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Abstract. In this note we show that the Novikov-Veselov equation (NV-equation)
at positive energy (an analog of KdV in 2+1 dimensions) has no exponentially localized
solitons in the two- dimensional sense.

1.Introduction and Theorem 1. We consider the following 2+1 - dimensional analog
of the KdV equaion ( Novikov-Veselov equation):

∂tv = 4Re (4∂3zv + ∂z(vw)−E∂zw),

∂z̄w = −3∂zv, v = v̄, E ∈ R,

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R
2, t ∈ R,

(1)

where

∂t =
∂

∂t
, ∂z =

1

2

( ∂

∂x1
− i

∂

∂x2

)

, ∂z̄ =
1

2

( ∂

∂x1
+ i

∂

∂x2

)

. (2)

We assume that

v is sufficiently regular and has sufficient decay as |x| → ∞,

w is decaying as |x| → ∞.
(3)

Equation (1) is contained implicitly in the paper of S.V.Manakov [M] as an equation
possessing the following representation

∂(L− E)

∂t
= [L− E,A] +B(L− E) (4)

(Manakov L-A-B- triple), where L = −∆ + v(x, t), ∆ = 4∂z∂z̄, A and B are suitable
differential operators of the third and zero order respectively, [·, ·] denotes the commu-
tator. Equation (1) was written in an explicit form by S.P.Novikov and A.P.Veselov in
[NV1], [NV2], where higher analogs of (1) were also constructed. Note also that the both
Kadomtsev-Petviashvili (KP) equations can be obtained from (1) by considering an ap-
propriate limit E → ±∞, see [ZS], [G2].

For the case when

v(x1, x2, t), w(x1, x2, t) are independent of x2 (5)

equation (1) is reduced to

∂tv = 2∂3xv − 12v∂xv + 6E∂xv, x ∈ R, t ∈ R. (6)
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In terms of u(x, t) such that

v(x, t) = u(−2t, x+ 6Et), x ∈ R, t ∈ R, (7)

equation (6) takes the standard form of the KdV equation (see [NMPZ]):

∂tu− 6u∂xu+ ∂3xu = 0, x ∈ R, t ∈ R. (8)

It is well-known (see [NMPZ]) that (8) has the soliton solutions

u(x, t) = uκ,ϕ(x− 4κ2t) = − 2κ2

ch2(κ(x− 4κ2t− ϕ))
, x ∈ R, t ∈ R, κ ∈]0,+∞[, ϕ ∈ R.

(9)
In addition, one can see that

uκ,ϕ ∈ C∞(R),

∂jxuκ,ϕ(x) = O(e−2κ|x|) as x→ ∞, j = 0, 1, 2, 3, . . .
(10)

Properties (10) show, in particular, that the solitons of (9) are exponentially localized
in x.

In the present note we obtain, in particular, the following result:

Theorem 1. Let v, w satisfy (1) for E = Efix > 0, where

v(x, t) = V (x− ct), x ∈ R
2, c = (c1, c2) ∈ R

2,

V ∈ C3(R2), ∂jxV (x) = O(e−α|x|) for|x| → ∞, |j| ≤ 3 and some α > 0,
(11a)

(where j = (j1, j2) ∈ (0 ∪ N)2, |j| = |j1|+ |j2|, ∂jx = ∂j1+j2
/

∂x
j1
1 ∂x

j2
2 ),

w(·, t) ∈ C(R2), w(x, t) → 0 as |x| → ∞, t ∈ R. (11b)

Then V ≡ 0, v ≡ 0, w ≡ 0.
Theorem 1 shows that equation (1) for E > 0 has no nonzero solitons (travel wave

solutions) exponentially localized in x in the two-dimensional sense. For E < 0 this result
will be given in [KN]. Note also that some other integrable systems in 2+1 dimensions
admit exponentially decaying solitons in all directions on the plane, see [BLMP], [FS].

The proof of Theorem 1 is based on Proposition 1 and Proposition 2, see Section 4.
In turn, Proposition 2 is based, in particular, on Lemma 1 and Lemma 2.

Lemma 1, Lemma 2 and Proposition 1 are recalled in Section 2. Proposition 2 is given
in Section 3. It seems that the result of Proposition 2 (that sufficiently localized travel
wave solutions for the NV-equation (1) for E = Efix > 0 have zero scattering amplitude for
the two-dimensional Schrödinger equation (12)) was not yet formulated in the literature.

2. Lemma 1, Lemma 2 and Proposition 1. Consider the equation

−∆ψ + v(x)ψ = Eψ, x ∈ R
2, E = Efix > 0, (12)
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where

v(x) = v(x), x ∈ R
2,

(1 + |x|)2+εv(x) ∈ L∞(R2) (as a function of x ∈ R
2) for some ε > 0.

(13)

It is known that for any k ∈ R
2, such that k2 = E, there exists an unique continuous

solution ψ+(x, k) of equation (12) with the following asymptotics:

ψ+(x, k) = eikx − iπ
√
2πe−iπ/4f(k, |k| x|x|)

ei|k||x|
√

|k||x|
+ o(

1
√

|x|
) as |x| → ∞. (14)

This solution describes scattering of incident plane wave eikx on the potential v. The
function f on

ME = {k ∈ R
2, l ∈ R

2 : k2 = l2 = E} (15)

arising in (14) is the scattering amplitude for v in the framework of equation (12). Under
assumptions (13), it is known, in particular, that

f ∈ C(ME). (16)

Lemma 1. Let v satisfy (13) and vy, y ∈ R
2, be defined by

vy(x) = v(x− y), x ∈ R
2. (17)

Then the scattering amplitude f for v and the scattering amplitude fy for vy are related
by the formula

fy(k, l) = f(k, l)eiy(k−l), (k, l) ∈ ME , y = (y1, y2) ∈ R
2. (18)

Lemma 1 follows, for example, from the definition of the scattering amplitude by
means of (14) and the fact that ψ+(x − y, k) solves (12) for v replaced by vy, where
k2 = E.

Lemma 1 was given, for example, in [N3].

Lemma 2. Let v, w satisfy (1), (3), where E = Efix > 0. Then the scattering
amplitude f(·, ·, t) for v(·, t) and the scattering amplitude f(·, ·, 0) for v(·, 0) are related by

f(k, l, t) = f(k, l, 0) exp[2it(k31 − 3k1k
2
2 − l31 + 3l1l

2
2)], (k, l) ∈ ME , t ∈ R. (19)

Lemma 2 was given for the first time in [N1].
Note that in the framework of Lemma 2 properties (3) can be specified as follows:

v, w ∈ C(R2 × R) and for each t ∈ R the following properties are fulfiled :

v(·, t) ∈ C3(R2), ∂jxv(x, t) = O(|x|−2−ε) for |x| → ∞, |j| ≤ 3 and some ε > 0,

w(x, t) → 0 for |x| → ∞.

(20)
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Proosition 1. Let

v(x) = v(x), eα|x|v(x) ∈ L∞(R2) (as a function of x) for some α > 0 (21)

and the scattering amplitude f ≡ 0 on ME for this potential for some E = Efix > 0.
Then v ≡ 0 in L∞(R2).

In the general case the result of Proposition 1 was given for the first time in [GN].
Under the additional assumption that v is sufficiently small (in comparison with E) the
result of Proposition 1 was given for the first time in [N2]-[N4].

3. Transparency of solitons. In this section we show that sufficiently localized solitons
(travel wave solutions) for the NV-equation (1) for E = Efix > 0 have zero scattering
amplitude for the two-dimensional Schrödinger equation (12).

Proposition 2. Let v, w satisfy (1) for E = Efix > 0, where

v(x, t) = V (x− ct), x ∈ R
2, c = (c1, c2) ∈ R

2,

V ∈ C3(R2), ∂jxV (x) = O(|x|−2−ε) for|x| → ∞, |j| ≤ 3 and some ε > 0,
(22a)

w(·, t) ∈ C(R2), w(x, t) → 0 as |x| → ∞, t ∈ R. (22b)

Then
f ≡ 0 on ME , (23)

where f is the scattering amplitude for v(x) = V (x) in the framework of the Schrödinger
equation (12).

The proof of Proposition 2 consists in the following.
We consider

T = {λ ∈ C : |λ| = 1}. (24)

We use that
ME ≈ T × T, E = Efix > 0, (25)

where diffeomorphism (25) is given by the formulas:

λ =
k1 + ik2√

E
, λ′ =

l1 + il2√
E

, (k, l) ∈ ME , (26)

k1 =

√
E

2

(

λ+
1

λ

)

, k2 =
i
√
E

2

( 1

λ
− λ

)

,

l1 =

√
E

2

(

λ′ +
1

λ′

)

, l2 =
i
√
E

2

( 1

λ′
− λ′

)

, (λ, λ′) ∈ T × T.

(27)

We use that in the variables λ, λ′ formulas (18), (19) take the form

fy(λ, λ
′, E) = f(λ, λ′, E) exp

[ i

2

√
E
(

λȳ +
y

λ
− λ′ȳ − y

λ′

)]

, (28)
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where (λ, λ′) ∈ T × T , y is considered as y = y1 + iy2,

f(λ, λ′, E, t) = f(λ, λ′, E, 0) exp
[

iE3/2t
(

λ3 +
1

λ3
− (λ′)3 −

( 1

λ′

)3)]
, (29)

where (λ, λ′) ∈ T × T , t ∈ R.
The assumptions of Proposition 2 and Lemmas 1 and 2 (with (18), (19) written as

(28), (29)) imply that

f(λ, λ′, E) exp
[ i

2

√
Et

(

λc̄+
c

λ
− λ′c̄− c

λ′

)]

=

f(λ, λ′, E) exp
[

iE3/2t
(

λ3 +
1

λ3
− (λ′)3 −

( 1

λ′

)3)]
(30)

for (λ, λ′) ∈ T × T , t ∈ R, where f is the scattering amplitude for v(x, 0) = V (x), c is
considered as c = c1 + ic2.

Property (16), identity (30) and the fact that λ3, λ−3, λ, λ−1, 1 are linear independent
on each nonempty open subset of T imply (23).

4. Proof of Theorem 1 and final remark. Theorem 1 follows from Proposition 1 and
Proposition 2.

Finally, note that the result of Theorem 1 does not hold, in general, without the
assumption that V (x) = O(e−α|x|) as |x| → ∞ for some α > 0: ”counter examples” to
Theorem 1 with rational bounded V decaying at infinity as O(|x|−2) are contained (in fact)
in [G1], [G2]. As regards prototypical algebraically decaying solitons for KP1 equation,
see [FA].
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