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Let X = {X(t), t ∈ R N } be a Gaussian random field with values in R d defined by

 to the anisotropic metric space (R N , ρ), where ρ(s, t) = N j=1 |s j -t j | H j and (H 1 , . . . , H N ) ∈ (0, 1) N is a given vector. The extended notion of packing dimension profile is of independent interest.

Introduction

Fractal dimensions such as Hausdorff dimension, box-counting dimension and packing dimension are useful tools in studying fractals [see, e.g., [START_REF] Falconer | Fractal Geometry -Mathematical Foundations and Applications[END_REF]], as well as in characterizing roughness or irregularity of stochastic processes and random fields. We refer to [START_REF] Taylor | The measure theory of random fractals[END_REF] and [START_REF] Xiao | Random fractals and Markov processes[END_REF] for extensive surveys on results and techniques for investigating fractal properties of Markov processes, and to [START_REF] Adler | The Geometry of Random Fields[END_REF], [START_REF] Kahane | Some Random Series of Functions[END_REF], [START_REF] Khoshnevisan | Multiparameter Processes: An Introduction to Random Fields[END_REF] and [START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF]Xiao ( , 2009a) ) for geometric results for Gaussian random fields.

Let X = {X(t), t ∈ R N } be a Gaussian random field with values in R d . For any set E ⊆ R N , let X(E) = {X(t), t ∈ E} and GrX(E) = (t, X(t)) : t ∈ E be the range and graph of X respectively. It is known that if X is a fractional Brownian motion or the Brownian sheet, the packing dimensions of X [0, 1] N and GrX [0, 1] N coincide with their Hausdorff dimensions. However, when E ⊆ R N is an arbitrary Borel set, significant difference between the Hausdorff and packing dimensions of the image X(E) may appear. [START_REF] Talagrand | Fractional Brownian motion and packing dimension[END_REF] proved that, even for such "nice" Gaussian random fields as fractional Brownian motion and the Brownian sheet, the Hausdorff and packing dimensions of X(E) can be different because they depend on different aspects of the fractal structure of E. [START_REF] Xiao | Packing dimension of the image of fractional Brownian motion[END_REF] further showed that the packing dimension of X(E) is determined by the packing dimension profiles introduced by Falconer and Howroyd (1997) [see Section 2 for the definition].

On the other hand, as noted in [START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF][START_REF] Xiao | A packing dimension theorem for Gaussian random fields[END_REF], the fractal dimensions of the range X [0, 1] N and graph GrX [0, 1] N themselves become more involved when X is a general Gaussian random field. To be more specific, let X = {X(t), t ∈ R N } be a Gaussian random field with values in R d defined on a probability space (Ω, F, P) by X(t) = X 1 (t), . . . , X d (t) , ∀t ∈ R N , (

where X 1 , . . . , X d are independent copies of a real-valued, centered Gaussian random field X 0 = {X 0 (t), t ∈ R N }. When X 0 is at least approximately isotropic in the sense that

E (X 0 (s) -X 0 (t)) 2 φ( t -s ), ∀ s, t ∈ [0, 1] N , ( 1.2) 
where φ : R + → R + is a nondecreasing and continuous function with φ(0) = 0 and • (here and throughout the paper) is the Euclidean norm, and where f (x) g(x) for x ∈ T means that the function f (x)/g(x) is bounded from below and above by positive and finite constants that do not depend on x ∈ T , [START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF] introduced an upper index α * and a lower index α * for φ at 0 [see Section 2 for their definitions] and proved that dim H X [0, 1] N = min d, N α * , a.s. (1.3) and

dim H GrX [0, 1] N = min N α * , N + (1 -α * )d , a.s., (1.4) 
where dim H E denotes Hausdorff dimension of E. [START_REF] Xiao | A packing dimension theorem for Gaussian random fields[END_REF] showed that the packing dimensions of X [0, 1] N and GrX where dim P E denotes the packing dimension of E. The results (1.3)- (1.6) show that, similar to the well-known cases of Lévy processes [see [START_REF] Pruitt | Packing and covering indices for a general Lévy process[END_REF]], the Hausdorff dimensions of X [0, 1] N and GrX [0, 1] N may be different from their packing dimensions. In recent years, there has been a lot of interest in studying anisotropic random fields such as fractional Brownian sheets or solution to the stochastic heat equation. [START_REF] Ayache | Asymptotic growth properties and Hausdorff dimension of fractional Brownian sheets[END_REF], Wu andXiao (2007, 2009) and Xiao (2009a) have shown that, when X 0 is anisotropic, the Hausdorff dimensions of the range and graph of the Gaussian random field X defined by (1.1) can be very different from the approximately isotropic case. In particular, the notion of Hausdorff dimension on R N equipped with the anisotropic metric ρ defined by

ρ(s, t) = N j=1 |s j -t j | Hj , ∀s, t ∈ R N (1.7)
is needed in order to determine the Hausdorff dimension of X(E). In the above and in the sequel, H = (H 1 , . . . , H N ) ∈ (0, 1) N is a fixed vector.

The main objective of this paper is to study the packing dimension of the range X(E) for a class of anisotropic Gaussian random fields defined as in (1.1). In particular, we determine the packing dimension of the range X([0, 1] N ) when (1.2) is replaced by Condition (C) below and estimate the packing dimension of X(E) for a general Borel set E ⊂ R N . For this latter purpose, we first extend the ideas in [START_REF] Falconer | Packing dimensions for projections and dimension profiles[END_REF] and introduce packing dimension profiles in the metric space (R N , ρ). For comparison purpose we also determine the Hausdorff dimensions of the X([0, 1] N ) and GrX([0, 1] N ) and show that they are determined by the upper index α * and (H 1 , . . . , H N ).

The rest of the paper is organized as follows. In Section 2 we recall some basic facts about Gaussian random fields, construct a class of interesting examples of anisotropic Gaussian random fields. We also recall the definition of packing dimension profile of [START_REF] Falconer | Packing dimensions for projections and dimension profiles[END_REF]. In Section 3 we provide the definition and some basic properties of packing dimension in the metric space (R N , ρ), and extend the packing dimension profiles of [START_REF] Falconer | Packing dimensions for projections and dimension profiles[END_REF] to (R N , ρ). Results in this section may have applications beyond the scope of the present paper. For example, they may be useful for studying self-affine fractals. We should mention that another extended notion of packing dimension profiles has also been developed by [START_REF] Khoshnevisan | Packing dimension profiles and Lévy processes[END_REF] for studying the packing dimension of the range of a Lévy process. In Section 4, we determine the packing dimension of X(E), where E can either be [0, 1] N or a general Borel set. We prove the upper bound by using a standard covering argument. The method for proving the lower bound for the packing dimension is potential-theoretic. It can be viewed as an analogue of the classical and powerful "capacity argument" [based on the Frostman theorem] for Hausdorff dimension computation. Finally the Hausdorff dimensions of X [0, 1] N and GrX [0, 1] N are given in Section 5.

We will use K to denote an unspecified positive constant which may differ in each occurrence.

Preliminaries

2.1. Anisotropic Gaussian random fields. Let X = {X(t), t ∈ R N } be an (N, d)-Gaussian random field defined by (1.1). To demonstrate the main differences in the fractal dimension properties between the isotropic and anisotropic cases, we assume that the real-valued centered Gaussian random field X 0 = {X 0 (t), t ∈ R N } satisfies X 0 (0) = 0 and the following Condition (C):

(C) Let φ : [0, δ 0 ) → [0, ∞) be a non-decreasing, right continuous function with φ(0) = 0. For every compact interval T ⊂ R N , there exist positive constants δ 0 and K ≥ 1 such that

K -1 φ 2 (ρ(s, t)) ≤ E X 0 (t) -X 0 (s) 2 ≤ K φ 2 (ρ(s, t)) (2.1)
for all s, t ∈ T with ρ(s, t) ≤ δ 0 , where ρ is the metric defined in (1.7)

The upper index of φ at 0 is defined by

α * = inf β ≥ 0 : lim r→0 φ(r) r β = ∞ (2.2)
with the convention inf ∅ = ∞. Analogously, the lower index of φ at 0 is defined by

α * = sup β ≥ 0 : lim r→0 φ(r) r β = 0 (2.3)
with the convention sup ∅ = 0.

When

X 0 = {X 0 (t), t ∈ R N } satisfies (1.2), Condition (C) holds with H 1 = • • • = H N = 1
and the above upper and lower indices α * and α * coincide with those defined in [START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF]Xiao ( , 2009a)). When X 0 has stationary and isotropic increments, α * and α * coincide with the upper and lower indices of σ(h) (which is a function of h ), where

σ 2 (h) = E X 0 (t + h) -X 0 (t) 2 , ∀ h ∈ R N . (2.4)
However, the class of Gaussian random fields with α * = α * in this paper is much wider than the so-called index-α Gaussian fields in [START_REF] Adler | The Geometry of Random Fields[END_REF] or [START_REF] Khoshnevisan | Multiparameter Processes: An Introduction to Random Fields[END_REF].

As in [START_REF] Xiao | A packing dimension theorem for Gaussian random fields[END_REF], many interesting examples of Gaussian random fields satisfying Condition (C) are those with stationary increments. Hence we collect some basic facts about them. Suppose X 0 = {X 0 (t), t ∈ R N } has stationary increments and continuous covariance function R(s, t) = E X(s)X(t) . Then, according to Yaglom (1957), R(s, t) can be represented as

R(s, t) = R N e i s,λ -1 e -i t,λ -1 ∆(dλ) + s, Qt , (2.5) 
where x, y is the ordinary scalar product in R N , Q is an N × N non-negative definite matrix and ∆(dλ) is a nonnegative symmetric measure on R N \{0} satisfying

R N λ 2 1 + λ 2 ∆(dλ) < ∞.
(2.6)

The measure ∆ is called the spectral measure of X. It follows from (2.5) that X has the following stochastic integral representation:

X 0 (t) = R N e i t,λ -1 W (dλ) + Y, t , (2.7) 
where Y is an N -dimensional Gaussian random vector with mean 0 and W (dλ) is a centered complex-valued Gaussian random measure which is independent of Y and satisfies

E W (A)W (B) = ∆(A ∩ B) and W (-A) = W (A)
for all Borel sets A, B ⊆ R N . Since the linear term Y, t in (2.7) will not have any effect on fractal dimensions of the range and graph of X, we will simply assume Y = 0. Consequently, we have

σ 2 (h) = E X 0 (t + h) -X 0 (t) 2 = 2 R N 1 -cos h, λ ∆(dλ). (2.8)
It is important to observe that the incremental-variance function σ 2 (h) in (2.8) is a negative definite function in the sense of I. J. Schoenberg and thus can be viewed as the characteristic exponent of a symmetric infinitely divisible distribution. See [START_REF] Berg | Potential Theory on Locally Compact Abelian Groups[END_REF] for more information on negative definite functions. We remark that the class of Gaussian random fields satisfying Condition (C) is large. It not only includes fractional Brownian sheets of index H = (H 1 , . . . , H N ), the operator-scaling Gaussian fields with stationary increments in [START_REF] Xiao | A packing dimension theorem for Gaussian random fields[END_REF] and solutions to the stochastic heat equation [in all these cases, φ(r) = r], but also the following subclass that can be constructed from general subordinators. For the definition of a completely monotone function and its connection to the Laplace exponent of a subordinator, see [START_REF] Berg | Potential Theory on Locally Compact Abelian Groups[END_REF], [START_REF] Bertoin | Lévy Processes[END_REF] or Sato (1999).

Proposition 2.1. Let φ be a completely monotone function and let σ 2 1 be a negative definite function on

R N . Then σ 2 (u) = φ(σ 2 1 (u)
) is also a negative definite function. In particular, there is a centered Gaussian random field X 0 with stationary increments such that X 0 (0

) = 0 and E (X 0 (s) -X 0 (t)) 2 = φ(σ 2 1 (t -s)) for all s, t ∈ R N .
Proof. For completeness, we provide a proof which is motivated by the subordination argument for Lévy processes; see e.g. [START_REF] Bertoin | Lévy Processes[END_REF] or Sato (1999). Let T = {T (r), r ≥ 0} be a subordinator with Laplace exponent φ, and let Y = {Y (r), r ≥ 0} be a symmetric Lévy process with values in R N and characteristic exponent σ 2 1 (u) (u ∈ R N ). We assume that T and Y are independent. Then a conditioning argument shows that the subordinated process Z defined by Z(r) = Y (T (r)) for r ≥ 0 is also a Lévy process with values in R N whose characteristic function is given by

E e iuZ(r) = E e -T (r)σ 2 1 (u) = e -rφ(σ 2 1 (u)) .
This proves the conclusion that the function σ 2 (u) = φ(σ 2 1 (u)) is negative definite.

Since φ may have different upper and lower indices and σ 2 1 can be chosen to be the incremental variance of any anisotropic Gaussian field with stationary increments, Proposition 2.1 produces a quite large class of Gaussian random fields that satisfy Condition (C) with 0 < α * < α * ≤ 1. Such random fields can also be constructed by choosing appropriately the spectral measures ∆ in (2.5) or by modifying the constructions of Lévy processes with different upper and lower Blumenthal-Getoor indices [see [START_REF] Pruitt | Packing and covering indices for a general Lévy process[END_REF] and the references therein for more information].

Sample path continuity of Gaussian fields is well studied and there are several ways to determine modulus of continuity of Gaussian random fields; see, e.g., [START_REF] Dudley | Sample functions of the Gaussian proceses[END_REF] and [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF] for a review. The following lemma is a consequence of Corollary 2.3 in [START_REF] Dudley | Sample functions of the Gaussian proceses[END_REF]. It will be useful for deriving upper bounds for the Hausdorff and packing dimensions of the range and graph.

Lemma 2.2. Assume X 0 = {X 0 (t), t ∈ R N }

is a real-valued centered Gaussian random field that satisfies the upper bound in (2.1). If the upper and lower indices of φ at 0 satisfy

0 < α * ≤ α * ≤ 1, then for every compact interval T ⊂ R N , there exists a finite constant K such that lim sup δ→0 sup s,t∈T :ρ(s,t)≤δ |X 0 (s) -X 0 (t)| f (δ) ≤ K, a.s., (2.9 
)

where f (h) = φ(h) log φ(h) 1/2 .
2.2. Packing dimension and packing dimension profile. Packing dimension and packing measure on R N , • were introduced in the early 1980s by [START_REF] Tricot | Two definitions of fractional dimension[END_REF] and [START_REF] Taylor | Packing measure and its evaluation for a Brownian path[END_REF] as dual concepts to Hausdorff dimension and Hausdorff measure. The notion of packing dimension profiles was introduced by Falconer and Howroyd (1997) for computing the packing dimension of orthogonal projections. Their definition of packing dimension profiles is based on potential-theoretical approach. Later Howroyd (2001) defined another packing dimension profile from the point of view of box-counting dimension. Recently, [START_REF] Khoshnevisan | Packing dimension profiles and fractional Brownian motion[END_REF] proved that the packing dimension profiles of [START_REF] Falconer | Packing dimensions for projections and dimension profiles[END_REF] and [START_REF] Howroyd | Box and packing dimensions of projections and dimension profiles[END_REF] are the same.

For any ε > 0 and any bounded set E ⊂ R N , let N (E, ε) be the smallest number of balls of radius ε needed to cover E. The upper box-counting dimension of E is defined as

dim B E = lim sup ε→0 log N (E, ε)
-log ε and the packing dimension of E is defined as

dim P E = inf sup n dim B E n : E ⊂ ∞ n=1 E n , (2.10) 
see [START_REF] Tricot | Two definitions of fractional dimension[END_REF] or Falconer (1990, p.45). It is well known that 0

≤ dim H E ≤ dim P E ≤ dim B E ≤ N for every set E ⊂ R N .
For a finite Borel measure µ on R N , its packing dimension is defined by

dim P µ = inf{dim P E : µ(E) > 0 and E ⊂ R N is a Borel set}. (2.11)
Falconer and Howroyd (1997) defined the s-dimensional packing dimension profile of µ as

Dim s µ = sup β ≥ 0 : lim inf r→0 F µ s (x, r) r β = 0 for µ-a.a. x ∈ R N , ( 2.12) 
where, for any s > 0, F µ s (x, r) is the s-dimensional potential of µ defined by

F µ s (x, r) = R N min{1, r s y -x -s } dµ(y). (2.13)
Falconer and Howroyd (1997) showed that

0 ≤ Dim s µ ≤ s and Dim s µ = dim P µ if s ≥ N. (2.14)
Note that the identity in (2.14) provides the following equivalent characterization of dim P µ in terms of the potential F µ N (x, r):

dim P µ = sup β ≥ 0 : lim inf r→0 F µ N (x, r) r β = 0 for µ-a.a. x ∈ N . (2.15)
For any Borel set E ⊆ N, the s-dimensional packing dimension profile of E is defined by

Dim s E = sup Dim s µ : µ ∈ M + c (E) , ( 2.16) 
where M + c (E) denotes the family of finite Borel measures with compact support in E. It follows from (2.14) that 0 ≤ Dim s E ≤ s and Dim s E = dim P E if s ≥ N . This last fact gives a measure-theoretic characterization of dim P E in terms of packing dimension profiles.

Packing dimension and packing dimension profile on anisotropic metric spaces

Ordinary Hausdorff and packing dimension (i.e. those in the Euclidean metric) may not be able to characterize the Hausdorff and packing dimensions of the images of anisotropic random fields, and the notion of Hausdorff dimension on the metric space (R N , ρ) is needed; see Wu andXiao (2007, 2009) and Xiao (2009a). In this section, we define packing measure, packing dimension and packing dimension profiles on the metric space (R N , ρ). The later is an extension of the notion of packing dimension profiles of [START_REF] Falconer | Packing dimensions for projections and dimension profiles[END_REF] to (R N , ρ). We believe it will have applications beyond scope of this paper.

Throughout this paper, denote

B ρ (x, r) := {y ∈ R N : ρ(y, x) < r}.
For any β > 0 and E ⊆ R N , the β-dimensional packing measure ψ-p of E in the metric ρ is defined by

s β -p ρ (E) = inf n P β ρ (E n ) : E ⊆ n E n , (3.1) 
where

P β ρ (E) = lim δ→0 sup ∞ n=1 (2r n ) β : {B ρ (x n , r n )} are disjoint, x n ∈ E, r n ≤ δ . (3.
2) The packing dimension of E is defined by

dim ρ P E = inf β > 0 : s β -p ρ (E) = 0 . (3.3)
It can be verified directly that dim ρ P has the σ-stability: for any sequence sets

E n ⊆ R N , we have dim ρ P ∞ n=1 E n = sup n dim ρ P E n . (3.4)
Similar to the Euclidean case studied by [START_REF] Tricot | Two definitions of fractional dimension[END_REF] [see also [START_REF] Falconer | Fractal Geometry -Mathematical Foundations and Applications[END_REF]], the packing dimension in (R N , ρ) can also be defined through the upper boxcounting dimension. For any ε > 0 and any bounded set E ⊆ R N , let N ρ (E, ε) be the smallest number of balls of radius ε (in the metric ρ) needed to cover E. The upper box-counting dimension (in the metric ρ) of E is defined as

dim ρ B E = lim sup ε→0 log N ρ (E, ε) -log ε .
The following proposition is an extension of a result of [START_REF] Tricot | Two definitions of fractional dimension[END_REF].

Proposition 3.1. For any set E ⊆ R N , we have

dim ρ P E = inf sup n dim ρ B E n : E ⊆ ∞ n=1 E n . (3.5)
Proof. First, we prove that for E ⊆ R N ,

dim ρ P E ≤ dim ρ B E. (3.6)
In fact, for any fixed γ < β < dim ρ P E, P β ρ (E) = ∞. Therefore, for a given 0 < δ ≤ 1, there exists a family of disjoint {B ρ (x i , r i )}, where

x i ∈ E and r i ≤ δ, such that 1 ≤ ∞ i=1 (2r i ) β . Suppose, for every nonnegative integer k, there are n k ρ-balls satisfying 2 -k-2 < r i ≤ 2 -k-1 , then 1 ≤ ∞ k=0 n k 2 -kβ , which implies that there exists an k 0 such that n k 0 > 2 k 0 γ 1 -2 γ-β . Furthermore, each of these n k 0 ρ-balls contains a ρ-ball centered in E with radius 2 -k 0 -2 ≤ δ. Let N ρ (E, ε) be the largest number of disjoint ρ-balls centered in E with radius ε, then N ρ E, 2 -k 0 -2 2 -k 0 -2 γ ≥ n k 0 2 -k 0 -2 γ > 2 -2γ 1 -2 γ-β , ( 3.7) 
where 2 -k0-2 ≤ δ. Therefore, lim sup δ↓0 N ρ (E, δ)δ γ > 0, which implies that for every γ < dim ρ P E we have dim

ρ B E ≥ γ.
This finishes the proof of (3.6). Now we are ready to prove (3.5). If E ⊆ n E n , by (3.4) and (3.6), we have

dim ρ P E ≤ sup n dim ρ P E n ≤ sup n dim ρ B E n , (3.8) 
which proves

dim ρ P E ≤ inf sup n dim ρ B E n : E ⊆ ∞ n=1 E n . (3.9)
Conversely, if β > dim ρ P E, then s β -p ρ (E) = 0. Hence there exists a sequence {E n } such that E ⊆ E n and

∞ n=1 P β ρ (E n ) < ∞. By (3.
2), we have that N ρ (E n , δ)δ β is bounded when δ is sufficiently small. Therefore, for each n, dim Denote

ρ B E n ≤ β, which implies dim ρ P E ≥ inf sup n dim ρ B E n : E ⊆ ∞ n=1 E n . ( 3 
Q := N j=1 H -1 j , it follows from the definition of dim ρ H [cf. Xiao (2009a)], (3.2) and Proposition 3.1 that for every set E ⊆ R N , 0 ≤ dim ρ H E ≤ dim ρ P E ≤ dim ρ B E ≤ Q. (3.11)
Moreover, if E has non-empty interior, then dim ρ H E = dim ρ P E = Q. For a finite Borel measure µ on R N , similarly to (2.11) we define its packing dimension in metric ρ as

dim ρ P µ = inf{dim ρ P E : µ(E) > 0 and E ⊆ R N is a Borel set}. (3.12)
The following proposition gives a characterization of dim ρ P µ in terms of the local dimension of µ. It is obtained by applying Lemma 4.1 [cf. (4.7)] of [START_REF] Hu | Fractal properties of products and projections of measures in R d[END_REF] to dim ρ P . Proposition 3.2. Let µ be a finite Borel measure on R N . Then

dim ρ P µ = sup β > 0 : lim inf r→0 µ B ρ (x, r) r β = 0 for µ-a.a. x ∈ R N . (3.13)
Extending the definition of Falconer and Howroyd (1997), we define the sdimensional packing dimension profile of µ in metric ρ as

Dim ρ s µ = sup β ≥ 0 : lim inf r→0 F µ s,ρ (x, r) r β = 0 for µ-a.a. x ∈ R N , ( 3.14) 
where, for any s > 0, F µ s,ρ (x, r) is the s-dimensional potential of µ in metric ρ defined by

F µ s,ρ (x, r) = R N min 1, r s ρ(x, y) s dµ(y).
(3.15)

The following lemma is an extension of Corollary 2.3 of Falconer and Mattila (1996) [see also Lemma 1 of Falconer and Howroyd (1997)] to the metric space (R N , ρ). Lemma 3.3. Let 0 < a < 1 and ε > 0. For every finite Borel measure µ on R N the following holds for µ-almost all x: If r > 0 is sufficiently small, then for all h with r a ≤ h ≤ 1 we have

µ B ρ (x, h) ≤ 4h r Q(1+ε) µ B ρ (x, r) . (3.16)
The proof essentially follows the same idea as the proofs of Lemma 2.1 and Lemma 2.

of Falconer and Mattila (1996).

Proof. There is no loss in generality in assuming µ is a probability measure. We first prove that for r > 0, λ > 1 and M ≥ 1, we have

µ{x : µ B ρ (x, λr) ≥ M µ B ρ (x, r) } ≤ 4 Q M -1 λ Q . (3.17) Let A = {x : µ B ρ (x, λr) ≥ M µ B ρ (x, r) }. If x ∈ R N is such that A ∩ B ρ (x, r/2) = ∅, then for every y ∈ A ∩ B ρ (x, r/2), we have B ρ (x, r/2) ⊆ B ρ (y, r) and B ρ (y, λr) ⊆ B ρ (x, 2λr), whence µ A ∩ B ρ (x, r/2) ≤ µ B ρ (y, r) ≤ M -1 µ B ρ (y, λr) ≤ M -1 µ B ρ (x, 2λr) . Denote V N := m N B ρ (0, 1)
, where m N denotes the Lebesgue measure in R N . A change of variables shows that m N B ρ (x, r) = r Q V N for all r > 0 and x ∈ R N .

This and Fubini's Theorem yield

µ(A) = V -1 N r 2 -Q A m N B ρ (x, r/2) µ(dx) = 2 Q V -1 N r -Q µ A ∩ B ρ (x, r/2) m N (dx) ≤ 2 Q V -1 N r -Q M -1 µ A ∩ B ρ (x, 2λr) m N (dx) = 4 Q M -1 λ Q V -1 N (2λr) -Q m N B ρ (x, 2λr) µ(dx) = 4 Q M -1 λ Q , ( 3.18) 
which proves (3.17). Now, we prove that for 0 < a < 1 and ε > 0, there exists a constant K > 0, depending only on a, ε and Q, such that for every Borel finite measure µ and for all r 0 ≤ 1/2, we have

µ x : µ B ρ (x, h) > 4h r Q(1+ε)
for some r and h with 0 < r < r 0 and r a ≤ h ≤ 1

≤ K r Qε(1-a) 0 . (3.19)
In fact, by (3.17) we have that for h > r > 0,

µ x : µ B ρ (x, h) ≥ h r Q(1+ε) µ B ρ (x, r) ≤ 4 Q h r -Qε . ( 3.20) 
In particular, by taking h = 2 -p and r = 2 -q where p and q are nonnegative integers with p < q, we have

µ x : µ B ρ (x, 2 -p ) ≥ 2 q-p Q(1+ε) µ B ρ (x, 2 -q ) ≤ 4 Q 2 q-p -Qε . (3.21)
Hence, for any q 0 ≥ 0, we have

µ x : µ B ρ (x, 2 -p ) ≥ 2 q-p Q(1+ε) µ B ρ (x, 2 -q )
for some integers p and q with 0 ≤ p ≤ aq and q ≥ q 0

≤ 4 Q ∞ q=q 0 [aq] p=0 2 q-p -Qε ≤ 4 Q 2 Qε 2 Qε -1 ∞ q=q0 2 Qε(a-1) q = 4 Q 2 Qε 2 -q 0 Qε(1-a) (2 Qε -1)(1 -2 Qε(a-1) ) := K 2 -q 0 Qε(1-a) . (3.22)
Set r 0 = 2 -1-q 0 and take any h and r with 0 < r < r 0 and r a ≤ h ≤ 1. Let p and q ≥ q 0 be integers such that 2 -1-p < h ≤ 2 -p and 2 -q < r ≤ 2 -q+1 . Then 2 -p ≥ 2 -aq , and thus p ≤ aq. If for some x we have that

µ B ρ (x, h) > 4h r Q(1+ε) µ B ρ (x, r) , then µ B ρ (x, 2 -p ) > 2 q-p Q(1+ε) µ B ρ (x, 2 -q ) .
Clearly 

lim inf r→0 r -s µ B ρ (x, r) < ∞, (3.23) then for all 0 ≤ t < s, lim inf r→0 r -t F µ Q,ρ (x, r) = 0. (3.24)
Proof. We fix 0 ≤ t < s. Choose ε > 0 and 0 < a < 1 such that 

Qε < s -t and Q(1 + ε)(1 -a) < s -t. ( 3 
F µ Q,ρ (x, r) = b x,ρ (r) + r Q ∞ r h -Q db x,ρ (h) = Qr Q ∞ r h -Q-1 b x,ρ (h)dh = Qr Q r a r + 1 r a + ∞ 1 h -Q-1 b x,ρ (h)dh ≤ Qr Q r a r h -Q-1 b x,ρ (r a )dh + Qr Q 1 r a h -Q-1 b x,ρ (r) 4h/r Q(1+ε) dh + Qr Q ∞ 1 h -Q-1 µ R N dh ≤ b x,ρ (r a ) + 4 Q(1+ε) b x,ρ (r)r -Qε 1 r a h Qε-1 dh + r Q µ R N ≤ 4r a-1 Q(1+ε) b x,ρ (r) + 4 Q(1+ε) (Qε) -1 r -Qε b x,ρ (r) + r Q µ R N . (3.26)
By (3.23), there exists a finite constant K > 0 such that

lim inf r→0 r -s µ B ρ (x, r) ≤ K. (3.27)
Hence for some finite constant K and arbitrary small r > 0,

F µ Q,ρ (x, r) ≤ K r s-Q(1+ε)(1-a) + r s-Qε + r Q . (3.28)
Therefore, by (3.25) and by noting that t < s ≤ Q, we have (3.24) as required.

To prove a similar result as Proposition 18 in Falconer and Howroyd (1997), we define a local variant of Dim ρ s by

p x,ρ (s) = sup{t ≥ 0 : lim inf r→0 r -t F µ s,ρ (x, r) = 0}, ∀ x ∈ R N . (3.29)
Note that

F µ s,ρ (x, r) = b x,ρ (r) + r s ∞ r h -s db x,ρ (h) = sr s ∞ r h -s-1 b x,ρ (h)dh. (3.30) For 0 ≤ s ≤ t, we have µ R N ≥ F µ s,ρ (x, r) ≥ F µ t,ρ (x, r), (3.31)
which gives us that 0 ≤ p x,ρ (s) ≤ p x,ρ (t).

(3.32) Since we also have

µ R N ≥ F µ s,ρ (x, r) ≥ r s ∞ r h -s db x,ρ (h) (3.33)
and ∞ r h -s db x,ρ (h) increases r decreases and is positive for sufficiently small r, we obtain that p x,ρ (s) ≤ s.

(3.34) By noting that

F µ s,ρ (x, r) ≥ b x,ρ (r) = µ B ρ (x, r) , (3.35) we prove p x,ρ (s) ≤ sup{t ≥ 0 : lim inf r→0 r -t µ B ρ (x, r) = 0}. (3.36)
By the same token as that of the proof of Proposition 16 in Falconer and Howroyd (1997), we also can derive that for 0 ≤ s ≤ t < ∞,

p x,ρ (s) ≥ p x,ρ (t) 1 + 1/s -1/t p x,ρ (t) . (3.37)
Clearly, (3.37) and (3.34) are equivalent to the following: p x,ρ (0) = 0 and for all 0 ≤ s ≤ t < ∞,

0 ≤ 1 p x,ρ (s) - 1 s ≤ 1 p x,ρ (t) - 1 t . (3.38)
By Proposition 3.4, we have that for µ-almost all x ∈ R N , Note that the identity in (3.41) provides the following equivalent characterization of dim ρ P µ in terms of the potential

p x,ρ (Q) ≥ sup{t ≥ 0| lim inf r→0 r -t µ B ρ (x, r) = 0}. ( 3 
F µ Q,ρ (x, r), where Q = N j=1 H -1 j : dim ρ P µ = sup β ≥ 0 : lim inf r→0 F µ Q,ρ (x, r) r β = 0 for µ-a.a. x ∈ N . (3.42)
For any Borel set E ⊆ R N , the s-dimensional packing dimension profile of E in the metric ρ is defined by

Dim ρ s E = sup Dim ρ s µ : µ ∈ M + c (E) , (3.43) 
where M + c (E) denotes the family of finite Borel measures with compact support in E. It follows from (3.41) that

0 ≤ Dim ρ s E ≤ s and Dim ρ s E = dim ρ P E if s ≥ Q. (3.44)

Packing dimension results

Now we consider the packing dimensions of the range and graph of an (N, d)-Gaussian random field. We will assume throughout the rest of this paper that

0 < H 1 ≤ . . . ≤ H N < 1. (4.1) Recall that Q = N j=1 1 H j . 4.1. Packing dimension of X [0, 1] N . First we consider the packing dimension of X [0, 1] N .
The following result shows that it is determined by the lower index of φ and (H 1 , . . . , H N ).

Theorem 4.1. Let X = {X(t), t ∈ R N } be the Gaussian random field in R d defined by (1.1). We assume that the associated random field X 0 satisfies Condition (C). If φ with 0 < α * ≤ α * < 1 satisfies one of the following two conditions: For any ε > 0 small enough, there exists a constant K such that

N 0 1 φ(x) d-ε x Q-1 dx ≤ K (4.2) or N/a 1 φ(a) φ(ax) d-ε x Q-1 dx ≤ K a -ε for all a ∈ (0, 1]. (4.3) 
Then with probability 1,

dim P X [0, 1] N = min d; N j=1 1 α * H j . ( 4.4) 
We will prove that with probability 1, min d;

N j=1 1 α * H j
is an upper bound and a lower bound of dim P X [0, 1] N separately. The upper bound is proved by using the modulus of continuity of X and a covering argument, and the proof of the lower bounds is based on the potential-theoretic approach to packing dimension [see (2.15)] of finite Borel measures.

For any Borel measure µ on R N , the image measure of µ under the mapping t → f (t) is defined by

µ • f -1 (B) := µ t ∈ R N : f (t) ∈ B for all Borel sets B ⊂ R d .
The following lemma was proved in [START_REF] Xiao | Packing dimension of the image of fractional Brownian motion[END_REF], which relates dim P f (E) with the packing dimensions of the image measures.

Lemma 4.2. Let E ⊂ N be an analytic set. Then for any continuous function

f : N → R d dim P f (E) = sup dim P µ • f -1 : µ ∈ M + c (E) . ( 4.5) 
We are now ready to prove Theorem 4.1.

Proof. We first prove the upper bound in (4.4). Since

dim P X([0, 1] N ) ≤ d a.s., it is sufficient to show that dim P X([0, 1] N ) ≤ Q/α * a.s. For any ε ∈ (0, α * ), Lemma 2.2 implies that X(t) satisfies almost surely the following uniform Hölder condition X(s) -X(t) ≤ K(ω)ρ(s, t) α * -ε , ∀ s, t ∈ [0, 1] N . Hence a standard covering argument [e.g., Xiao (2009a)] shows that dim B X([0, 1] N ) ≤ Q/(α * -ε) a.s. This implies dim P X([0, 1] N ) ≤ Q/(α * -ε) a.s.
Letting ε ↓ 0 along the sequence of rational numbers yields the desired upper bound. Now we proceed to prove the lower bound in (4.4). By Lemma 4.2, we have dim

P X([0, 1] N ) ≥ dim P m N • X -1 almost surely. Hence it is sufficient to show that dim P m N • X -1 ≥ min d, Q α * , a.s. (4.6) 
For simplicity of notation, we will, from now on, denote the image measure m N • X -1 by µ X . Note that, for every fixed s ∈ N, Fubini's theorem implies

EF µ X d X(s), r = E R d min 1, r d v -X(s) -d dµ X (v) = [0,1] N E min 1, r d X(t) -X(s) -d dt.
(

The last integrand in (4.7) can be written as

E min 1, r d X(t) -X(s) -d = P X(t) -X(s) ≤ r + E r d X(t) -X(s) -d • 1l { X(t)-X(s) ≥r} . (4.8)
By Condition (C), we obtain that for all s, t ∈ [0, 1] N and r > 0,

P X(t) -X(s) ≤ r ≤ K min 1, r d φ(ρ(t, s) ) d .
(4.9)

Denote the distribution of X(t) -X(s) by Γ s,t (•). Let ν be the image measure of Γ s,t (•) under the mapping T : z → z from R d to R + . Then the second term in (4.8) can be written as

R d r d z d 1l { z ≥r} Γ s,t (dz) = ∞ r r d u d ν(du) ≤ d ∞ r r d u d+1 P X(t) -X(s) ≤ u d u, ( 4.10) 
where the last inequality follows from an integration-by-parts formula. Hence, by (4.9) and (4.10) we derive that, up to a constant, the second term in (4.8) can be bounded by

r d ∞ r 1 u d+1 min 1, u φ(ρ(t, s) d du ≤ K 1 if r ≥ φ(ρ(t, s)), r φ(ρ(t,s)) d log φ(ρ(t,s)) r if r < φ(ρ(t, s)). (4.11)
It follows from (4.8), (4.9), (4.10) and (4.11) that for any 0 < ε < 1 and s, t

∈ [0, 1] N , E min 1, r d X(t) -X(s) -d ≤ K min 1, r φ(ρ(t, s)) d-ε . ( 4.12) 
Combining (4.7) and (4.12) we derive

EF µ X d X(s), r ≤ K [0,1] N min 1, r φ(ρ(0, t -s)) d-ε dt. (4.13)
Let us consider the diagonal matrix D = diag (1/H 1 , . . . , 1/H N ). Then, t → ρ(0, t) is D-homogeneous function in the sense of Definition 2.6 of [START_REF] Biermé | Operator scaling stable random fields[END_REF], that is ρ 0, r D t = rρ (0, t) for all r > 0, where r D := exp (log(r)D) . By using the formula of integration in the polar coordinates with respect to D [see Proposition 2.3 in Biermé, et al. (2007)] to the integral in (4.13), we obtain

EF µ X d X(s), r ≤ K N 0 min 1, r φ(x) d-ε x Q-1 dx = K φ -1 (r) 0 x Q-1 dx + N φ -1 (r) r φ(x) d-ε x Q-1 dx := I 1 + I 2 . (4.14)
In the above, φ -1 (x) = inf{y : φ(y) > x} is the right-continuous inverse function of φ. It can be seen that φ -1 is non-decreasing and satisfies φ φ -1 (x) = x and lim x→0 φ -1 (x) = 0.

Let us estimate I 1 and I 2 . Clearly, we have

I 1 = K φ -1 (r) Q . (4.15)
To estimate I 2 , we distinguish two cases. If φ satisfies (4.2), then for all r > 0 small enough, we derive

I 2 ≤ K r d-ε N 0 1 φ(x) d-ε x Q-1 dx ≤ K r d-ε . (4.16)
On the other hand, if φ satisfies (4.3), then we make a change of variable x = φ -1 (r)y to derive that for all r > 0 small enough,

I 2 ≤ K φ -1 (r) Q N/φ -1 (r) 1 r d-ε φ φ -1 (r)y d-ε y Q-1 dy ≤ K φ -1 (r) Q-ε .
(4.17)

It follows from (4.14), (4.15), (4.16) and (4.17) that for all r > 0 small enough,

EF µ X d X(s), r ≤ K φ -1 (r) Q-ε + r d-ε . (4.18)
Now for any 0 < γ < min d, Q/α * , we choose ε > 0 small such that

γ < Q -2ε α * and γ < d -ε. (4.19)
By the first inequality in (4. [START_REF] Talagrand | Fractional Brownian motion and packing dimension[END_REF], we see that there exists a sequence ρ n → 0 such that

φ(ρ n ) ≥ ρ (Q-2ε)/γ n for all integers n ≥ 1. (4.20) 
We choose a sequence {r n , n ≥ 1} of positive numbers such that φ -1 (r n ) = ρ n . Then φ(ρ n ) = r n and lim n→∞ r n = 0. By Fatou's lemma and (4.18) we obtain that for every s ∈ [0, 1] N , 

E lim inf r→0 F µ X d X(s), r r γ ≤ K lim inf n→∞ φ -1 (r n ) Q-ε + r d-ε n r γ n ≤ K lim inf n→∞ ρ Q-ε n φ(ρ n ) γ + φ(ρ n ) d-γ-ε = 0. ( 4 
F µ X d X(s), r r γ = 0 for m N -a.a. s ∈ R N .
This and (2.15) together imply dim P µ X ≥ γ almost surely. Since γ can be arbitrarily close to min d, Q/α * , we have proved (4.6). This finishes the proof of Theorem 4.1.

Packing dimension of X(E).

To determine the packing dimension of X(E), we will make use of the following lemma, which is a generalization of Lemma 2.2 in Xiao (1997b).

Lemma 4.3. Let T be any compact interval in R N and let g : T → R d be a continuous function satisfying the following condition: For some constant α ∈ (0, 1] and any ε ∈ (0, α), there exists a constant K > 0 such that

|g(x) -g(y)| ≤ K ρ(x, y) α-ε , ∀ x, y ∈ T. (4.22)
Then for any finite Borel measure µ on R N with support contained in T , we have

dim P µ g ≤ 1 α Dim ρ αd µ, ( 4.23) 
where µ g = µ • g -1 is the image measure of µ.

Proof. We first prove that for any ε ∈ (0, α), we have Theorem 4.4. Let X = {X(t), t ∈ R N } be the Gaussian random field in R d defined by (1.1). We assume that the associated random field X 0 satisfies Condition (C) and 0 < α * ≤ α * < 1. Let µ be any finite Borel measure on R N . Then with probability 1, 

dim P µ g ≤ 1 α -ε Dim ρ (α-ε)d µ. ( 4 
r -γ R d min 1, r d v -u -d µ g (dv) = 0 µ g -a.a. u ∈ R d , that is, for µ-almost all x ∈ R N , lim inf r→0 r -γ T min 1, r d g(y) -g(x) -d µ(dy) = 0. ( 4 
1 α * Dim ρ α * d µ ≤ dim P µ X ≤ 1 α * Dim ρ α * d µ. ( 4 
∈ R N , E F µ X d X(s), r = E R d min 1, r d v -X(s) -d µ X (dv) = R N E min 1, r d X(t) -X(s) -d µ(dt) ≤ K R N min 1, r d-ε ρ(s, t) -α * (d-ε) µ(dt) (4.30)
where the last inequality follows from (4.12). For any γ < Dim ρ α * d µ, by Proposition 3.5, there exists 

ε > 0 such that γ ≤ Dim ρ α * (d-ε) µ. It follows from (3.14) that lim inf r→0 r -γ α * R N min 1, r d-ε ρ(s, t) -α * (d-ε) µ(dt) = 0 for µ-a.a. s ∈ R N . ( 4 
∈ R N E lim inf r→0 r -γ α * F µ X d X(s), r ≤ K lim inf r→0 r -γ α * R N min 1, r d-ε ρ(s, t) -α * (d-ε) µ(dt) = 0. (4.32)
By applying Fubini's Theorem, we see that with probability 1 The following theorem determines the packing dimension of the image X(E) for an arbitrary analytic set E ⊆ [0, 1] N when α * = α * . The rest of the proof of Theorem 4.5 is reminiscent to the proof of Theorem 4.1 in Xiao (1997b), with the help of (4.37). We omit it here.

lim inf r→0 r -γ α * F µ X d X(s), r = 0 for µ-a.a. s ∈ R N , ( 4 
Remark 4.6. When α * = α * , the problem of determining the packing dimension of X(E), where E ⊆ R N is a Borel set, remains open. In order to solve this problem, a more general form of packing dimension profile needs to be introduced. A promising approach is to combine the method in Section 3 with that in Khoshnevisan, Schilling and Xiao (2010).

Hausdorff dimension results

The following is an extension of Theorem 6.1 in Xiao (2009a), which shows that the Hausdorff dimensions of X [0, 1] N and GrX [0, 1] N are determined by the upper index of φ and (H 1 , . . . , H N ). 

H k H j + N -k + (1 -α * H k )d, 1 ≤ k ≤ N ; N j=1 1 α * H j = N j=1 1 α * H j , if N j=1 1 α * H j ≤ d, k j=1 H k H j + N -k + (1 -α * H k )d, if k-1 j=1 1 α * H j ≤ d < k j=1 1 α * H j , (5.2) 
where 0 j=1 1 Hj := 0.

Proof. Since the proofs of the lower bounds in (5.1) and (5.2) are based on the standard capacity argument and are similar to the proof of Theorem 6.1 in Xiao (2009a), we will not give the details. Instead, we only provide a sketch of the proof of upper bounds in (5.1) and (5.2). For any γ < γ < α * , it follows from (2.2) that there exists a sequence r n → 0 such that φ(r n ) ≤ r γ n . By Lemma 2.2, we derive that almost surely for all n large enough sup s,t∈[0,1] N :ρ(s,t)≤rn X(s) -X(t) ≤ r γ n .

(5.3)

For each fixed n large enough, we divide [0, 1] N into r -Q n cubes C n,i (i = 1, . . . , r -Q n ) in the metric ρ. [note that C n,i is a rectangle with side-length r This proves (5.1). The proof of the upper bound in (5.2) is similar and hence omitted. Finally the last equality in (5.2) follows from Lemma 6.2 in Xiao (2009a), or can be verified directly. This finishes the proof of Theorem 5.1.
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 25 Suppose x ∈ R N such that the conclusion of Lemma 3.3 and (3.23) hold. Denote µ B ρ (x, r) by b x,ρ (r), then we have
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 25 By(4.22) we havemin 1, r d g(y) -g(x) -d ≥ K min 1, r d ρ(x, y) -(α-ε)d . (4.26) It follows from (4.25) and (4.26) that for µ-almost all x ∈ R N , lim inf r→0 r -(α-ε)γ R N min 1, r (α-ε)d ρ(x, y) -(α-ε)d µ(dy) = 0, (4.27)which implies, by the definition(3.14), that Dim ρ (α-ε)d µ ≥ (α -ε)γ. Since γ < dim P µ g is arbitrary, we prove (4.24). Letting ε ↓ 0 and applying Proposition 3.5, we prove (4.23).
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 45 If, in additions to the assumptions in Theorem 4.4, 0 < α * = α * < 1. Then for every analytic set E ⊆ [0, 1] N , we have thatdim P X(E) = 1 α Dim ρ αd E a.s., (4.36)where α := α * = α * .Proof. By Theorem 4.4, we have that for any finite Borel measure µ on R N , dim P µ X
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 51 Let X = {X(t), t ∈ R N } be an (N, d)-Gaussian field satisfying Condition (C) on I = [0, 1] N and let 0 < α * ≤ α * ≤ 1 be the lower and upper indices of φ. Then, with probability 1, dim H X [0, 1] N = min d;

1 γ N j=1 1 H

 11 1, . . . , N ).] It follows from (5.3) that each X(C n,i ) can be covered by a ball of radius r γ n in R d . This implies that dim H X([0, 1] N ) ≤ j a.s. Since γ < α * is arbitrary, we have dim H X([0, 1] N ) ≤ min

  Let µ be a finite Borel measure on R N and let s ∈ (0, Q]. Then for µ-almost all x ∈ R N the following holds: If

	, (3.19) follows from (3.22), and Lemma 3.3 follows from (3.19) and the
	Borel-Cantelli lemma.
	Proposition 3.4.

  .28) To prove the reverse inequality, by Fubini's Theorem, for any s

	Proof. By following the first half of the proof of Theorem 3.1 in Xiao (1997b), and
	by Lemmas 2.2 and 4.3, we derive that		
	dim P µ X ≤	1 α *	Dim ρ α * d µ a.s.	(4.29)

  .31) By (4.30) and (4.31), we have that for µ-almost all s
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