some extreme values. Moreover, the material parameters related to the
choice of the reinforcing model afflict the mechanical response of the pipe, too. We show that there is a considerable
change in volume related to the pressure field which is influenced by the same material parameters, too. Of course, the
pure elasticity of the material does not allow to see any pressure–torsion and pressure–volume loops whose formation
is basically related to the active nature of the fibres which change when contracted the ground state of the pipe
(see (DiCarlo et al., 2009)). To mimic the cardiac situation, the sensitivity of the torsion of the cylindrical pipe to
changes in pipe geometry is studied by simulating two types of excessive development of the cylindrical geometry
with respect to the basic one. The first is characterized by an augmented wall thickness (resembling the ventricular
eccentric hypertrophy); the second by an augmented lumen (resembling the ventricular concentric hyperthrophy).

2. Fibre-reinforced bodies

Let {e1, e2, e3} be an orthonormal basis of the translation spaceV of the three–dimensional Euclidean space E and
U be the orthogonal complement to span{e3} with respect to V. Fixed an interval I = [0, h] ⊂ R and a pole o ∈ E,
we consider the axisymmetric pipe-like region C defined as follows:

C = {p ∈ E : p = o + r n(θ) + ζ e3} , n(θ) = cos θ e1 + sin θ e2 , 0 < θ < 2π , ζ ∈ I , Ri < r < Ro . (2.1)

The boundary ∂C is defined as
∂C = D0 ∪Dh ∪Mi ∪Mo , (2.2)

withD0 andDh the bases of the pipe andMi andMo the inner and outer mantle, respectively.
A helix-like fibre of pitch b is a curve whose unit tangent vector eb = êb(r, θ) at any p ∈ C is defined as

êb(r, θ) =
r

(r2 + b2)
1
2

n,θ (θ) +
b

(r2 + b2)
1
2

e3 , (2.3)

with the subscript b remembering the dependence of the unit tangent vector on the pitch b of the helix. So, at any
place p of a helically wound fibre–reinforced body C, the material fibre (p, eb) with eb as in (2.3) identifies a locus of
material reinforcement; for b = 0 equation (2.3) defines a circumferential uniaxial reinforcement (e0(r, θ) = n,θ (θ)).
Sometimes, a different parametrization of the helical curve is referred to, with the pitch b of the helix expressed in
terms of the angle α defined as

cosα = eb · e0 . (2.4)

With (2.3), it turns out

tanα =
b
r
. (2.5)

Specifically, the fibre angle α is a relevant parameter for the ventricular geometry where fibres account for anisotropic
reinforcement due to collagene, or may represent muscles fibres. In that case, it is important to account for the
large variation of the fibres angles across the wall of the left ventricle. Typically, the angle α ranges between −60◦

(on the outer wall) and 60◦ (on the inner wall) and the anisotropy due to the variation amplifies the ventricular
torsion occurring during the cardiac cycle. In (Nardinocchi et al., 2009), we described the material response of the
incompressible (J = 1) body through the following strain energy function based on the quadratic reinforcement
model I4

ψ(C) = c1

(
I1(C) − 3 + γ (I4(C) − 1)2

)
, I1(C) = C · I , I4(C) = Ceb · eb , C = FT F , (2.6)

with γ > 0. In this paper, we consider the strain energy

ψ(C) = c1

(
I1(C) − 3) + γ (I5(C) − 1)2

)
, I5(C) = C2eb · eb , (2.7)
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Figure 1: I4 (dashed lines) and I5 (solid lines) VS b/h for two different given torsions: ϕh = π/6 (a, blue), ϕh = π/2 (b, red); values on the inner
mantle (left), and at the outer mantle (right). Insets at top–right represent a zoom at b/h ' 0

which, as it is well known (Merodio and Ogden, 2005), is more suited to the present context characterized by large
shear deformations. As example, under torsional deformation (Nardinocchi et al., 2009) the quadratic reinforcement
tends to become ineffective as the ratio b/h goes to 0, while the reinforcement I5 is effectual even with circumferential
fibres.

3. Pure and homogeneous torsional deformations

As first, we analyze the mechanical response of the helically wound fibre–reinforced incompressible pipe to tor-
sional deformations induced through a torsional rotation of one end of the pipe. An extension of the solution of the
pure torsional problem studied for isotropic and incompressible cylinders by Rivlin (Rivlin, 1949) to the material pipe
described by the strain energy (2.7) is performed. The same extension has been performed in (Nardinocchi et al.,
2009) in presence of the standard quadratic reinforcement model and a comparison of the solutions clarifies the roles
of the different reinforcement models in presence of torsional deformations.

A concise representation formula of a pure torsional deformation f : C → E is the following

f(p) = ( I + sinϕ e2 ∧ e1 − (1 − cosϕ) Ǐ ) (p − o) , ϕ = ζ τ , (3.8)

where e2 ∧ e1 = e2 ⊗ e1 − e1 ⊗ e2, ϕ is the torsion angle, and τ is the unit torsion angle. From now on, we parametrize
the torsional deformation (3.8) through the torsion angle ϕ̂ = h τ ofDh. The geometrical structure of the cylinder–like
body C is retained under the deformation (3.8) and, denoted with x ∈ V the position vector of the place x = f(p) with
respect to o, it holds:

x = xo + ζ e3 , xo = r(cosϕn(θ) + sinϕn,θ (θ)) . (3.9)

The deformation gradient F corresponding to (3.8) may be represented as

F = F̌ + τ x∗o ⊗ e3 + e3 ⊗ e3 , (3.10)

with F̌ ∈ Lin(U) and x∗o ∈ U given by

F̌ = cosϕ Ǐ + sinϕ (e2 ∧ e1) , x∗o = e3 × xo . (3.11)

Let us note that deformation (3.8) identically satisfies the incompressibility constraint J = detF = 1. The three
invariants we are interested in, I1, I4, I5, write as follows

I1 = 3 + r2τ2 , I4 = 1 + r k(r) (2 + b τ) b τ , I5 = I4 + r k(r) (1 + b τ) (2b τ + r2τ2 + r2 b τ3) , (3.12)

where k(r) = r (r2 + b2)−1 is the curvature of the helix. The invariant I4 measures the stretch along the material fibre
(p, eb); it is interesting to note that the stretch I4 is not a monotone function of the dimensionless pitch b/h and depends
weakly on the place p ∈ C.

3
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Figure 1 shows that the behaviour of I4 versus b/h is qualitatively the same at the inner and at the outer radius.
Moreover, it shows that for circumferential fibres (b/h = 0) I4 ≡ 1, that is, the fibre length does not change under the
torsional deformation (3.8). On the contrary, the invariant I5 is sensitive to shear deformation too, as it is discussed
in (Merodio and Ogden, 2005) for different values of the strength γ of the reinforcement; thus, it happens that I5 is
different from 1 at b/h = 0, see zoom in Fig 1. At the end, it is worth noting that at any r between Ri and Ro, there
is a value of the dimensionless pitch b/h which gives the maximum fibre stretch; moreover, the same b/h gives the
maximum value of I5, too. When the strain energy function (2.7) is used, the corresponding Cauchy stress is

T = 2c1B + 2c1γ (I5 − 1) (FCeb ⊗ Feb + Feb ⊗ FCeb) − p I , (3.13)

with B = FFT ; the Cauchy stress corresponding to an incompressible neo-Hookean material turns out by setting
γ = 0. The balance equation of the body (divT = 0) gives an explicit representation for p

p = p̂(r, b, τ) = po(b, τ) − c1 (1 − 2γ p1(b, τ)) τ2 r2 − c1 γ (1 + b τ)4τ4 r4

− 2 c1 γ p2(b, τ) log(b2 + r2) − 2 c1 γ p3(b, τ)
1

b2 + r2 , (3.14)

where the function po is determined by the boundary conditions, and

p1(b, τ) = (1 + b τ)2 (1 − (1 + b τ)(1 + 4 b τ) − (1 + b τ)2 (1 − 2 b2 τ2)) ,
p2(b, τ) = b τ (4 + 13 b τ − b2 τ2 − 31 b3 τ3 − 22 b4 τ4 + 8 b5 τ5 + 12 b6 τ6 + 3 b7 τ7) ,
p3(b, τ) = (1 + b τ) (2 + b τ) (2 − b2 τ2) (1 + 2 b τ − b2 τ2 − b3 τ3) b3 τ .

As in (Rivlin, 1949) and (Nardinocchi et al., 2009), the no–traction condition Tm = 0 on Mo turns out po, and
completely determines the Cauchy stress. Moreover, on the inner mantle Mi there is a traction field Tm = −pi m
different from zero with

pi = c1 (R2
o − R2

i )
(
1 + γ (R2

o + R2
i ) (1 + b τ)4 τ2 − 2γ p1

)
τ2 + 2 c1 γ (log

b2 + R2
o

b2 + R2
i

p2 −
R2

o − R2
i

(b2 + R2
i )(b2 + R2

o)
p3) . (3.15)

On the bases of the cylindrical structure we find a traction field T±e3 with T± denoting the values attained by the
Cauchy stress field T on the bases Dh and D0, respectively. It consists of an axial stress σ± = T±e3 · e3, the reaction
to the kinematical constraint on the axial displacement, and a tangential stress t± = (T±e3 − (T±e3 · e3)e3), responsible
for the pure torsional deformation. Then, we consider the stress resultants acting on the bases; in particular, we focus
on the torque M = Me3, and on the axial force N = Ne3

M =

∫
P

xo × t dxo · e3 , N =

∫
P

σ dxo . (3.16)

It is possible to obtain an explicit representation of the resultants in terms of the relevant material and geometrical
parameters; we find

M = c1 π (R4
o − R4

i ) τ + M f (Ri,Ro, b, τ, c1, γ) ,

N = −1/2 c1 π (R2
o − R2

i )2 τ2 + N f (Ri,Ro, b, τ, c1, γ) .
(3.17)

Detailed representations of M f , N f are given in the appendix. In (3.17)1, the first summand, a linear function of τ,
represents the torque competing to an isotropic and incompressible cylinder, thus corresponding to the Rivlin solution.
The second summand defines the correction due to the presence of the helicoidal fibres; it is a polynomial function of
τ, up to the power seven, as equation (A.29) shows.

The first summand in (3.17)2, quadratic in τ, defines the axial force competing to the isotropic and incompressible
pipe; it is worth noting that it vanishes in the linear approximation, that is, for small τ. The second summand defines
the contribution to the axial force due to the anisotropy; such term persists in a first order approximation, as the
representation formula (A.30) shows.

We find useful to represents our results highlighting the torsion angle ϕ̂, the modulus γ, three different geome-
tries from (Taber et al., 1996), representative of three typical ratios between outer and inner radii, fig. 2, and the

4
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Figure 2: Geometries. From left to right: basic (Ro/h = 0.26 and Ri/Ro = 0.54), eccentric (Ro/h = 0.34 and Ri/Ro = 0.53), concentric
(Ro/h = 0.38, and Ri/Ro = 0.37).

b/h = 0 b/h = 0.5 b/h = 1 b/h = 2 b/h = ∞

Figure 3: Different fibre windings.

dimensionless pitch b/h of the helix, fig. 3. Given a basic geometry defined by Ro/h = 0.26 and Ri/Ro = 0.54, we
consider two types of excessive development of the cylindrical geometry with respect to the basic one: the eccentric
geometry, characterized by an augmented wall thickness (resembling the ventricular eccentric hypertrophy), defined
by Ro/h = 0.34 and Ri/Ro = 0.53, and the concentric one, showing an augmented lumen (resembling the ventricular
concentric hyperthrophy), defined by Ro/h = 0.38, and Ri/Ro = 0.37.

Figures 4 and 5 show the dependence of the torque M and of the axial force N on some relevant material and
geometric parameters, for the two energies we consider; dashed curve correspond to the strain energy (2.6) – I4
reinforcement – solid curves to strain energy (2.7) – I5 reinforcement.

Figure 4 on the left shows the behavior of the dimensionless torque M̄, M̄ = M/πR3
oc1 versus torsion angle ϕ̂ for

different fibre stiffness; at right, it shows M̄ versus the winding parameter b/h, for ϕ̂ = π/2, γ = 1, and for three
different pipe geometries. The line labeled a represents the isotropic benchmark.

As expected, the reinforcement based on I5 (solid lines) requires larger torques with respect to that based on I4
(dashed lines) in order to induce the same torsion angle ϕ̂; moreover, it turns out that the torque is not a monotone
function of b/h, (see figure 4, right). Figure 5 shows a remarkable difference in the axial force corresponding to the
different energies we used; actually, the axial force corresponding to the I4 reinforcement is scaled down by a factor
force 10−3. Moreover, there is a qualitative difference, too: when the material model associated to the invariant I4 is
used, a negative axial force is always associated to the torsion of the pipe for any value of b/h. On the contrary, when
the material model I5 is used the axial force is still negative for small b/h and positive otherwise revealing a peculiar
behavior of the material model: the transition from a torsion–induced extension (corresponding to low values of b/h)
to a torsion–induced shortening (corresponding to large values of b/h).

4. Pressure-induced torsional deformations

This section deals with a specific problem: torsional deformations and volume change induced on the neo-hookean
fibre–reinforced pipe when it is inflated by a uniform pressure field acting on the inner mantle, and the rotation of one
of its bases with respect to the axis of the pipe is constrained. For such a case, it is not possible to give an explicit
solution, thus, we implement and solve the problem using a finite element analysis.

In order to tackle the incompressibility constraint, as suggested in (Ogden, 1978), we decompose the deforma-
tion gradient F into a spherical (dilatational), and an unimodular (distortional) part: F = J1/3 F̄ with J = (detF);

5
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accordingly, the strain measure C and its invariant I1, I4, and I5 decompose as:

C = J2/3 C̄ , I1 = J2/3 Ī1 , I4 = J2/3 Ī4 , I5 = J4/3 Ī5 , (4.18)

with C̄ = F̄T F̄, Ī1 = C̄ · I, Ī4 = C̄eb · eb, and Ī5 = C̄2eb · eb. Moreover, we relax the incompressibility constraint, and
consider the energy to be the sum of a purely isochoric contribution ψd and a purely volumetric one ψv:

ψ = ψd(C̄) + ψv(J) , ψd(C̄) = c1(Ī1 − 3) + c1γ(Īα − 1)2 , ψv(J) =
1
2

k(J − 1)2 , (4.19)

with α = 4, 5 depending on the reinforcement material model. The stress S = ∂ψ/∂C turns out as decoupled into the
distortional part Sd and the volumetric part Sv. Specifically, we have

S =
∂ψ

∂C
= Sd + Sv . (4.20)

The representation formula of the distortional component Sd depends on the reinforcement model; we have

Sd = c1J−2/3(I −
1
3

I1C−T ) + c1γ(J−2/3I4 − 1)J−2/3(eb ⊗ eb −
1
3

I4C−T ) (4.21)

when the standard reinforcement model (based on the invariant I4) is accounted for and

Sd = c1J−2/3(I −
1
3

I1C−T ) + c1γ(J−4/3I5 − 1)J−4/3(Ceb ⊗ eb + eb ⊗ Ceb −
2
3

I5C−T ) (4.22)

when the reinforcement material model based on the invariant I5 is accounted for. As far as the volumetric component
Sv is concerned, we have:

Sv =
1
2

kJ(J − 1)C−T . (4.23)

The stress T follows as
T = 2J−1FSFT = Td + k(J − 1)I , Td = 2J−1FSdFT . (4.24)

The previous equation identifies a constitutive prescription for the reactive pressure:

p = −k(J − 1) , (4.25)

which allows to write, as usual, T = Td − pI. Finally, the following (weak) elastic problem is solved through a mixed
displacement-pressure formulation: find a displacement field u and a pressure field p such that∫

Ct

−(Td − pI) · ∇ũ +

∫
∂Ct

t̂ · ∇ũ = 0 and
∫
C

(
p
k

+ (J − 1))p̃ = 0 , (4.26)

a

b

b

c

c

a

b

c

a

b

c

M̄

ϕ̂

M̄

b/h0 π/8 π/4 3π/8 π/2 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1.0

0.35
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1.0

2.0
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Figure 4: Torque VS ϕ̂ for different fibre stiffness: γ = 0 (a, blue), 0.5 (b, red), 1 (c, green) (left). Torque VS b/h for different pipe geometries:
(Ro/h = 0.26,Ri/Ro = 0.54) (a, blue), (Ro/h = 0.34,Ri/Ro = 0.53) (b, red), (Ro/h = 0.38,Ri/Ro = 0.37) (c,green), with γ = 1 and ϕ̂ = π/2. Solid
lines refer to reinforcements I5, dashed lines to I4.
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Figure 5: Axial force VS ϕ̂ for different fibre winding: b/h = 0 (a, blue), 0.09 (b, red), 0.11 (c, green), 0.115 (d, black), for γ = 1 and Ro/h = 0.26,
Ri/Ro = 0.54 (left). Axial force VS b/h for different pipe geometries: (Ro/h = 0.26,Ri/Ro = 0.54) (a, blue), (Ro/h = 0.34,Ri/Ro = 0.53) (b, red),
(Ro/h = 0.38,Ri/Ro = 0.37) (c, green), with γ = 1 and ϕ̂ = π/2 (right). Solid lines refer to reinforcements I5, dashed lines to I4 (scaled by a factor
10−3).

for all test field ũ and p̃. The traction t̂ is the pressure acting on the inner mantle of the pipe:

t̂ = πm , m =
F∗n
|F∗n|

. (4.27)

To evaluate the torsional rotation of one base with respect to the other, we define a mean rotation angle ϕh

ϕh =

∫
Dh
ϕdxo∫

Dh
dxo

, ϕ = arctan
u · n,θ

R + u · n
. (4.28)

With a view towards biomechanical implications, we find useful to investigate the mechanical response of the pipe
under an inflating pressure field π in terms of the torsion angle of a basis with respect to the other one, and of
volume change measured as the ratio between the reference volume V0 of the cylindrical cavity and the corresponding
deformed volume. Both these aspects are relevant for evaluating ventricle performance (Taber et al., 1996; Little and
Braunwald, 2008).

Our first analysis concerns the effects of the two reinforcement I4 and I5 for a cylinder with the basic geometry
(Ro/h = 0.26, Ri/Ro = 0.54), having fibres winding with constant angle α = 20◦: figure 6 shows a remarkably
difference in volumetric stiffness (right), despite the small differences in torsional stiffness (left); it is worth noting the
non monotone response in terms of volume change. Pressure ranges in (0.1c1, 1.6c1), γ = 0.5; rotation is clockwise.

a

b

ab

π/c1

ϕ̂

π/c1

V/V0−90◦ −60◦ −30◦ 0◦ 1 2.1
0

0.6

1.2

1.8

0

0.6

1.2

1.8

Figure 6: Comparison of I4 (a,blue) and I5 (b,red) reinforcement: torsion rotation (left) and change in volume (right) under inflation test; here,
γ = 0.5, α = 20◦
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Figure 7: Pressure VS torsion angle (left) and pressure VS change in volume (right). Winding angle α = 0◦ (a, blue), 20◦ (b, red), 40◦ (c, green),
60◦ (d, black) (left). Reinforcement I5 with γ = 0.5.

Next, we consider the effect that the angle of fibres winding has on I5 reinforcement (see figure 7); the analyses
concern a pipe with the basic geometry, and fibres winding with α constant across the wall thickness. As expected,
pressure does not induce torsion with circumferential fibres (α = 0◦) or longitudinal fibres (α = 90◦), and it does when
α takes values in between such extremes. Both torsional and volumetric stiffness depend on winding angle, and this
dependence is not monotone. Moreover, volumetric stiffness, for a given α, is not a monotone function of pressure.

We conclude by analysing two other cases: a basic geometry with a linear variation of the angle α across the wall
thickness, and, for a given fibre winding, the three different pipe geometries.

Figure 8 shows the response under inflating pressure for a pipe with basic geometry, having fibres winding linearly
varying from −60◦ at the outer mantle, to 60◦ at the inner mantle. Within the range of γ we consider, both torsional
and volumetric stiffness are not monotone. Figure 9 shows the results of inflation test for three different geometries,
see Fig. 2; here, α = 20◦ and γ = 0.5. With respect to the basic geometry, the eccentric one is characterized by a
larger lumen and an augmented wall thickness so as to keep the ratio midwall-radius/wall-thickness almost normal,
thus resembling the ventricular eccentric hypertrophy, that in heart is related to volume overloading. The concentric
geometry has a smaller lumen and an exaggerate wall thickness; it is intended to resemble the ventricular concentric
hypertrophy, that in heart is related to pressure overloading. It is worth noting that, for a given fibre winding and
stiffness γ, geometry has a large effect on volumetric stiffness (right).

a b c abc

π/c1

ϕ̂

π/c1

V/V0−14◦ 0◦ 1 1.6 2.2 2.8
0

3.5

0

3.5

Figure 8: Pressure VS torsion (left) and pressure VS change in volume (right) with fibres winding linearly varying from −60◦ at the outer mantle,
to 60◦ at the inner mantle. Stiffness γ is 0.05 (a, blue), 0.1 (b, red), 0.5 (c, green).
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a bc a bc

π/c1

ϕ̂

π/c1

V/V0−80◦ 0◦ 1 1.7
0

0.6

1.2

1.8

0

0.6

1.2

1.8

Figure 9: Inflation test for three different geometries: pressure VS torsion (left) and pressure VS change of volume (right); basic (a, blue), concentric
(b, red), eccentric (c, green), α = 20◦, γ = 0.5.

Appendix.

The explicit representation form of the torque and the axial force in terms of the relevant material and geometrical
parameters is here given. Both the torque and the axial force are represented as polynomial function of τ:

M/c1 = (π(R4
o − R4

i ) + πγ16b2( f2(2b4 + f5 + b2 f4) + 2b2 f1))τ+

+ πγ( f2(36b7 + 24b3 f5 + f4(18b5 + 6b f5) + 6b3 f6) + 36b5 f1)τ2+

+ πγ( f2(−88b8 − 70
3 b4 f5 + f4(−44b6 + 62

3 b2 f5) + 62
3 b4 f6 + 2

3 b2 f4 f6 + 2
3 f5 f7) − 88b6 f1)τ3+

+ πγ( f2(−110b9 + 55
3 b5 f 2

3 + f4(−55b7 + 55
3 b3 f5) + 10

3 b3 f4 f6 + 10
3 b f5 f7) − 110b7 f1)τ4+

+ πγ(3b2 f3(6b4 − 3b2 f4 + 2 f7) + 18b8 f1)τ5+

+ πγ( f2(56b11 + f 2
3 (− 28

3 b7 + 14
3 b5 f4) + 28b9 f4 + 14

3 b3 f5 f7) + 56b9 f1)τ6+

+ πγ( f2(16b12 + f 2
3 (− 8

3 b8 + 4
3 b6 f4) + 8b10 f4 + 4

3 b4 f5 f7) + 16b10 f1)τ7

(A.29)

and

N/c1 = −πγ(8b f3 + f88b3 + 16b5 f2 + (24b3 + 8b f10) f1)τ−

− π( 1
2 f 2

3 + γ(26b2 f3 + f828b4 − f24b2(7b4 + 5 f5 + 5b2 f4) + f9(b4 + f5 + b2 f4) + 26b2 f10 f1))τ2−

− πγ(− f212b(5b6 + 3b2 f5 + 5
2 b4 f4 + 1

6 f5 f4) − 2b3 f3 + f816b5+

+ f99b(b4 + f5 + b2 f4 − 2
9 b2 f3) − (44b5 + 2b3 f10) f1)τ3−

− πγ(+ f9(18b6 + 18b2 f5 + 1
3 f5 f11 + 73

3 b4 f4 + 1
3 b2R2

i f4 + 2
3 b2R2

o f4)−

−62b4 f3 − f826b6 + f2(4b8 − 13
3 b4 f5 − 35

3 b4R4
o + 2b6 f4 − 6b2 f5 f4) − (22b6 + 62b4 f10) f1)τ4−

− πγ(+ f9(9b7 + 9b3 f5 + 2
3 b5(11R2

i − 5R2
o) + 4

3 b f5 f11 + 9b5 f4 + 2
3 b3 f4(2R2

i + 13R2
o))−

−44b5 f3 − f826b7 + f2(36b9 + 18b7 f4 − 6b3R4
o f4) + (10b7 − 44b5 f10) f1)τ5−

− πγ(− f9(7b8 + 7b4 f5 + 7b6 f4 − 4b4R2
o f4 − 2b6(R2

o + 2R2
i ) − 2b2 f5 f11) + 16b6 f3 + f82b8+

+ f2(12b10 + 6b8 f4 − 2b4R4
i f4) + (14b8 + 16b6 f10) f1)τ6−

− πγ(− f9(8b9 + 8b5 f5 + 8b7 f4) + 24b7 f3 + f88b9 + 4
3 b3 f 2

3 f11 + (8b9 + 24b7 f10) f1)τ7−

− πγ(− f9(2b10 + 2b6 f5 + 2b8 f4) + 6b8 f3 + f82b10 + 1
3 b4 f 2

3 f11 + (2b10 + 6b8 f10) f1)τ8 .

(A.30)
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In (A.29) and (A.30), the functions fi, (i = 1, 9) are defined as

f1(Ro,Ri, b) = log
b2 + R2

i

b2 + R2
o
, f2(Ro,Ri, b) =

R2
o − R2

i

(b2 + R2
i )(b2 + R2

o)
, f3(Ro,Ri) = R2

o − R2
i , (A.31)

f4(Ro,Ri) = R2
o + R2

i , f5(Ro,Ri) = R2
i R2

o , (A.32)

f6(Ro,Ri) = R4
o + R4

i , f7(Ro,Ri) = R4
o + R2

oR2
i + R4

i , (A.33)

f8(Ro,Ri, b) =
R2

o − R2
i

b2 + R2
o
, f9(Ro,Ri, b) =

(R2
o − R2

i )2

(b2 + R2
i )(b2 + R2

o)
, (A.34)

f10(Ri, b) = b2 + R2
i , f11(Ro,Ri) = R2

i + 2R2
o . (A.35)
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