R G Novikov 
email: novikov@cmap.polytechnique.fr
  
Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy

   

Absence of exponentially localized solitons for the

Novikov-Veselov equation at positive energy

Abstract. In this note we show that the Novikov-Veselov equation (NV-equation) at positive energy (an analog of KdV in 2+1 dimensions) has no exponentially localized solitons in the two-dimensional sense.

1.Introduction and Theorem 1. We consider the following 2+1 -dimensional analog of the KdV equaion ( Novikov-Veselov equation):

∂ t v = 4Re (4∂ 3 z v + ∂ z (vw) -E∂ z w), ∂ z w = -3∂ z v, v = v, E ∈ R, v = v(x, t), w = w(x, t), x = (x 1 , x 2 ) ∈ R 2 , t ∈ R, (1) 
where

∂ t = ∂ ∂t , ∂ z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 . (2) 
We assume that v is sufficiently regular and has sufficient decay as |x| → ∞, w is decaying as |x| → ∞.

(3)

Equation ( 1) is contained implicitly in the paper of S.V.Manakov [M] as an equation possessing the following representation , where higher analogs of (1) were also constructed. Note also that the both Kadomtsev-Petviashvili (KP) equations can be obtained from (1) by considering an appropriate limit E → ±∞, see [ZS], [G2].

∂(L -E) ∂t = [L -E, A] + B(L -E) (4) (Manakov L-A-B-triple), where L = -∆ + v(x, t), ∆ = 4∂ z ∂ z , A
For the case when

v(x 1 , x 2 , t), w(x 1 , x 2 , t) are independent of x 2 (5)
equation ( 1) is reduced to

∂ t v = 2∂ 3 x v -12v∂ x v + 6E∂ x v, x ∈ R, t ∈ R. (6) 
In terms of u(x, t) such that

v(x, t) = u(-2t, x + 6Et), x ∈ R, t ∈ R, (7) 
equation ( 6) takes the standard form of the KdV equation (see [NMPZ]):

∂ t u -6u∂ x u + ∂ 3 x u = 0, x ∈ R, t ∈ R. (8) 
It is well-known (see [NMPZ]) that (8) has the soliton solutions

u(x, t) = u κ,ϕ (x -4κ 2 t) = - 2κ 2 ch 2 (κ(x -4κ 2 t -ϕ)) , x ∈ R, t ∈ R, κ ∈]0, +∞[, ϕ ∈ R.
(9) In addition, one can see that

u κ,ϕ ∈ C ∞ (R), ∂ j x u κ,ϕ (x) = O(e -2κ|x| ) as x → ∞, j = 0, 1, 2, 3, . . . (10) 
Properties (10) show, in particular, that the solitons of ( 9) are exponentially localized in x.

In the present note we obtain, in particular, the following result:

Theorem 1. Let v, w satisfy (1) for E = E f ix > 0, where v(x, t) = V (x -ct), x ∈ R 2 , c = (c 1 , c 2 ) ∈ R 2 , V ∈ C 3 (R 2 ), ∂ j x V (x) = O(e -α|x| ) f or|x| → ∞, |j| ≤ 3 and some α > 0, (11a) 
(where j = (j 1 , j 2 )

∈ (0 ∪ N) 2 , |j| = |j 1 | + |j 2 |, ∂ j x = ∂ j 1 +j 2 ∂x j 1 1 ∂x j 2 2 ), w(•, t) ∈ C(R 2 ), w(x, t) → 0 as |x| → ∞, t ∈ R. ( 11b 
)
Then V ≡ 0, v ≡ 0, w ≡ 0.
Theorem 1 shows that equation ( 1) for E > 0 has no nonzero solitons (travel wave solutions) exponentially localized in x in the two-dimensional sense. For E < 0 this result will be given in [KN]. Note also that some other integrable systems in 2+1 dimensions admit exponentially decaying solitons in all directions on the plane, see [BLMP], [FS].

The proof of Theorem 1 is based on Proposition 1 and Proposition 2, see Section 4. In turn, Proposition 2 is based, in particular, on Lemma 1 and Lemma 2.

Lemma 1, Lemma 2 and Proposition 1 are recalled in Section 2. Proposition 2 is given in Section 3. It seems that the result of Proposition 2 (that sufficiently localized travel wave solutions for the NV-equation ( 1) for E = E f ix > 0 have zero scattering amplitude for the two-dimensional Schrödinger equation ( 12)) was not yet formulated in the literature.

2. Lemma 1, Lemma 2 and Proposition 1. Consider the equation

-∆ψ + v(x)ψ = Eψ, x ∈ R 2 , E = E f ix > 0, ( 12 
)
where

v(x) = v(x), x ∈ R 2 , (1 + |x|) 2+ε v(x) ∈ L ∞ (R 2 ) (as a function of x ∈ R 2 ) for some ε > 0. ( 13 
)
It is known that for any k ∈ R 2 , such that k 2 = E, there exists an unique continuous solution ψ + (x, k) of equation ( 12) with the following asymptotics:

ψ + (x, k) = e ikx -iπ √ 2πe -iπ/4 f (k, |k| x |x| ) e i|k||x| |k||x| + o( 1 
|x| ) as |x| → ∞. ( 14 
)
This solution describes scattering of incident plane wave e ikx on the potential v. The function f on

M E = {k ∈ R 2 , l ∈ R 2 : k 2 = l 2 = E} (15)
arising in ( 14) is the scattering amplitude for v in the framework of equation ( 12). Under assumptions (13), it is known, in particular, that

f ∈ C(M E ). ( 16 
)
Lemma 1. Let v satisfy (13) and v y , y ∈ R 2 , be defined by

v y (x) = v(x -y), x ∈ R 2 . ( 17 
)
Then the scattering amplitude f for v and the scattering amplitude f y for v y are related by the formula

f y (k, l) = f (k, l)e iy(k-l) , (k, l) ∈ M E , y = (y 1 , y 2 ) ∈ R 2 . ( 18 
)
Lemma 1 follows, for example, from the definition of the scattering amplitude by means of ( 14) and the fact that ψ + (xy, k) solves (12) for v replaced by v y , where k 2 = E.

Lemma 1 was given, for example, in [N3].

Lemma 2. Let v, w satisfy (1), ( 3), where

E = E f ix > 0. Then the scattering amplitude f (•, •, t) for v(•, t) and the scattering amplitude f (•, •, 0) for v(•, 0) are related by f (k, l, t) = f (k, l, 0) exp[2it(k 3 1 -3k 1 k 2 2 -l 3 1 + 3l 1 l 2 2 )], (k, l) ∈ M E , t ∈ R. ( 19 
)
Lemma 2 was given for the first time in [N1]. Note that in the framework of Lemma 2 properties (3) can be specified as follows:

v, w ∈ C(R 2 × R) and for each t ∈ R the following properties are fulfiled :

v(•, t) ∈ C 3 (R 2 ), ∂ j x v(x, t) = O(|x| -2-ε ) for |x| → ∞, |j| ≤ 3 and some ε > 0, w(x, t) → 0 for |x| → ∞. (20) Proosition 1. Let v(x) = v(x), e α|x| v(x) ∈ L ∞ (R 2 ) (as a function of x) for some α > 0 (21)
and the scattering amplitude f ≡ 0 on M E for this potential for some

E = E f ix > 0. Then v ≡ 0 in L ∞ (R 2 ).
In the general case the result of Proposition 1 was given for the first time in [GN]. Under the additional assumption that v is sufficiently small (in comparison with E) the result of Proposition 1 was given for the first time in [N2]-[N4].

Transparency of solitons.

In this section we show that sufficiently localized solitons (travel wave solutions) for the NV-equation ( 1) for E = E f ix > 0 have zero scattering amplitude for the two-dimensional Schrödinger equation ( 12).

Proposition 2. Let v, w satisfy (1) for E = E f ix > 0, where v(x, t) = V (x -ct), x ∈ R 2 , c = (c 1 , c 2 ) ∈ R 2 , V ∈ C 3 (R 2 ), ∂ j x V (x) = O(|x| -2-ε ) f or|x| → ∞, |j| ≤ 3 and some ε > 0, (22a) w(•, t) ∈ C(R 2 ), w(x, t) → 0 as |x| → ∞, t ∈ R. ( 22b 
)
Then f ≡ 0 on M E , ( 23 
)
where f is the scattering amplitude for v(x) = V (x) in the framework of the Schrödinger equation ( 12).

The proof of Proposition 2 consists in the following. We consider

T = {λ ∈ C : |λ| = 1}. ( 24 
)
We use that

M E ≈ T × T, E = E f ix > 0, ( 25 
)
where diffeomorphism ( 25) is given by the formulas:

λ = k 1 + ik 2 √ E , λ ′ = l 1 + il 2 √ E , (k, l) ∈ M E , (26) 
k 1 = √ E 2 λ + 1 λ , k 2 = i √ E 2 1 λ -λ , l 1 = √ E 2 λ ′ + 1 λ ′ , l 2 = i √ E 2 1 λ ′ -λ ′ , (λ, λ ′ ) ∈ T × T. (27) 
We use that in the variables λ, λ ′ formulas (18), ( 19) take the form

f y (λ, λ ′ , E) = f (λ, λ ′ , E) exp i 2 √ E λȳ + y λ -λ ′ ȳ - y λ ′ , (28) 
where (λ, λ ′ ) ∈ T × T , y is considered as

y = y 1 + iy 2 , f (λ, λ ′ , E, t) = f (λ, λ ′ , E, 0) exp iE 3/2 t λ 3 + 1 λ 3 -(λ ′ ) 3 - 1 λ ′ 3 , (29) 
where (λ, λ ′ ) ∈ T × T , t ∈ R.

The assumptions of Proposition 2 and Lemmas 1 and 2 (with ( 18), ( 19) written as ( 28), ( 29)) imply that

f (λ, λ ′ , E) exp i 2 √ Et λc + c λ -λ ′ c - c λ ′ = f (λ, λ ′ , E) exp iE 3/2 t λ 3 + 1 λ 3 -(λ ′ ) 3 - 1 λ ′ 3 (30) for (λ, λ ′ ) ∈ T × T , t ∈ R, where f is the scattering amplitude for v(x, 0) = V (x), c is considered as c = c 1 + ic 2 .
Property ( 16), identity (30) and the fact that λ 3 , λ -3 , λ, λ -1 , 1 are linear independent on each nonempty open subset of T imply (23).

4. Proof of Theorem 1 and final remark. Theorem 1 follows from Proposition 1 and Proposition 2.

Finally, note that the result of Theorem 1 does not hold, in general, without the assumption that V (x) = O(e -α|x| ) as |x| → ∞ for some α > 0: "counter examples" to Theorem 1 with rational bounded V decaying at infinity as O(|x| -2 ) are contained (in fact) in [G1], [G2]. As regards prototypical algebraically decaying solitons for KP1 equation, see [FA].
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