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Abstract

We consider the problem of learning a binary classifier from a training set of positive and
unlabeled examples, both in the inductive and in the transductive setting. This problem,
often referred to as PU learning, differs from the standard supervised classification prob-
lem by the lack of negative examples in the training set. It corresponds to an ubiquitous
situation in many applications such as information retrieval or gene ranking, when we have
identified a set of data of interest sharing a particular property, and we wish to automatically
retrieve additional data sharing the same property among a large and easily available pool
of unlabeled data. We propose a conceptually simple method, akin to bagging, to approach
both inductive and transductive PU learning problems, by converting them into series of
supervised binary classification problems discriminating the known positive examples from
random subsamples of the unlabeled set. We empirically demonstrate the relevance of the
method on simulated and real data, where it performs at least as well as existing methods
while being faster.

1 Introduction

In many applications, such as information retrieval or gene ranking, one is given a finite set of
data of interest sharing a particular property, and wishes to find other data sharing the same
property. In information retrieval, for example, the finite set can be a user query, or a set of
documents known to belong to a specific category, and the goal is to scan a large database of
documents to identify new documents related to the query or belonging to the same category.
In gene ranking, the query is a finite list of genes known to have a given function or to be
associated to a given disease, and the goal is to identify new genes sharing the same property
(Aerts et al., 2006). In fact this setting is ubiquitous in many applications where identifying
a data of interest is difficult or expensive, e.g., because human intervention is necessary or
expensive experiments are needed, while unlabeled data can be easily collected. In such cases
there is a clear opportunity to alleviate the burden and cost of interesting data identification
with the help of machine learning techniques.

More formally, let us assign a binary label to each possible data: positive (+1) for data
of interest, negative (−1) for other data. Unlabeled data are data for which we do not know
whether they are interesting or not. Denoting X the set of data, we assume that the “query”
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is a finite set of data P = {x1, . . . , xm} ⊂ X with positive labels, and we further assume that
we have access to a (possibly large) set U = {xm+1, . . . , xn} of unlabeled data. Our goal is to
learn, from P and U , a way to identify new data with positive labels, a problem often referred
to as PU learning. More precisely we make a distinction between two flavors of PU learning:

• Inductive PU learning, where the goal is to learn from P and U a function f : X → R

able to associate a score or probability to be positive f(x) to any data x ∈ X . This may
typically be the case in an image or document classification system, where a subset of the
web is used as unlabeled set U to train the system, which must then be able to scan any
new image or document.

• Transductive PU learning, where the goal is estimate a scoring function s : U → R from
P and U , i.e., where we are just interested is finding positive data in the set U . This
is typically the case in the disease gene ranking application, where the full set of human
genes is known during training and split between known disease genes P and the rest of
the genome U . In that case we are only interested in finding new disease genes in U .

Several methods for PU learning, reviewed in Section 2 below, reduce the problem to a binary
classification problem where we learn to discriminate P from U . This can be theoretically
justified, at least asymptotically, since the log-ratio between the conditional distributions of
positive and unlabeled examples is monotonically increasing with the log-ratio of positive and
negative examples (Elkan and Noto, 2008; Scott and Blanchard, 2009), and has given rise to
state-of-the-art methods such as biased support vector machine (biased SVM) (Liu et al., 2003)
or weighted logistic regression (Lee and Liu, 2003). Although this reduction suggests that
virtually any method for (weighted) supervised binary classification can be used to solve PU
learning problems, we put forward in this paper that some methods may be more adapted than
others in a non-asymptotic setting, due to the particular structure of the unlabeled class. In
particular, we investigate the relevance of methods based on aggregating classifiers trained on
artificially perturbed training sets, in the spirit of bagging (Breiman, 1996). Such methods are
known to be relevant to improve the performance of unstable classifiers, a situation which, we
propose, may occur particularly in PU learning. Indeed, in addition to the usual instability of
learning algorithms confronted to a finite-size training sets, the content of a random subsample
of unlabeled data in positive and negative examples is likely to strongly affect the classifier,
since the contamination of U in positive examples makes the problem more difficult. Variations
in the contamination rate of U may thus have an important impact on the trained classifier, a
situation which bagging-like classifiers may benefit from.

Based on this idea, we propose a general and simple scheme for inductive PU learning, akin
to an asymetric form of bagging for supervised binary classification. The method, which we call
bagging SVM, consists in aggregating classifiers trained to discriminate P from a small random
subsample of U , where the size of the random sample plays a specific role. This method can
naturally be adapted to the transductive PU learning framework. We demonstrate on simulated
and real data that bagging SVM performs at least as well as existing methods for PU learning,
while being often faster in particular when |P| << |U|.

This paper is organized as follows. After reviewing related work in Section 2, we present
the bagging SVM for inductive PU learning in Section 3, and its extension to transductive
PU learning in Section 4. Experimental results are presented in 5, followed by a Discussion in
Section 6.

2 Related work

A growing body of work has focused on PU learning recently. The fact that only positive and
unlabeled examples are available prevents a priori the use of supervised classification methods,
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which require negative examples in the training set. A first approach to overcome the lack of
negative examples is to disregard unlabeled examples during training and simply learn from the
positive examples, e.g., by ranking the unlabeled examples by decreasing similarity to the mean
positive example (Joachims, 1997) or using more advanced learning methods such as 1-class
SVM (Schölkopf et al., 2001; Manevitz and Yousef, 2001; Vert and Vert, 2006; De Bie et al.,
2007)

Alternatively, the problem of inductive PU learning has been studied on its own from a
theoretical viewpoint (Denis et al., 2005; Scott and Blanchard, 2009), and has given rise to a
number of specific algorithms. Several authors have proposed two-step algorithms, heuristic
in nature, which first attempt to identify negative examples in the unlabeled set, and then
estimate a classifier from the positive, unlabeled and likely negative examples (Manevitz and
Yousef, 2001; Liu et al., 2002; Li and Liu, 2003; Liu et al., 2003; Yu et al., 2004). Alternatively,
it was observed that directly learning to discriminate P from U , possibly after rebalancing the
misclassification costs of the two classes to account for the asymetry of the problem, leads to
state-of-the-art results for inductive PU learning. This approach has been studied, with different
weighting schemes, using a logistic regression or a SVM as binary classifier (Liu et al., 2003;
Lee and Liu, 2003; Elkan and Noto, 2008). Inductive PU learning is also related to and has
been used for novelty detection, when P is interpreted as “normal” data and U contains mostly
positive examples (Scott and Blanchard, 2009), or to data retrieval from a single query, when
P is reduced to a singleton (Shah et al., 2008).

Transductive PU learning is arguably easier than inductive PU learning, since we know in
advance the data to be screened for positive labels. Many semi-supervised methods have been
proposed to tackle transductive learning when both positive and negative examples are known
during training, including transductive SVM (Joachims, 1999), or many graph-based methods,
reviewed by Chapelle et al. (2006). Comparatively little effort has been devoted to the specific
transductive PU learning problem, with the notable exception of Liu et al. (2002), who call
the problem partially supervised classification and proposes an iterative method to solve it,
and Pelckmans and Suykens (2009) who formulate the problem as a combinatorial optimization
problem over a graph. Finally, Sriphaew et al. (2009) recently proposed a bagging approach
which shares similarities with ours, but is more complex and was only tested on a specific
application.

3 Bagging for inductive PU learning

Our starting point to learn a classifier in the PU learning setting is the observation that learning
to discriminate positive from unlabeled samples is a good proxy to our objective, which is to
discriminate positive from negative samples. Even though the unlabeled set is contaminated by
hidden positive examples, it is generally admitted that its distribution contains some information
which should be exploited. That is for instance, the foundation of semi-supervised methods.

Indeed, let us assume for example that positive and negative examples are randomly gen-
erated by class-conditional distributions P+ and P

−
with densities h+ and h

−
. If we model

unlabeled examples as randomly sampled from P+ with probability γ and from P
−
with prob-

ability 1− γ, then the distribution of unlabeled has a density

hu = γh+ + (1− γ)h
−
. (1)

Now notice that
hu(x)

h+(x)
= γ + (1− γ)

h
−
(x)

h+(x)
, (2)

showing that the log-ratio between the conditional distributions of positive and unlabeled ex-
amples is monotonically increasing with the log-ratio of positive and negative examples (Elkan
and Noto, 2008; Scott and Blanchard, 2009). Hence any estimator of the conditional probability

3



of positive vs. unlabeled data should in theory also be applicable to discriminate positive from
negative examples. This is the case for example of logistic regression or some forms of SVM
(Steinwart, 2003; Bartlett and Tewari, 207). In practice it seems useful to train classifiers to
discriminate P from U by penalizing more false negative than false positive errors, in order to
account for the fact that positive examples are known to be positive, while unlabeled exam-
ples are known to contain hidden positives. Using soft margin SVM while giving high weights
to false negative errors and low weights to false positive errors leads to the biased SVM ap-
proach described by Liu et al. (2003), while the same strategy using a logistic regression leads
to the weighted logistic regression approach of Lee and Liu (2003). Both methods, tested on
text categorization benchmarks, were shown to be very efficient in practice, and in particular
outperformed all approaches based on heuristic identifications of true negatives in U .

Among the many methods for supervised binary classification which could be used to dis-
criminate P from U , bootstrap aggregating or “bagging” is an interesting candidate (Breiman,
1996). The idea of bagging is to estimate a series of classifiers on datasets obtained by perturbing
the original training set through bootstrap resampling with replacement, and to combine these
classifiers by some aggregation technique. The method is conceptually simple, can be applied
in many settings, and works very well in practice (Breiman, 2001; Hastie et al., 2001). Bagging
generally improves the performance of individual classifiers when they are not too correlated to
each other, which happens in particular when the classifier is highly sensitive to small pertur-
bations of the training set. For example, Breiman (2001) showed that the difference between
the expected mean square error (MSE) of a classifier trained on a single bootstrap sample and
the MSE of the aggregated predictor increases with the variance of the classifier.

We propose that, by nature, PU learning problems have a particular structure that leads
to instability of classifiers, which can be advantageously exploited by a bagging-like procedure
which we now describe. Intuitively, an important source of instability in PU learning situations
is the empirical contamination γ̂ of U with positive examples, i.e., the percentage of positive
examples in U which on average equals γ in (1). If by chance U is mostly made of negative
examples, i.e., has low contamination by positive examples, then we will probably estimate
a better classifier than if it contains mostly positive examples, i.e., has high contamination.
Moreover, we can expect the classifiers in these different scenarii to be little correlated, since
intuitively they estimate different log-ratios of conditional distribution. Hence, in addition to the
“normal” instability of a classifier trained on a finite-size sample, which is exploited by bagging
in general, we can expect an increased instability in PU learning due to the sensitivity of the
classifier to the empirical contamination γ̂ of U in positive examples. In order to exploit this
sensitivity in a bagging-like procedure, we propose to randomly subsample U and train classifiers
to discriminate P from each subsample, before aggregating the classifiers. By subsampling U ,
we hope to vary in particular the empirical contamination between samples. This will induce a
variety of situations, some lucky (small contamination), some less lucky (large contamination),
which eventually will induce a large variability in the classifiers that the aggregation procedure
can then exploit.

In opposition to classical bagging, the size K of the samples generated from U may play
an important role to balance the accuracy against the stability of individual classifiers. On the
one hand, larger subsamples should lead on average to better classifiers, since any classification
method generally improves on average when more training points are available. On the other
hand, the empirical contamination varies more for smaller subsamples. More precisely, let us
denote by γ̂ the true contamination rate in U , that is, the true proportion of positive examples
hidden in U . Whenever a bootstrap sample Ut of size K is drawn from U , its empirical number
of positive examples is a binomial random variable ∼ B(K, γ̂), leading to a contamination rate
γ̂t with mean and variance:

E(γ̂t) = γ̂ and V(γ̂t) =
1

K
γ̂(1− γ̂) .
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Smaller values of K therefore increase the proportion of “lucky” subsamples, and more generally
the variability of classifiers, a property which is beneficial for the aggregation procedure. Finally
this suggests that the size K of subsample is a parameter whose effect should be studied and
perhaps tuned.

In summary, the method we propose for PU learning is presented in Algorithm 1. We call
it bagging SVM when the classifier used to discriminate P from a random subsample of U is
a biased SVM. It is akin to bagging to learn to discriminate P from U , with two important
specificities. First, only U is subsampled. This is to account for the fact that elements in P are
known to be positive, and moreover that the number of positive examples is often limited.Second,
the size of subsamples is a parameter K whose effect needs to be studied. If an optimal value
exists, then this parameter may need to be adjusted.

The number T of bootstrap samples is also a user-defined parameter. Intuitively, the larger
T the better, although we observed empirically little improvement for T larger than 100. Finally,
although we propose to aggregate the T classifiers by a simple average, other aggregation rules
could easily be used. On preliminary experiments on simulated and real data, we did not
observed significant differences between the simple average and majority voting, another popular
aggregation method.

4 Bagging SVM for transductive PU learning

We now consider the situation where the goal is only to assign a score to the elements of U
reflecting our confidence that these elements belong to the positive class. Liu et al. (2002) have
studied this same problem which they call “partially supervised classification”. Their proposed
technique combines Naive Bayes classification and the Expectation-Maximization algorithm to
iteratively produce classifiers. The training scores of these classifiers are then directly used to
rank U . Following this approach, a straightforward solution to the transductive PU learning
problem is to train any classifier to discriminate between P and U and to use this classifier to
assign a score to the unlabeled data that were used to train it. Using SVMs this amounts to using
the biased SVM training scores. We will subsequently denote this approach by transductive
biased SVM.

However, one may argue that assigning a score to an unlabeled example that has been used
as negative training example is problematic. In particular, if the classifier fits too tightly to
the training data, a false negative xi will hardly be given a high training score when used as a
negative. In a related situation in the context of semi-supervised learning, Zhang et al. (2009)
showed for example that unlabeled examples used as negative training examples tend to have
underestimated scores when a SVM is trained with the classical hinge loss. More generally, most
theoretical consistency properties of machine learning algorithms justify predictions on samples
outside of the training set, raising questions on the use of all unlabeled samples as negative
training samples at the same time.

Alternatively, the inductive bagging PU learning lends itself particularly well to the trans-
ductive setting, through the procedure described in Algorithm 2. Each time a random subsample
Ut of U is generated, a classifier is trained to discriminate P from Ut, and used to assign a pre-
dictive score to any element of U \ Ut. At the end the score of any element x ∈ U is obtained
by aggregating the predictions of the classifiers trained on subsamples that did not contain
x (the counter n(x) simply counts the number of such classifiers). As such, no point of U is
used simultaneously to train a classifier and to test it. In practice, it is useful to ensure that
all elements of U are not too often in Ut, in order to average the predictions over a sufficient
number of classifiers.
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Algorithm 1 Inductive bagging PU learning
INPUT : P , U , K = size of bootstrap samples, T = number of bootstraps
OUTPUT : a function f : X → R

for t = 1 to T do

Draw a subsample Ut of size K from U .
Train a classifier ft to discriminate P against Ut.

end for

Return

f =
1

T

T∑

t=1

ft

Algorithm 2 Transductive bagging PU learning
INPUT : P , U , K = size of bootstrap samples, T = number of bootstraps
OUTPUT : a score s : U → R

Initialize ∀x ∈ U , n(x)← 0, f(x)← 0
for t = 1 to T do

Draw a bootstrap sample Ut of size K in U .
Train a classifier ft to discriminate P against Ut.
For any x ∈ U \ Ut, update:

f(x)← f(x) + ft(x) ,

n(x)← n(x) + 1 .

end for

Return s(x) = f(x)/n(x) for x ∈ U

5 Experiments

In this section we investigate the empirical behavior of our bagging algorithm on one simulated
dataset (Section 5.1) and two real applications: text retrieval with the 20 newsgroup benchmark
(Section 5.2), and reconstruction of gene regulatory networks (Section 5.3). We compare the
new bagging SVM to the state-of-the-art biased SVM, and also add in the comparison for
real data two one-class approaches, namely, ranking unlabeled examples by decreasing mean
similarity to the positive examples (called Baseline below), and the one-class SVM (Schölkopf
et al., 2001). Both bagging and biased methods involve an SVM with asymetric penalties C+

and C
−

for the positive and negative class, respectively. By default we always set them to
ensure that the total penalty is equal for the two classes, i.e., C+n+ = C

−
n
−
, where n+ and

n
−
are the number of positive and negative examples fed to the SVM, and optimized the single

parameter C = C+ +C
−
over a grid. We checked on all experiments that this choice was never

significantly outperformed by other penalty ratio C+/C−
.

5.1 Simulated data

A first series of experiments were conducted on simulated data to compare our bagging procedure
to the biased approach in an inductive setting. We consider the simple situation where the
positive examples are generated from an isotropic Gaussian distribution in R

p : P ∼ P+ =
N (0p, σ ∗ Ip), with p = 50 and σ = 0.6, while the negative examples are generated from another
Gaussian distribution with same isotropic covariance and a different mean, of norm 1. We
replicate the following iteration 50 times for different values of γ :

• Draw a sample P of 5 positives examples, and a sample U of 50 unlabeled examples from
γ ∗ P+ + (1− γ) ∗ P

−
.
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• Train respectively the biased and bagging logit (with 200 bootstraps)1.

• Compare their performance on a test set of 1000 examples containing 50% positives.

For K, we tested equally spaced values between 1 and 50, and we varied γ on the interval
[0; 0.9]. The performance is measured by computing the area under the Receiving Operator
Characteristic curve (AUC) on the independent test set. Figure 1 (left) shows the performance
of bagging logit for different levels of contamination of U , as a function of K, the size of the
random samples. The uppermost curve thus corresponds to γ = 0, i.e., the case where all
unlabeled data are negative, while the bottom curve corresponds to γ = 0.8, i.e., the case where
80% of unlabeled data are positive. Note that K = 50 corresponds to classical bagging on
the biased logit classifier, i.e., to the case where all unlabeled examples are used to train the
classifier.

We observe that in the classical setting of supervised binary classification where U is not
contaminated by positive samples (γ = 0), the bagging procedure does not improve performance,
whatever the size of the bootstrap samples. On the other hand, as contamination increases,
we observe an overall decrease of the performance, confirming that the classification problem
becomes more difficult when contamination increases. In addition, the bagging logit always
succeeds in reaching at least the same performance for some value of K below 50, even for high
rates of contamination. Figure 1 (right) shows the evolution of AUC as γ increases, for both
methods. For the bagging logit we report the AUC reached for the best K value. We see that
bagging logit slightly outperforms biased logit method.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

K

A
U

C

0 0.2 0.4 0.6 0.8
0.55

0.6

0.65

0.7

0.75

0.8

Contamination

A
U

C

 

 
Biased logit
Bagging logit

Figure 1: Results on simulated data. Left: AUC of the bagging logit as a function of K, the size
of the bootstrap samples, on simulated data. Each curve, from top to bottom, corresponds to a
contamination level γ ∈ {0; 0.1; 0.2; . . . ; 0.8}. Right Performance of two methods as a function
of γ, the contamination level, on simulated data. The performance of bagging logit was taken
at the optimal K value.

To further illustrate the assumption that motivated bagging SVM, namely that decreasing
K would decrease the average performance of single classifiers but would increase their variance
due to the variations in contamination, we show in Figure 2 a scatter plot of the AUC of
individual classifiers as a function of the empirical contamination of the bootstrap sample γ̂,
for two values of K (10 and 40). Here the mean contamination was set to γ = 0.2. Obviously,
the variations of γ̂ are much larger for K = 10 (between 0 and 0.5) than for K = 40 (between

1The bagging logit corresponds to the procedure described above, when the classifier is a logistic regression.
This is the same for the biased logit, see also(Lee and Liu, 2003)
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0.1 and 0.25). The correlation coefficient between γ̂ and the performance (reported above each
plot) is strongly negative, in particular for smaller K. It is quite clear that less contaminated
subsamples tend to yield better classifiers, and that the variation in the contamination is an
important factor to increase the variance between individual predictors, which aggregation can
benefit from.

0 0.1 0.2 0.3 0.4 0.5
0.45

0.5

0.55

0.6

0.65

0.7
K=10 ,corr=−0.45988

gamma−hat

A
U

C

gamma=0.2

0.1 0.15 0.2 0.25
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74
K=40 ,corr=−0.33903

gamma−hat

A
U

C

Figure 2: Distribution of AUC and γ̂ over the 500 iterations of one bootstrap loop on the
simulated dataset, γ = 0.2.

5.2 Newsgroup dataset

The 20 Newsgroup benchmark is widely used to test PU learning methods. The version we used
is a collection of 11293 articles partitioned into 20 subsets of roughly the same size (around 500)2,
corresponding to post articles of related interest. For each newsgroup, the positive class consists
of those ∼500 articles known to be relevant, while the negative class is made of the remainder.
After pre-processing, each article is represented by a 8165-dimensional vector, using the TFIDF
representation over a dictionnary of 8165 words (Joachims, 1997).

To simulate a PU learning problem, we applied the following strategy. For a given news-
group, we created a set P of known positive examples by randomly selecting a given number
of positive examples, while U contains the non-selected positive examples and all negative ex-
amples. We varied the size NP of P in {5, 10, 20, 50, 100, 200, 300} to investigate the influence
of the number of known positive examples. For each newsgroup and each value of NP , we
train all 4 methods described above (bagging SVM, biased SVM, baseline, one-class SVM) and
rank the samples in U by decreasing score (transductive setting). We then compute the area
under the ROC curve (AUC), and average this measure over 10 replicates of each newsgroup
and each value of NP . For bagging and biased SVM, we varied the C parameter over the grid
[exp(−12 : 2 : 2)], while we vary parameter ν in [0.1 : 0.1 : 0.9] for 1-class SVM. We only used
the linear kernel.

We first investigated the influence of T . Figure 3 shows, for the first newsgroup, the perfor-
mance reached as a function of T , for different settings in NP and K. As expected we observe
that in general the performance increases with T , but quickly reaches a plateau beyond which
additional bootstraps do not improve performance. Overall the smaller K, the larger T must

2We used the Matlab pre-processed version available at http://renatocorrea.googlepages.com/

ng2011293x8165itrn.mat
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be to reach the plateau. From these preliminary results we set T = 35 for K ≤ 20, and T = 10
for K > 30, and kept it fix for the rest of the experiments. To further clarify the benefits of
bagging, we show in Figure 5.2 the performance of the bagging SVM versus the performance
of a SVM trained on a single bootstrap sample (T = 1), for different values of K and a fixed
number of positives NP = 10. We observe that, for K below 200, aggregating classifiers over
several bootstrap subsamples is clearly beneficial, while for larger values of K it does not really
help. This is coherent with the observation that SVM usually rarely benefit from bagging: here
the benefits come from our particular bagging scheme. Interestingly, we see that very good
performance is reached even for small values of K with the bagging.
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Figure 3: Performance on one newsgroup as a function of the number of boostraps T , for
different values of NP and K.
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Figure 4: Performance on one newgroup of bagging SVM (bagging AUC ) vs a SVM trained on
a single bootstrap sample (mean AUC ), for different values of K.

Figure 5 shows the mean AUC averaged over the 10 folds and the 20 newsgroups for bagging
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SVM as a function of K, and compares it to that of the biased SVM. More precisely, each point
on the curve corresponds to the performance averaged over the 20 Newsgroups after choosing a
posteriori the best C parameter for each newsgroup. This is equivalent to comparing optimal
cases for both methods. Contrary to what we observed on simulated date, we observe that
K has in general very little influence on the performance. The AUC of the bagging SVM is
similar to that of the biased SVM for most values of K, although for NP larger than 50, a
slight advantage can be observed for the biased SVM over bagging SVM when K is too small.
We conclude that in practice, parameter K may not need to be finely tuned and we advocate
to keep it moderate. In all cases, K = NP seems to be a safe choice for the bagging SVM.

Finally, Figure 6 shows the average AUC over the 20 newsgroups for all four methods, as
a function of NP . Overall all methods are very similar, with the Baseline slightly below the
others. In details, the bagging SVM curve dominates all other methods for NP ≥ 20, while the
1-class SVM is the one which dominates for smaller values of NP . Although the differences in
performance are small, the bagging SVM outperforms the biased SVM significantly for NP > 20
according to a Wilcoxon paired sample test (at 5% confidence). For small values of NP however,
no significant difference can be proven in either way between bagging SVM and 1-class SVM,
which remains a very competitive method.

5 20 100 500 2050 5500
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0.9
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0.94

0.96

0.98

1
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U
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NP=10
NP=20
NP=50
NP=100
NP=200
NP=300

Figure 5: Macro averaged performance of the bagging SVM as a function of K. The dashed
horizontal lines show the AUC level of the biased SVM. The curves are plotted for different
values of NP , the size of the positive set.

5.3 E. coli dataset : inference of transcriptional regulatory network

In this section we test the different PU learning strategies on the problem of inferring the
transcription regulatory network of the bacteria Escherichia coli from gene expression data.
The problem is, given a transcription factor (TF), to predict which genes it regulates. Following
Mordelet and Vert (2008), we can formulate this problem as transductive PU learning by starting
from known regulated genes (considered positive examples), and looking for additional regulated
genes in the bacteria’s genome.

To represent the genes, we use a compendium of microarray expression profiles provided
by Faith et al. (2008), in which 4345 genes of the E. Coli genome are represented by vectors
in dimension 445, corresponding to their expression level in 445 different experiments. We
extracted the list of known regulated genes for each TF from RegulonDB (Salgado et al., 2006).
We restrict ourselves to 31 TFs with at least 8 known regulated genes.

For each TF, we ran a double 3-fold cross validation with an internal loop on each training
set to select parameter C of the SVM (or ν for the 1-class SVM). Following Mordelet and Vert
(2008), we normalize the expression data to unit norm, use a Gaussian RBF kernel with σ = 8,
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Figure 6: Performance of the baseline method, the 1-class SVM, the biased SVM and the newly
proposed bagging SVM methods on the 20 Newsgroups dataset. Each curve shows how the
mean AUC varies with the number of positive training examples NP . For each value of NP ,
the performance of bagging SVM is computed at the optimal value for K, as shown in Figure
5.

and perform a particular cross-validation scheme to ensure that operons are not split between
folds. Finally, following our previous results on simulated data and the newsgroup benchmark,
we test two variants of bagging SVM, setting K successively to NP and 5 ∗NP . These choices
are denoted respectively by bagging1 SVM and bagging5 SVM.

Figure 5.3 shows the average precision/recall curves of all methods tested. Overall we observe
that all three PU learning methods give significantly better results than the two methods which
use only positive examples (Wilcoxon paired sample test at 5% significance level). No significant
difference was found between the three PU learning methods. This confirms again that for
different values of K bagging SVM matches the performance of biased SVM.
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Figure 7: Precision-recall curves to compare the performance between the baggin1 SVM, the
bagging5 SVM, the biased SVM, the 1-class SVM and the baseline method.

6 Discussion

The main contribution of this work is to propose a new method, bagging SVM, both for inductive
and transductive PU learning, and to assess in detail its performance and the influence of various
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parameters on simulated and real data.
The motivation behind bagging SVM was to exploit an intrinsic feature of PU learning to

benefit from classifier aggregation through a random subsample strategy. Indeed, by randomly
sampling K examples from the unlabeled examples, we can expect various contamination rates,
which in turn can lead to very different single classifiers (good ones when there is little con-
tamination, worse ones when contamination is high). Aggregating these classifiers can in turn
benefit from the variations between them. This suggests that K may play an important role
in the final performance of bagging SVM, since it controls the trade-off between the mean and
variance of individual classifiers. While we showed on simulated data that this is indeed the
case, and that there can be some optimum K to reach the best final accuracy, the two experi-
ments on real data did not show any strong influence of K and suggested that K = NP may be
a safe default choice. This is a good news since it does not increase the number of parameters
to optimize for the bagging SVM and leads to balanced training sets that most classification
algorithms can easily handle.

The comparison between different methods is mitigated. While bagging SVM outperforms
biased SVM on simulated data, they are not significantly different on the two experiments with
real data. Interestingly, while these PU learning methods were significantly better than two
methods that learned from positive examples only on the gene regulatory network example,
the 1-class SVM behaved very well on the 20 newsgroup benchmark, even outperforming the
PU learning methods when less than 10 training examples were provided. Many previous
works, including Liu et al. (2003) and Yu et al. (2004) discard 1-class SVMs for showing a
bad performance in terms of accuracy, while Manevitz and Yousef (2001) report the lack of
robustness of this method arguing that it has proved very sensitive to changes of parameters.
Our results suggest that there are cases where it remains very competitive, and that PU learning
may not always be a better strategy than simply learning from positives.

Finally, the main advantage of bagging SVM over biased SVM is the computation burden,
in particular when there are far more unlabeled than positive examples. Indeed, a typical
algorithm, such as an SVM, trained on N samples, has time complexity proportional to Nα,
with α between 2 and 3. Therefore, biased SVM has complexity proportional to (P +U)α while
bagging SVM’s complexity is proportional T ∗ (P +K)α. With the default choice K = P ratio
of CPU time to train the biased SVM vs the bagging SVM can therefore be expected to be
((P + U)/(2P ))α /T . Then we conclude that bagging SVM should be faster than biased SVM
as soon as U/P > 2T 1/α − 1. For example, taking T = 35 and α = 3, bagging SVM should
be faster than biased SVM as soon as U/P > 6, a situation very often encountered in practice
where the ratio U/P is more likely to be several orders of magnitude larger. In the two real
datasets, this was always the case. Table 6 reports CPU time and performance measure for
training bagging SVM on the first fold of newsgroup 1 with C fixed at its best value a posteriori
and NP = 10.

CPU AUC-AUP
Bagging K=10 K=50 K=200 K=10 K=50 K=200

T
35 13 39 91 0.921-0.531 0.917-0.524 0.902-0.518
50 18 54 127 0.920-0.539 0.914-0.522 0.904-0.522
200 72 170 473 0.918-0.539 0.910-0.528 0.904-0.511

Table 1: CPU time and performance measures for different settings of T and K for bagging
SVM.

In comparison, the biased SVM’s CPU time is 227s for AUC = 0.932 and AUP = 0.491.
This confirms that for reasonable values of T and K, the bagging SVM is much faster than the
biased SVM for a comparable performance.
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