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Abstract

The size dependent strenghtening resulting from the transformation strain
in Transformation Induced Plasticity (TRIP) steels is investigated using a
two dimensional embedded cell model of a simplified microstructure com-
posed of small cylindrical metastable austenitic inclusions within a ferritic
matrix. Earlier studies have shown that within the framework of classical
plasticity or of the single length parameter Fleck-Hutchinson strain gradi-
ent plasticity theory, the transformation strain has no significant impact on
the overall strengthening. The strengthening is essentially coming from the
composite effect with a marked inclusion size effect resulting from the ap-
pearance during deformation of new boundaries constraining the plastic flow.
The three parameters version of the Fleck-Hutchinson strain gradient plas-
ticity theory is used here in order to better capture the effect of the plastic
strain gradients resulting from the transformation strain. The three parame-
ters theory incorporates separately the rotational and extensional gradients in
the formulation, which leads to a significant influence of the shear component
of the transformation strain, not captured by the single parameter theory.
When the size of the austenitic inclusions decreases, the overall strengthen-
ing increases due to a combined size dependent effect of the transformation
strain and of the evolving composite structure. A parametric study is pro-
posed and discussed in the light of experimental evidences giving indications
on the optimization of the microstructure of TRIP-assisted multiphase steels.

Key words: Strain induced martensitic transformation, TRIP-Assisted
steels, Transformation strain, Strain gradient plasticity, Computational
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homogenisation.

1. Introduction

The routes for improving the strength of metallic materials towards lighter
and safer structures are numerous. Aside from the many possibilities of-
fered by alloying, pre-deforming and/or producing composite structures, mi-
crostructure refinement is one of the most versatile and powerful way to
strengthen a metal. Refining microstructures means for instance reducing
the grain size in order to take benefit of the well known Hall-Petch effect
(Hall, 1951; Petch, 1953), limiting the precipitate size to an optimal diameter
(Simar et al., 2007), decreasing the twin spacing (Dao et al., 2006), or decreas-
ing the thickness of lamellae in lamellar structures (Huang et al., 2001; Modi
et al., 2001). Another example, which is the focus of the present research, is
related to microstructures involving a second phase which is metastable at
operating temperature and which, under mechanical loading, transforms into
a harder phase. An important class of metals involving this mechanism is
known as multiphase TRIP aided steels (with TRIP standing for TRansfor-
mation Induced Plasticity) in which retained austenite inclusions transform
into a hard martensitic phase during plastic deformation. A former study
(Mazzoni-Leduc et al., 2008) has shown that an important contribution to
the strengthening associated to the TRIP effect originates from the small
size of the austenite islands typically smaller than 1 − 3µm.

The size dependent strengthening associated to microstructure refinement
can be related to the presence of geometrically necessary dislocations and
to the associated large strain gradients needed for the compatibility of the
deformation. Strain gradients effects and the principle of “smaller being
stronger” is also observed in another class of problems involving homoge-
nous solids loaded heterogeneously, such as in torsion of thin wires (Fleck
et al., 1994), bending of thin strips (Stölken and Evans, 1998), micro- or
nano-indentation with the hardness increasing with decreasing indentation
depth (Ma and Clarke, 1995; McElhaney et al., 1998; Elmustafa and Stone
, 2002; Swadener et al., 2002; Delincé et al., 2006). In these classes of prob-
lems, large plastic strain gradients develop within regions smaller than a
few microns and the density of geometrically necessary dislocations leads to
a significant hardening contribution as well as an associated back stress or
kinematic hardening contribution. In wire torsion, thin strip bending, and
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nanoindentation, strain gradients are caused by the loading configuration
and the small sample size. In microstructure controlled strengthening, plas-
tic strain gradients essentially develop due to the presence of impenetrable
(or partially impenetrable) boundaries, causing, for the sake of compatibility,
excess dislocations to pile up and accumulate in small regions.

Among the phenomenological strain gradient plasticity theories, the one
proposed by Fleck and Hutchinson (Fleck and Hutchinson, 2001) is a higher
order theory which, on top of accounting for the effect of the strain gradients,
requires higher order stress quantities and boundary conditions, capable of
capturing the response of impenetrable boundaries. This formulation offers a
good trade off between the complexity of 3D Discrete Dislocation Dynamics
in terms of computational time (see e.g. Devincre and Robert, 1996) and
more simple size dependent theories but which do not incorporate higher
order variables, and thus offer no option for imposing higher order bound-
ary conditions (e.g. Acharya and Bassani, 2000). Note that another class
of theories, as developed for instance by Evers et al. (2004) and Geers et
al. (2007), introduce the effect of the impenetrable boundaries by adding in
the formulation a back stress related to the plastic incompatibility. Kuroda
and Tvergaard (2008) have recently shown that this last class of non work
conjugate theories is, under some assumptions, similar mathematically to the
higher order conjugate theories of the class developed by Fleck and Hutchin-
son in the case of a crystal plasticity formulation.

The motivations for investigating the TRansformation Induced Plastic-
ity occuring in multi-phase steels using strain gradient plasticity theory are
the following. Under mechanical loading, a fraction of the austenitic phase
transforms into martensite generating internal stresses and an accumulation
of geometrically necessary dislocations around the transformed region (see
e.g. Jacques, 2004). As a result, an increase of the overall strengthening
takes place via three mechanisms (e.g. Fischer and Reisner, 1998; Fischer et
al., 2000; Furnémont, 2003; Lani et al., 2007):

• the increase of the volume fraction of the harder martensitic phase
contributing to an elevation of the global hardening through a size
independent composite type effect;

• the generation of extra dislocations around the transformed regions
required to accomodate the relatively large transformation strain oc-
curring in the transforming zone;

3



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

• the appearance of a new boundary at the frontier of the martensitic
phase, impenetrable to dislocations, leading, during further deforma-
tion, to an extra hardening in the region surrounding the transforming
zone of the material.

In a previous study (Mazzoni-Leduc et al., 2008), the authors investigated the
TRIP effect based on an FE implementation of the single parameter version of
the Fleck-Hutchinson theory to describe the plasticity of the different phases.
A key ingredient was the formulation of evolving boundary conditions at the
interface between the austenite and the newly formed martensite plate, free
before transformation and impenetrable after transformation. This former
study has shown that:

• The use of the strain gradient plasticity theory leads to much larger
strengthening related to the TRIP effect than when using classical plas-
ticity theory, in better qualitative agreement with experimental obser-
vations.

• Decreasing the size of the austenitic inclusion increases the strengthen-
ing. The behaviour of the martensitic phase is also affected, since the
martensite undergoes compressive stresses during the transformation.
The recovery after transformation during additional deformation of a
tensile stress state is delayed when the size of the austenitic inclusion
decreases, which is important with respect to damage nucleation.

• The boundary conditions specified at the boundary of the plastically
deforming region play a major role on the impact of the transforma-
tion strain on the strength of the material. When the plastic flow is
unconstrained at the elasto-plastic boundaries (except at the austen-
ite/martensite interface), the transformation strain has only a very
weak effect on the strengthening whatever the size and volume fraction
of retained austenite. Most of the strengthening comes from the evolv-
ing composite effect associated to the presence of a new hard inclusion.
An effect of the transformation strain is captured only when the plastic
flow is constrained at every elasto-plastic boundaries, an option which
can hardly be motivated physically and was therefore avoided.

This last conclusion was the main motivation for investigating the three
parameters version of the Fleck-Hutchinson theory. Indeed, Fleck and Hutchin-
son (2001) state that the three parameters version of the theory should be
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used for cases embracing both stretch and rotation gradients. For instance,
Niordson and Hutchinson (2003b) show that the modelling of the shearing
of a finite slab with the three parameters version of the theory leads to much
larger strengthening compared to the single parameter theory. This extra-
hardening originates from the fact that the full tensor of the gradients of
plastic strains is incorporated in the formulation, which induces a non-zero
gradient contribution at the free edges (from the natural boundary condi-
tion on plastic flow), whereas the single parameter theory only involves the
gradient of effective plastic strain rate, with no contribution of the plastic
gradients at the free edges. Determining whether or not, based on a more
physical theory, significant strengthening can result from the transformation
strain and to what extent it is also size dependent is essential with respect
to further microstructure optimization efforts. Considering the complexity
of the microstructure and the number of parameters, it is indeed important
for metallurgists to be guided in their developments of improved TRIP steels
regarding, among others, the optimum austenite grain size.

The outline of the paper is the following. Section 2 describes the mod-
elling assumptions and summarises the three parameters formulation. A
parametric study of a simplified microstructure is presented in Section 3. In
order to set the stage of the analysis, the central question which will be asked
is: among the three length parameters, which one(s) will have the stronger
effect in the strengthening related to the phase transformation? Specific
attention is given to the influence of (i) the effect of each of the length pa-
rameters entering the formulation of the Fleck-Hutchinson strain gradient
plasticity theory, (ii) the transformation strain, (iii) the size of the austenitic
inclusions. The results are discussed in Section 4 with an emphasis on the
behaviour at the elasto-plastic boundaries.

2. Model

2.1. Mechanical modelling of the phase transformation

Since the retained austenitic phase is metastable at room temperature,
it can transform under deformation into the harder martensitic phase. The
following notations, classical in physical metallurgy, will be used throughout
the paper

α → ferrite, α
′

→ martensite, γ → austenite,
HOM → homogenized medium.
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For the sake of comparison with earlier works (see Mazzoni-Leduc et al.,
2008), the same representative microstructure element, described in Figure
1a, will be modelled in two dimensions under plane strain tensile loading
conditions. The cell element is composed of a cylindrical austenitic inclusion
surrounded by a ferritic matrix. An elliptical transforming zone is consid-
ered into the austenite inclusion with a martensitic variant oriented at 45◦

with respect to the tensile axis, see Van Rompaey et al. (2006). The vol-
ume fraction of the transforming zone is in principle controlled by the phase
transformation condition, which is, in turn, directly affected by details of
the microstructure arrangement and by the balance of driving and resistive
forces. Modelling explicitely the nucleation and growth of the martensitic
phase is outside the scope of this study (see e.g. Fischer and Reisner, 1998;
Reisner et al., 1998; Fischer et al., 2000). The final volume of the martensitic
zone is imposed in the simulation and the transformation is assumed to oc-
cur homogenously within the lenticular plate with a realistic overall volume
fraction of 3.3%, see Jacques (2004). The appearance of other plates, and
associated interaction effects, is not modelled here, see Marketz and Fischer
(1995). The stress-free transformation strain consists of a shear γtsf and
a dilatation δtsf component along the small axis of the plate, and has the
following form in the local axis (1,2) of the lenticular plate, see Fig. 1a:

εtsf
loc =





0 0 0
0 0 γtsf/2
0 γtsf/2 δtsf



 . (1)

The deformation process is modelled in three stages.

Step 1 The cell is first loaded until the overall strain E reaches the strain
prescribed for the onset of transformation Estart

tsf . This value corre-
sponds to an average strain < ε >start

tsf,γ in the austenite. Since the
strength mismatch is not very large between austenite and ferrite,
< ε >start

tsf,γ does not differ too much from Estart
tsf . The corresponding

overall stress Σ is noted Σ start
tsf .

Step 2 An artificial thermal loading stage is then applied with a variation of
temperature ∆T associated to fictitious thermal expansion coefficients
αij in order to impose the transformation strain εtsf

loc to the transform-
ing region. The material properties are gradually modified following a
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linear variation with ∆T .

Step 3 The mechanical loading is resumed.

The loading conditions on the cell represented in Fig. 1a have a strong
impact on the response of the representative cell, at least during the transient
regime following the transformation. The homogenisation of a conventional
unit cell usually requires the choice of the macroscopic quantities control-
ling the loading. Usually, the average stress or average strain is prescribed
on the unit cell. Nevertheless, during the phase transformation, the repre-
sentative evolution of the average stress or strain on the unit cell (and the
related tractions or displacement at its boundary) is unknown. The response
of the unit cell is actually intermediate between these two extreme assump-
tions of constant load or constant deformation, and depends on the exact
resistance of the surrounding medium. In order to avoid explicit imposition
of mechanical quantities at the boundary, the unit cell is embedded into an
equivalent continuum, in order to make the transformation stage indepen-
dent of the mechanical control on the cell, see Van Rompaey et al. (2006)
and Mazzoni-Leduc et al. (2008). The mechanical control of the model is
thereby transferred to the boundary of this surrounding region. The trans-
formation can then occur under an imposed far field constant stress or strain
leading to identical results after the transformation transient by leaving the
average stress on the unit cell free to adjust to the evolving microstructural
behaviour. Practically, the unit cell is embedded in a surrounding compos-
ite with the same uniaxial behaviour as the one obtained by averaging the
behaviour of a unit cell without transformation, and on which the overall
mechanical loading is applied (Efar or Σfar), as shown on Fig. 1b. The
response of such an embedded cell model is intermediate between the two
extreme behaviours of the unit cell model, under constant Σ or constant
E (Mazzoni-Leduc et al., 2008). The response of the transforming unit cell
is then obtained by averaging the stress and strain over the volume of the
central unit cell:

Ecell =
1

Vcell

∫

Vcell

εdVcell , Σcell =
1

Vcell

∫

Vcell

σdVcell . (2)

2.2. Strain gradient plasticity model

The three length parameter version of the Fleck-Hutchinson strain gradi-
ent plasticity theory (Fleck and Hutchinson, 2001) has already been used
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to address several problems such as whisker-reinforced metals (Niordson,
2003a), plastic localization (Niordson and Tvergaard, 2005), or, in the origi-
nal paper, wire torsion and void growth (Fleck and Hutchinson, 2001). The
essentials are summarized here, within a small strain formulation.

2.2.1. Generalized effective plastic strain rate

As for classical plasticity theory, the higher order theory is based on the
usual definition of the conventional effective plastic strain rate ǫ̇P

ǫ̇P =
√

2ǫ̇P
ij ǫ̇

P
ij/3 . (3)

The von Mises effective stress is expressed as σe =
√

3
2
sijsij, where sij is

the deviatoric part of the Cauchy stress tensor. The direction of the plastic
strain increment is defined as mij = 3sij/2σe and the plastic strain rate tensor
is expressed as ǫ̇P

ij = ǫ̇P mij . The plastic strain gradient tensor is defined as

ρijk = ǫ̇P
ij,k . (4)

The incompressibility of plastic deformation together with the symmetry of
the plastic deformation tensor allows splitting ρijk into a unique sum of three

orthogonal tensors ρ
(m)
ijk for m = [1, 3], obeying the incompressibility require-

ment and showing the same symmetry condition as ρijk (Smyshlyaev and
Fleck, 1996). This allows the identification of the three homogeneous in-

variants of degree two of the plastic strain gradient tensor as ρ
(m)
ijk ρ

(m)
ijk for

m = [1, 3]. The expression of the generalized effective plastic strain incorpo-
rating all gradient terms of the plastic strain rate via these three invariants
reads:

Ė2
P = ǫ̇2

P + l21ρ
(1)
ijkρ

(1)
ijk + 4l22ρ

(2)
ijkρ

(2)
ijk + 8/3l23ρ

(3)
ijkρ

(3)
ijk (5)

where the three lengths scales l1, l2 and l3 come as a result of dimensional
consistency. These length parameters set the scale at which plastic strain
gradients will have an impact on the response of the medium. The coeffi-
cients 4 and 8/3 are required for connection with earlier works of the authors
(Fleck and Hutchinson, 1997), in which the complete strain gradient tensor
is involved. A simplified version of the theory, involving only one parameter
l∗, recovers the initial Aifantis theory (Aifantis, 1984), as used in Mazzoni-
Leduc et al. (2008). In this case, the generalized effective plastic strain rate
is calculated via a quadratic sum of the plastic strain gradient components:

Ė2
P = ǫ̇2

P + l2
∗
ǫ̇P,iǫ̇P,i . (6)
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Rewriting the plastic strain gradient tensor as a function of the effective
plastic strain rate, the direction of plastic flow and their gradients as follows

ρijk = ǫ̇P,kmij + ǫ̇P mij,k (7)

allows recasting Equation (5) into a form depending on the effective plastic
strain rate, its gradients and the coefficients Aij , Bi and C

Ė2
P = ǫ̇2

P + Aij ǫ̇P,iǫ̇P,j + Biǫ̇P,iǫ̇P + Cǫ̇2
P (8)

where the expressions of the coefficients Aij , Bi and C can be evaluated
from the direction of plastic flow mij and its gradients, and from the three
internal lengths. The explicit form of the coefficients is given by (Fleck and
Hutchinson, 2001)

Aij = l21(δij/2 + 2/5mipmjp) + L2
2(3/2δij − mqimqj) + L2

3(epireqjvmqrmpv)
Bi = 4/3l21mpqmpi,q − 8/15l21mipmpq,q − 2L2

2mqrmqi,r + 2L2
3equvepirmqrmpv,u

C = l21/3(mij,k(mij,k + 2mjk,i) − 4/5mki,imkj,j) + L2
2(mqr,umqr,u − mqr,vmqv,r)

+L2
3epirequvmqr,impv,u

(9)
with L2

2 = 4/3l22 + 8/5l23 and L2
3 = 4/3l22 − 8/5l23 .

In contrast with the one parameter theory, relations (8) and (9) show that
the stress state and its gradients appear in the gradient enhancement through
the plastic flow direction and its gradients, leading to distinct effects of the
rotational and stretch gradients. Within the Fleck and Hutchinson approach,
l1 is active for both stretch and rotation gradients, while l2 and l3 are related
only to rotation gradients (Fleck and Hutchinson, 2001).

The generalized effective plastic strain rate is intended to be a phe-
nomenological measure of the total density of dislocations, composed of the
statistically stored dislocations (SSD) and geometrically necessary disloca-
tions (GND). The statistically stored dislocations (SSD) accomodate ho-
mogenous plastic strain fields, and accumulate by trapping each other ran-
domly. The SSD density is commonly assumed to be represented by the
effective plastic strain εP (Fleck et al., 1994; Nix and Gao, 1997; Huang et
al., 2004; Brinckmann et al., 2006) while the geometrically necessary disloca-
tions (GND), required to accomodate inhomogenous plastic deformation and
to guarantee lattice compatibility are related to the plastic strain gradients
(Fleck et al., 1994; Arsenlis and Parks, 1999; Mughrabi, 2004; Abu Al-Rub
and Voyiadjis, 2006).
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2.2.2. Governing and constitutive equations

The incremental principle of virtual work reads for each incremental dis-
placement δu̇i and effective plastic strain rate δǫ̇P (Fleck and Hutchinson,
2001):

∀δu̇i, ∀δǫ̇P
∫

V

{

σ̇ij(δε̇
e
ij + δε̇∗ij) + Q̇δε̇P + τ̇iδε̇P,i

}

dV =
∫

S

(

Ṫiδu̇i + ṫδε̇P

)

dS
(10)

in which a transformation strain ε∗ij, being non zero only in the transforming
zone has been introduced; Q is the generalized effective stress, work-conjugate
to the plastic strain rate ε̇P and τi is a higher order stress work-conjugate to
the gradient of the effective plastic strain rate ε̇P,i. In the absence of body
forces, straightforward manipulations lead to the strong form of the field
equations

σ̇ij,j = 0 (11)

which is the equilibrium equation, and

σ̇e = Q̇ − τ̇i,i . (12)

Equation (12) is a generalized consistency equation only valid in the plastic
regime. The boundary conditions associated to this system of equations are

Ṫi = σ̇ijnj ,
ṫ = τ̇ini .

(13)

To close the formulation, the incremental constitutive equations are given by

σ̇ij = Lijkl(ǫ̇kl − ǫ̇P mkl − ε̇∗kl),
τ̇i = h(EP )(Aij ǫ̇P,j + 1/2Biǫ̇P ),

Q̇ = h(EP )(ǫ̇P + 1/2Biǫ̇P,i + Cǫ̇P ),
(14)

where Lijkl denotes the elastic stiffness tensor for an isotropic solid and h is
the hardening rate which is defined by

h =
dσy(κ)

dκ

∣

∣

∣

∣

EP

(15)

where σy(κ) is the hardening law and κ is the hardening parameter measur-
ing the accumulation of dislocations. The hardening is evaluated at κ = EP

rather than at κ = εP to take into account the contribution of the GNDs
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associated to the plastic gradients. The consistency equation governing plas-
tic flow is then expressed through the generalized effective stress by Q = Qy

where the evolution of Qy is given by:

Q̇y = h(EP )(ǫ̇P + 1/2Biǫ̇P,i + Cǫ̇P ) . (16)

2.2.3. Implementation issues

In this study, a purely incremental (or explicit) implementation of the for-
mulation similar to the one presented in Niordson and Hutchinson (2003b) is
used. Small time steps are therefore needed to limit departure from the exact
solution. The convergence with respect to time step and mesh refinement has
therefore been systematically verified.

The Fleck and Hutchinson (2001) three parameters theory has been im-
plemented in a finite element code using C0 quadrangular and triangular
elements. The displacement rate field and the effective plastic strain rate
field are interpolated using bi-quadratic and bi-linear functions, respectively.
The elastic-plastic transition is tested at each Gauss point. When the von
Mises stress at a Gauss point which was elastic during the previous time step
becomes larger than the yield stress, the Gauss point is considered to enter
the plastic regime. Elastic unloading occurs whenever the effective plastic
strain rate calculated at a plastic Gauss point is negative (see Niordson and
Hutchinson, 2003b).

Due to the dependence of the coefficients Aij, Bi and C on the gradients
of the direction of plastic flow mij,k, the computation of the gradient enhance-
ment of the generalized effective plastic strain requires a specific treatment.
The calculation of mij,k for the next step necessitates a smoothing of the
stress field to compute the derivatives sij,k. The gradients of the direction of
plastic flow, mij,k, are then evaluated according to the relation

mij,k =
1

2

sij,kσe − sij

3

2

spqspq,k

σe

σ2
e

. (17)

The procedure for the construction of a continuous stress field entering
the expression of the three coefficients described in Niordson and Hutchin-
son (2003b) is adopted. For each element, after having determined the incre-
ments of the displacements and of the effective plastic strain, the constitutive
equations are integrated at each Gauss point. The stresses are subsequently
extrapolated at each corner node. For each corner node, an average value
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of the stress is determined from the contribution of the elements connected
to the node. The averaged nodal values of the stress field are then interpo-
lated using bilinear shape functions at the centre of the element, where the
stress derivatives and subsequently the coefficients Aij , Bi and C are eval-
uated and attributed to all the Gauss points of the element. Note that the
same smoothing procedure was used in other works with various interpola-
tion schemes [3-5]. In order to verify that the results do not depend on the
smoothing procedure, other procedures were tested, attributing different gra-
dient coefficients to the different Gauss points of an element. No difference
was found in the results provided the mesh is fine enough.

2.3. Evolving plastic boundary conditions

Since the formulation uses an independent effective plastic strain rate
field, higher order boundary conditions must be specified at the external
boundary of a region where plastic flow occurs. Two extreme types of con-
ditions can be considered (see Niordson and Hutchinson, 2003b):

• at a free surface, dislocations move through unimpeded. No constraint
on the effective plastic strain rate ˙ǫP should then be applied, which
is equivalent to the natural boundary condition on the higher order
traction, i.e. τ̇ini = 0.

• at a strongly bonded interface, or an interface between phases, disloca-
tions accumulate in the near interface region. The boundary condition
corresponding to a boundary impenetrable to dislocations is ε̇P = 0.

The evolving nature of the interface between austenite and the newly
formed martensite domain requires changing the boundary conditions in the
course of the simulation. The plastic flow is therefore suddenly constrained
along the interface by setting the rate of effective plastic strain equal to zero
i.e. ˙ǫP = 0 at the onset of the transformation.

Finally, boundary conditions must be prescribed also along the elastic-
plastic boundary. Again, the two choices of boundary conditions described
above are possible. The choice is not so obvious (see e.g. Peerlings, 2007)
although the physics calls more for the natural boundary condition τ̇ini = 0.

A natural boundary condition will therefore be used at the moving elasto-
plastic boundaries for all the computations reported in this paper. This
choice is motivated by the fact it provides a lower bound of the size effects
associated to the transformation. Note that the same assumption is used at
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the boundary between the unit cell and the surrounding composite which is
represented by a classical continuum description.

3. Results

A study of the main parameters of the problem is performed with the
embedded cell model described in subsection 2.1. A mesh containing 11744
elements has been used for the generation of all the results presented in this
paper. while imposing plane strain conditions and the interpolations defined
in Section 2.2.3. Quadrangular elements were used within the ferritic phase,
and triangular elements in the inclusion. The convergence of the results with
respect to the mesh size was verified using even finer meshes. First, the
choice of the material and loading parameters are described. The parametric
study starts by showing the individual effects of the different gradient terms
on the overall transformation hardening. The effect of the different gradient
terms on the individual transformation hardening contributions are then sep-
arately presented with a focus on the influence of the transformation strain.
The section ends with results relative to the influence of the austenitic grain
size.

3.1. Material and loading parameters

All the phases are assumed to follow a Swift-type hardening law

σy = σy0
(1 + ε0κ)n (18)

where σy is the current yield stress, σy0
is the initial yield stress, ε0 is the

hardening coefficient, n is the strain hardening exponent, and κ is the hard-
ening parameter. The flow parameters used for each phases are motivated
from experimental and modelling efforts on a specific grade of TRIP assisted
multiphase steels (Furnémont, 2003; Jacques et al., 2006, 2007), see Table 1.
The behaviour of the surrounding composite is described by the classical J2

flow theory. Some parameters are kept fixed in this study:

• the longitudinal (dilatational) transformation strain along the small
axis of the lenticular plate δtsf is set equal to 3%;

• the volume fraction of the transforming zone with respect to the ini-

tial austenitic inclusion given by
h

d
=

1

3
, where h is the width of the

lenticular plate and d is the diameter of the inclusion, see Fig. 1a;
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• the volume fraction of retained austenite fγ is equal to 10%, resulting
in a global volume fraction of the transforming zone equal to 3.3%;

• the macroscopic strain level Estart
tsf at which transformation starts is

equal to 2.25%.

Specific attention is given to the strength enhancements associated to
the phase transformation captured when using a three parameters theory,
compared to the results obtained with the single parameter theory described
in details in Mazzoni-Leduc et al. (2008). The size effects will be analysed
for various ratios li/d. Four cases are considered:

• Case n◦1. No phase transformation occurs, corresponding to the re-
sponse of a composite ferritic matrix/austenitic inclusion.

• Case n◦2. A change of elasto-plastic properties is imposed in the trans-
forming region accompanied by evolutive boundary conditions: the
plastic flow is initially unconstrained and becomes constrained at the
α

′

/γ interface at the start of the transformation. The emergence of the
new impenetrable phase boundary leads to a strengthening contribu-
tion called “higher order composite effect” in the sequel.

• Case n◦3. The transformation strain is applied during the transforma-
tion on top of the changes applied in Case n◦2.

• Case n◦4. The transformation strain only is applied without any mod-
ification of the elastic-plastic properties of the transforming region and
without any evolving boundary conditions on plastic flow at the inter-
face of the transformed region.

The contribution of the transformation to the strengthening is described
through a non-dimensional index S(E) corresponding to a macrostrain E:

S(E) =
Σ

Σref

(19)

where Σref is the average stress corresponding to the average strain E in the
embedded cell within case n◦1, and Σ corresponds to the average strain E
in the other cases n◦2, n◦3 or n◦4.
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3.2. Separate effects of the gradient terms on the overall transformation hard-

ening

Figure 2 illustrates the average response along the tensile direction of the
embedded unit cell where the effects of the length parameters are addressed
separately, i.e. with li/d (i varying from 1 to 3) all equal to 0 except for one
normalized length equal to 1. The goal is to quantify the relative impact of
the rotational and the stretch gradient terms on the global response using
the most realistic description of the transformation, i.e. for case n◦3. The
incorporation in the formulation of the contribution of each of the invariants
of the plastic strain gradient tensor ρm

ijkρ
m
ijk separately (m varying from 1 to

3) clearly induces more strengthening than when using the single parameter
theory (with l∗/d = 1):

• When l1/d = 1 is the only active length parameter, the strengthening
at E = 10% is 1.8 times larger than when using the single parameter
theory. The length l1 is associated to stretch and rotation gradients.

• When l2/d = 1 or l3/d = 1 the strengthening amounts to 2.7 times the
strengthening obtained with the single parameter theory at E = 10%.
This agrees with the results presented in (Niordson and Hutchinson,
2003b) in the case of the shearing of a finite slab with constrained
plastic flow at the boundaries. Furthermore, the response is the same
in the cases l2/d = 1 or l3/d = 1.

3.3. Effect of the gradient terms on each transformation hardening contribu-

tions

No effect of the transformation strain on the overall strengthening en-
hancement was observed with the single parameter theory in the case of
unconstrained elasto-plastic boundaries which is the most realistic descrip-
tion of the problem (Mazzoni-Leduc et al., 2008). The aim of this section is to
investigate whether the use of the multi-parameter theory is demonstrating
any additional hardening effect resulting from the transformation strain.

In order to distinguish the effects of the transformation strain and of the
change of plastic properties associated to the phase change, the responses
corresponding to cases n◦1, n◦2 and n◦3 are plotted first for different choices
of internal length. Fig. 3a shows results for l1/d = 1 and l2/d = l3/d = 0.
The transformation strain contributes to 25% of the total strengthening (this
percentage is calculated based on the ratio of the difference of stress levels
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between cases n◦3 and n◦2 over the difference of stress levels between cases
n◦3 and n◦1). Fig. 3b shows the results for l2/d = 1 and l1/d = l3/d = 0.
The extra strengthening associated to the transformation strain amounts to
36% of the total strengthening when E = 10%. Note that the same trend
is found for l3/d = 1 and l1/d = l2/d = 0 (with a 31% increase). Again,
the rotation gradients lead to larger strengthening compared to the stretch
gradients.

Hence, the use of the multi-parameter framework, even when including
only one of the three invariants of the plastic strain gradient rate tensor in the
generalized effective plastic strain measure, leads to a significant contribution
of the transformation strain. This contrasts with the results obtained with
the single parameter theory.

Figure 3c gives the response obtained in cases n◦1, n◦2 and n◦3 when all
intrinsic length parameters are activated: l1/d = l2/d = l3/d = 1. The extra
hardening resulting from the higher order composite effect, caused by the
evolving boundary conditions and represented by case n◦2, leads to larger
strengthening compared to the choice in which only one ratio li/d is non-
zero. The transformation strain contribution represents 40% of the overall
effect of the transformation on the strengthening.

Fig. 4 depicts the response obtained in cases n◦1, n◦2 and n◦3 when
γtsf varies from 0% to 20% and with all length parameters activated, i.e.
l1/d = l2/d = l3/d = l/d = 1. The influence of γtsf is obvious, especially
for values of γtsf larger that 10%. The role of the dilatation component
δtsf , which is equal to 3%, requires also some comments. When E = 10%,
it is responsible for 10% of the global increase in the hardening related to
the martensitic transformation on top of the hardening enhancement due to
the higher order composite effect (obtained by the ratio of the difference of
stress levels between cases n◦3 and n◦2, on one hand and n◦3 and n◦1 on
the other hand). When the shear component increases, rotational gradients
develop, which activates the effect of the intrinsic length l2 and l3 and leads
to larger hardening enhancements, as shown in Fig. 3a and 3b. Note that
in Mazzoni-Leduc et al. (2008), no influence of the shear component of the
transformation strain γtsf was found when using the single parameter theory,
the transformation strain having always a negligible role when the elasto-
plastic boundaries are unconstrained.
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3.4. Effect of the austenitic grain size

In this subsection, the effect of the size of the austenitic grain is addressed
by varying the ratio li/d = l1/d = l2/d = l3/d between 0 and 1.5. The
evolution of the hardening indicator S as a function of l/d is given in Fig. 5a
and 5c when E is equal 4% and 8% respectively. Three observations can be
made when comparing these predictions to the results obtained within the
single parameter framework (Mazzoni-Leduc et al., 2008) reported in Fig. 5b
and 5d. Within the multi-parameter framework, the S-curves corresponding
to cases n◦3 and n◦4 almost superimpose, which is not the case when using the
single parameter theory. This means that within the multi-parameter theory,
the change of confinement along the transforming zone as well as the change
of material properties, do not add to the strengthening when compared to the
strengthening obtained in case n◦4 for which only the transformation strain is
introduced. The contributions of the higher order composite effect and of the
transformation strain effect are not additive. The duration of the transient
associated to the transformation and related to the stress drop in the stress
strain curves is shorter when using the three parameters theory (see Fig. 2).
This directly affects the S index at E = 4% and l/d > 0.7: the S-value
related to cases n◦3 and n◦4 exceeds the value related to case n◦2. With the
one parameter theory (Mazzoni-Leduc et al., 2008), the picture is different:
the strengthening corresponding to case n◦2 always exceeds cases n◦3 and
n◦4 at E = 4%, i.e. shortly after the transformation. Finally, the impact
of the transformation strain when compared to the effect of the change of
material properties accompanied with the evolving boundary conditions at
the α

′

/γ interface, increases when the ratio l/d increases, while the reverse
tendency is observed when using the single parameter theory. Note also that
the difference between case n◦3 (or case n◦4) versus case n◦2 increases strongly
after the transient when the three parameters theory is used as shown in Fig.
5a and 5c, whereas when the one parameter theory is used, the evolution is
not that significant.

Fig. 6a and 6b show, for case n◦3 and for different intrinsic lengths
l/d = l1/d = l2/d = l3/d, the evolution of, respectively, the phase averaged
stress < σα

′ > along the tensile loading direction as a function of (a) the
phase averaged strain < ǫα

′ > and of (b) the macroscopic strain E along
the tensile loading direction in the martensitic phase. The level of com-
pression attained in the lenticular plate during transformation depends on
the theory: the single parameter was found to lead to a minimum level of
< σα

′ >= −3400MPa when the ratio l∗/d = 2 (cf. Mazzoni-Leduc et al.
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(2008)), whereas the minimum level found with the multi-parameter theory
is < σα

′ >= −4600MPa when l/d = 2. The conclusion is that increasing the
ratio l/d, i.e. decreasing the austenitic grain size, amplifies the compression
state associated to the transformation, as observed in Fig. 6b. The transient
regime also lasts longer when l/d increases, i.e. it takes longer for the marten-
site to restart undergoing tensile stresses after transformation. The duration
of the transient is also a function of the theory: it appears that the marten-
site recovers a tensile state at E = 9% using the single parameter theory and
l∗/d = 0.5 (Mazzoni-Leduc et al., 2008), while Fig. 6b shows that using the
multi-parameter theory and l1/d = l2/d = l3/d = 0.5, the martensite still
undergoes a compressive state < σα

′ >= −900MPa at E = 9%.

4. Discussion

A significant contribution of the transformation strain to the overall
strengthening of the material is predicted with the multi-parameter ver-
sion of the Fleck and Hutchinson (2001) theory. This strengthening was
absent of the predictions obtained with the single parameter theory and, a
fortiori, from cell calculations performed with a classical plasticity theory
(Furnémont, 2003) or with the single length strain gradient plasticity the-
ory (Mazzoni-Leduc et al., 2008). Fig. 5c shows that the influence of the
transformation strain alone on the overall strengthening, represented by case
n◦4, is larger than the influence of the change of properties alone combined
with the evolving nature of the α

′

/γ interface (case n◦2) when the size of
the austenitic grain decreases. Furthermore, the combination of both effects
does not lead to an additive convolution. It is important to note that the
experimentally measured TRIP strengthening effects can hardly be modelled
with classical theories without adjusting some fitting parameters to artifi-
cially raise the strength (see e.g. Delannay et al., 2008). The results shown
here provide a potential explanation for this limitation: the behaviour of
real TRIP steels involving retained austenite in the micrometer diameter
range is significantly affected by strain gradients effects. This size depen-
dence additional hardening contributes thus significantly to the remarkable
improvement of the strength/ductility balance. An effort is currently made
to run large scale simulations with many austenite inclusions in order to allow
direct comparisons with experiments (Mazzoni-Leduc et al., 2009).

Fig. 7 shows the distribution of the elastic unloading zones at the end of

the transformation step using fγ = 10%, h/d =
1

3
, l/d=1, γtsf = 20%, and
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Estart
tsf = 2.25% for case n◦3. These zones are located in two regions along

the horizontal symmetry axis, which is also the tensile direction. In the
surrounding composite, described by classical plasticity, two other unloading
zones appear, located along the vertical symmetry axis of the unit cell up to
the boundary of the unit cell. With the single parameter theory and l∗/d = 1,
the end of the transformation step shows unloading zones spreading largerly
into the ferrite: along both the horizontal and the vertical symmetry axes.
As a result, the stress drop during transformation is smaller with the multi-
parameter framework. The presence of elastically unloading zones spreading
inside the softer ferritic matrix and accomodating the transformation strain
is strongly related to the strengthening enhancement obtained with the strain
gradient plasticity theory. Note that the shearing and compression zones are
indicated in Figure 7.

Fig. 8 shows contour plots of the variation of the generalized effective
plastic strain ∆EP from the onset of the transformation till the end, using

fγ = 10%, h/d =
1

3
, l/d=1, γtsf = 20% and Estart

tsf = 2.25% for case n◦3.

Compared to the results obtained with the single parameter theory char-
acterized by l∗/d = 1 under the same assumptions (Mazzoni-Leduc et al.,
2008), three observations must be made. First, the repartition of ∆EP in the
“shear band” is similar whether the single or the multi-parameter theory is
used. Second, larger values of ∆EP develop into the compression band within
the multi-parameter framework. The dilatation component of the transfor-
mation strain generates higher values of the effective plastic strain when the
multi-parameter framework is used. Third, as a consequence of the natural
boundary condition on the higher order traction ṫ = (Aij ǫ̇P,i+BiǫP )ni = 0, an
implicit confinement effect on ǫP appears at the unconstrained elasto-plastic
boundary with the multi-parameter framework. As a consequence, larger
values of ∆EP are found at the elasto-plastic boundaries as shown on Fig.
8. Contrarily, when using the single parameter theory, no confinement ef-
fect occur at the unconstrained elastic-plastic boundary. Indeed, the natural
boundary condition at a traction-free boundary reads ṫ = ǫ̇P,ini = 0. Thus,
the gradient of the effective plastic strain along the normal to the elasto-
plastic boundary vanishes, while the gradient along the direction tangent to
the boundary is always vanishing by continuity of the effective strain rate
field. Therefore, no gradient effect contributes to increase the value of ∆EP

at the unconstrained elasto-plastic boundaries when the single-parameter
theory is employed. In the multi-parameter framework, all the terms of the
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plastic strain rate gradient ǫ̇P
ij,k enter the formulation and contribute dur-

ing the transformation to the confinement. This manifests into additional
plastic straining related to the transformation, contributing to the increase
of ∆EP in the compression area, subjected to higher confinement between
the elastic unloading zones. As a result, the multi-parameter theory leads
to a higher strengthening enhancement related to the transformation strain
effect, not captured when using a single parameter theory. Note that such an
implicit confinement (ṫ = 0) also occurs at the boundary between the unit
cell, described by the strain gradient theory, and the surrounding composite,
described by classical plasticity and thus in which the higher order traction
is equal to zero. It can however be seen from Figure 8 that this implicit
confinement effect at the cell boundary is much lower than at the boundary
of the elastically unloading zone, and does not contribute significantly to the
effect related to the transformation.

The analysis of the shearing of a finite slab presented in Niordson and
Hutchinson (2003b) helps understanding the behaviour of the shearing zone
along the diagonal of the embedded unit cell: a slab of height 2H and length
2L, such that L/H = 1, is considered under plane strain conditions. The top
and bottom edges are bonded to rigid platens that are displaced horizontally,
and behave as constrained boundaries for the plastic flow. The right and
left edges are traction free. The most active lengths are l2 and l3 which
separately lead to the same responses, exactly as obtained in the present
study. Moreover, in Niordson and Hutchinson (2003b), the authors note that
the strengthening increase related to the use of the three parameters theory
comes from the measures of the strain gradients entering the formulation,
which manifest especially at the traction-free ends where a natural boundary
condition on the higher order traction incorporates an implicit confinement
of the plastic flow contrarily to the single parameter theory. This observation
can also be made in the present study as shown above, based on Fig. 8, where
the boundary of the unloading zone acts similarly as the free edges of the
finite slab, while the martensitic boundary acts as an explicitely constrained
edge for the plastic unknowns.

5. Conclusions

The strengthening associated to the transformation induced plasticity
(TRIP) effect within a simplified globular microstructure has been addressed
using the multi-parameter Fleck and Hutchinson (2001) strain gradient plas-
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ticity theory. A cell made of a ferrite matrix and an austenite inclusion is
embedded into an homogenized medium. A portion of the austenite is forced
to transformation into a hard martensitic plate with a change of mechanical
properties as well as a transformation strain. The transformation gives rise
to a hard interface at the α

′

/γ boundary affecting the load transfer and the
plastic deformation in the vicinity. The important outcomes of this study
are the following:

• The multi-parameter version of the strain gradient plasticity theory
leads to much larger strengthening related to the TRIP effect compared
to the single-parameter version. Note that the strengthening predicted
with a classical plasticity theory is quite weak and unable to explain
the experimentally observed improvements of properties.

• The use of the multi-parameter version of the strain gradient plasticity
theory leads to a significant contribution to the overall strengthening
of the transformation strain. The resulting hardening enhancement
is mainly due to the shear component γtsf which induces rotational
gradients. Therefore, the most active lengths are l2 and l3. No trans-
formation strain effect is predicted with the single parameter theory
except for (unrealistic) constrained elasto-plastic boundaries.

• The use of the multi-parameter version of the strain gradient plasticity
theory implicitely induces a confinement at the elasto-plastic bound-
aries as a result of natural boundary conditions on the effective plas-
tic strain field, which is also partly responsible for the transformation
strain effect.

Further works will focus on extensions to a finite strains setting. In the
study presented above, obtained with a small strain framework, the macro-
scopic stress level attains 1800MPa at the end of the computation, i.e. when
E = 10%, when l/d = l1/d = l2/d = l3/d = 1 and for case n◦3, which meets
the commonly expected mechanical characteristic for such grades of steels.
The results obtained when using a finite strain framework will give an idea
of the level of ductility at higher strains. In this context, the objective for
the steel industry is to reach 1800MPa for a macroscopic strain equal to
30% before fracture. As the transformation strain effect increases strongly
when γtsf is larger than 10%, the use of finite strain framework would def-
initely be needed to obtain meaningful results with respect to experimental
comparisons.
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Table 1: Material parameters

Ferrite Austenite Martensite
E (GPa) 200 187 200
σy0

(MPa) 475 700 2000
ǫ0 55 50 800
N 0.27 0.3 0.05
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Figure 1: Schematic drawing of the simplified microstructure representative
volume element: (a) geometrical parameters (b) embedded cell model.
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Figure 2: Overall stress strain response along the tensile direction of the

embedded unit cell with constrained plastic flow at the α
′

/γ interface and
unconstrained plastic flow at elasto-plastic boundaries, γtsf = 20%, in cases
n◦1, and n◦3 with the single parameter model, characterized by the ratio
l∗/d = 1 and the multi-parameter model characterized by l1/d, l2/d and l3/d
all equal to 0 except for one equal to 1.
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Figure 3: Stress strain response along the tensile direction of the embedded

unit cell with constrained plastic flow at the α
′

/γ interface and unconstrained
plastic flow at elasto-plastic boundaries, γtsf = 20%, in cases n◦1, n◦2, n◦3
with the multi-parameter model characterized by (a) l1/d = 1 and l2/d =
l3/d = 0; (b) l1/d = 0, l2/d = 1 and l3/d = 0 and (c) l1/d = l2/d = l3/d = 1.
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Figure 4: Effect of the shear component of the transformation strain γtsf on
the stress strain response along the tensile direction of the embedded unit cell
with constrained plastic flow at the α

′

/γ interface and unconstrained plastic
flow at elasto-plastic boundaries, l1/d = l2/d = l3/d = 1, for cases n◦1, n◦2,
n◦3.
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Figure 5: Variation of the strengthening indicator S with constrained plastic

flow at the α
′

/γ interface and unconstrained plastic flow at elasto-plastic
boundaries, γtsf = 20% as a function of (a) l/d = l1/d = l2/d = l3/d
at Emacro = 4%; (b) l∗/d (single parameter theory) at Emacro = 4%; (c)
l/d = l1/d = l2/d = l3/d at Emacro = 8%; and (d) l∗/d at Emacro = 8%; for
cases n◦1, n◦2, n◦3 and n◦4.
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Figure 6: Variation of the phase averaged stress in the martensite as function
of (a) the phase averaged strain and of (b) the averaged strain E for various
ratios l/d = l1/d = l2/d = l3/d using γtsf = 20% for case n◦3 only.
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Figure 7: Repartition, at the end of the transformation step, of the elastic
unloading zones, using l1/d = l2/d = l3/d = 1, γtsf = 20% in case n◦3.
The plastic flow is always fully constrained at the α

′

/γ interface. The limit
between the unit cell and the homogenized medium is indicated by the black
box.
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Figure 8: Repartition, at the end of the transformation step, of the variation
since the start of the transformation of the generalized effective plastic strain,
using l1/d = l2/d = l3/d = 1, γtsf = 20% in case n◦3. The plastic flow is
always fully constrained at the α

′

/γ interface.
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