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Abstract— This is a study of an application of neu-
ral technics to the learning of control laws within
the framework of the evolutionary design of robotics
systems. The present paper proposes the replace-
ment of the evolutionary synthesis of the individual’s
control law by its learning. The learning of neural
controller is carried out on-line when the robot un-
dergoes evaluation tests. Thus, a robot that is a
priori inadequate to solve a task can, thanks to the
training it goes through, improve its performance. It
participates then to the global improvement of the
population while it would have been eliminated with-
out learning. A mobile robot that could be equipped
with up to 4 independent driving wheels and that
must attain a given configuration will be taken as
an example. The whole unit uses a simulation of
the robot and its environment in which all dynamic
effects are taken into account. Results show the ac-
curacy and strength of the method since even the
structures which would have been in fact eliminated
to carry out this kind of task, are controlled with
reasonable efficiency.

Keywords— Evolving, Adaptive Neural Control,
adaptive behaviour, Mobile Robot.

I. EVOLVING SYNTHESIS OF ROBOTS
The use of genetic algorithms allows the generation

of robotic mechanisms (mechanical structure and actua-
tors) to carry on a specific task : to reach point or a con-
figuration in the workspace, climb stairs... Thus, when a
displacement task is defined for a mobile robot (reach a
point with an given orientation), artificial evolution can
converge into a platform equipped with wheels and/or
legs. In the case of evolutionary robotics every indi-
vidual robot (phenotype) is characterized by its geno-
type. The genotype usually gathers all the information
about the robot morphology (number of legs, degrees of
freedom...), electro-mechanical features, type of joints
(revolute, linear) or actuators. The individual robot
so made is assessed by a test it undergoes, and its fit-
ness is used as a parameters in the population evolu-
tion. An evolutionary algorithm achieves this evolution
by applying genetic operators (reproduction, mutation,
crossover) on the robots topology and on the control law
of its actuators.

A. Limits of the global approach
The aim of a global evolutionary algorithm (GEA) is

to find the robot’s topology and its associated control.
The control law of each joint Lj can be represented by

a primitive law such as a temporal circular periodical
function : Uj = αj ∗ cos(ωj ∗ t + φj) where αj is its
amplitude, ωj its pulsation, φj its phase and t the simu-
lation time. The resulting genotype is constituted of the
Incidence Matrix MI of the robot topology and of the
three float vectors (α,ω,φ) for the control (see 1 and [2]
for more details). This mixed genotype must, through
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Fig. 1. Global Evolutionary Algorithm

assessment, show its capacities at fulfilling of the given
locomotion task. To illustrate this approach, we have
chosen to evolve rovers constituted by a rigid plateform
and a variable number of independent driving wheels
(from 0 to 4 wheels). The evaluation of the rovers is
performed through a dynamic simulation accounting for
inertial, control and friction forces on a flat ground. For
simulations, mechanical features of the robot are :
• size of the platform: 1.2mx0.7 m
• mass of the platform : 20 kg
• mass of one wheel: 1 kg
• maximum robot velocity 12.5 m/s
We show the limits of this global approach through a
simple locomotion task that is to reach a position in
front of the robot (Fig.2). When observing the behavior
of the robot, one can notice that the front wheel pro-
duces an important force while the 2 back wheels reg-
ulate the friction to control the trajectory. The GEA
suggests thus a solution for control which consists in
exercing an important traction with the front wheel (lo-
cates on the opposite side of the goal so as to drive the
robot towards this goal), and with the 2 back wheels ap-
plying only breaking forces to regulate the robot’s tra-
jectory. Indeed, the control law works in open loop and



receive no feedback from the robot, the environment or
even the task to be carried out.
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Fig. 2. Example of evolution results to reach a position
(50 individuals/generation): fitness curves ( Top),the
robotic solution and its control (bottom).

II. EVOLUTION AND LEARNING
The above results show the limits of the global method

for evolutionary synthesis of a control law. Furthermore,
a robot individual even if disabled with regard to its
task, must be able to learn on line how to improve its
performance in order to carry out the task assigned to
it. So, we propose to give each created individual a ca-
pacity of learning based on the use of a neural controller
which will learn how to control the robot. When follow-
ing this principle,the genotype, which does not code the
robot’s control law anymore, becomes more simple and
artificial evolution simulation time is greatly reduces.
The integration of a neural control structure through
learning allows for increasing of every robot’s potential-
ity, and the individual who will be able to learn well
then have every chance of participating in a progressive
evolution of the population even if it is initially poorly
adapted.

How interesting it is to use ANN for mobile robots
has already been shown at different levels of control ar-
chitecture [1][4][6][7][5][9].The use of ANN in evolution-
ary synthesis of robots can be seen in 2 ways. First
way, to consider neural control as an integrated part of
the genotype in the evolutionary process [7][5] wich de-
termine its parameters in relation to the performances
reached by the robot. This technique is very efficient
even if the algorithm convergence time can become too
important for a embedded application. It allows, for
instance, the generation of gait for moving an hexapod
robot and the acquisition of a reflex behaviour to avoid

obstacles. Second way, to consider the neural controller
as a fixed structure during evolution. The individual
selected for evolution, will have, during its “life time”,
its neural controller learning how to control better and
better the robot in a succession of trial an error test.

A. Learning during assessment

These two methods are complementary and nothing
excludes their simultaneous application on the topology
of the controller during the population evolution, then
by the controller’ learning during the individual’s evalu-
ation. In this case, computation time can be prohibitive
in obtaining a correct robot. That is why, following the
second way, our aim is to give every newly created robot
an opportunity to adapt its behaviour to its structure
with an on-line learning process. Its learning process
is carried on during the evolution (Fig. 3), in which a
period is dedicated to learning. This period means that
each individual is given a chance to learn its task before
it is passed to the evaluation process. Thus each robot
goes through an life cycle: birth (robot creation), learn-
ing stage and a reproduction phase (through a process
of genetic operators). The learning phase is a test that
a robot undergoes and that allows it to learn how to
carry out its task. It’s only after this phase that the
robot will be assessed.
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B. Learning algorithm

The neural network is used as a self-adaptive con-
troller based on the minimization of a cost function
(back-propagation algorithm) which uses an analytical



model of the robot dynamics and numerical data is-
sued from the simulation. The input of neural con-
troller is constituted by the cartesian and angular er-
rors of the robot between its current position (at step
k) of its center of gravity (Xk

G, Y
k
G ,Θk

G) and a de-
sired one (Xk

d , Y
k
d ,Θk

d). Then, the goal of the learn-
ing is to compute on the net output the torque vec-
tor (Ck

1 , C
k
2 , C

k
3 , C

k
4 ) to apply on wheels. In the present

case, the cost function can be:

Jk+1 = α1[Xd −Xk+1
G ]2 + α2[Yd − Y k+1

G ]2

+ α3[θd − θk+1
G ]2

(1)

In order to obtain a global minimization of this fitness,
we backpropagate at each step k on each output Ci the
following gradient:
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Calculation of this gradient can be obtained using a dy-
namic model (equations 2, under hypothesis of rolling
without sliding) and by a second order linearization
(step time ∆): Xk+1
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M is the total mass of robot, r the radius of its wheel, R
the half of axle length and Iz the inertial moment on z
axis (Fig 2). This dynamic behaviour model can be con-
sidered as degraded since, during simulations and due
to the control strategy imposed on the robot by neural
control, the non-sliding rolling hypothesis will not be re-
spected: the robot will skid while moving. However, the
different learning experiments performed at the labora-
tory on fast and heavy real robots [3] have shown that
this approximation has no effects on the precision and
on the stability of the control loop because the learning
is applied on line during the control.

C. Example of results of learning
This part shows few results, for a more complex loco-

motion task than in section I that is to reach a carte-
sian and an angular position on a flat ground. Each
robot goes through 4 time limited (30 seconds) sim-
ulation phases for its assessment: 3 simulations with
learning of the neural controller (“the robot is learn-
ing”), and one simulation without learning (the robot
is tested). At the beginning of the first phase, the neu-
ral controller is initialised with random weights and has
thus no a-priori knowledge of the task and on behavior

of the robot. During the next learning phases, neural
controller which has learned during the previous phase
increases its knowledge of the control and of the behav-
ior of the robot. Then the robot is assessed in terms
of the performance obtained during the test phase. As
an illustration, a task consisting for the robot, in go-
ing from position (0m, 0m, 0o) to a desired configuration
(3m,−2m, 0o) is suggested here. To move, it uses inde-
pendent driving wheels that can be located only at the
four corners of its platform. The evolution algorithm
must thus find what the best structure is, that is to
say, what the number of wheels and their position are.
As for neural control, it has to find what the best con-
trol law is. The following curves present the results of
learning and test on different types of robots in terms
of cartesian trajectories, orientation and cost function
(fitness).

C.1 case of a one-wheeled robot
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Fig. 4. Learning process for a one-wheeled robot: cartesian
trajectory (top) and learning function (bottom)

The case of a one-wheeled robot is the most un-
favourable configuration as the friction of the platform
against the ground is important and there’s no symme-
try in the kinematics of the robot. The orientation gets
uncontrollable except by imposing sufficient acceleration
to make the robot skid around the contact point. It can
be seen Fig 4 that during the first learning stage, con-
trol becomes unstable : the robot goes away from the
goal by turning on itself (20 meters at the end of stage).



Despite this failure, the second stage allows the robot
to get close to the objective with an error around 1.5
m for position and 40 deg for orientation. These errors
decreases considerably at the end of the last stage. The
neural network has thus been able to identify a control
strategy that allows it to take into account the bad be-
havior of the robot. However, for the one-wheeled the
learning convergence of the robot can be obtained only
when the objective is located at the opposite side of the
wheel. Then, among the 4 one-wheeled robot individ-
uals, only one reaches the goal with satisfactory error:
when the robot has its wheel located on the back left
side.

C.2 Case of a 2-wheeled robot at the front or at the
back

For the 2-wheeled robot at the front or a the back,
the inertia momentum is maximum and its platform
is in contact with the ground at the opposite side of
the wheels. This disturbs particularly the first learn-
ing stage for which a great oscillation of the trajectory
can be noticed (see Fig. 5): the robot skids to right
then to the left towards the goal and torque’s motors
are oscillating too. This control strategy is not effi-
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Fig. 5. Learning process for a 2-wheeled robot at the front :
cartesian trajectory (top) and learning function (bottom)
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Fig. 6. Learning process for a 2-wheeled robot at the back :
cartesian trajectory (top) and learning function (bottom)

cient as the robot cannot stabilize in 30 seconds to the
desired configuration. However, on the second stage, it

can be noticed that the oscillation is strongly reduced:
there is less skidding and the torque of the motors con-
verge to zero at the end of learning. This can perfectly
be seen in the cost function evolution (compare to the
stage 1). During the last stage performances are im-
proved, and the test phase is almost perfect: the robot
stabilize rapidly with an error below to 10 cm and 4 de-
grees.For a 2-wheeled robot at the back (see 6), learning
stages are similar and as well efficient. Others simula-
tions (not detailed here) show that for a 2 diagonally
wheeled robot or 3 wheeled robot, performances are as
best than these ones.

C.3 Case of a 4-wheeled robot
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Fig. 7. Learning process for a 4-wheeled robot: cartesian
trajectory

In the case of a 4-wheeled robot , lerning control does
not a priori present any difficulty since it is the ideal
case (Fig. 7 and 8) in spite of the number of control pa-
rameters is most important and ccontroller convergence
is not faster than in others cases. However, it can be
said that control is almost perfect since static error after
learning is null.
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function

D. Evolution result
What is pointed out through these results is the inter-

est in using the neural controller for robots during the
assessment of their capabilities at carrying out tasks.



Each ill-adapted individual is thus given a means to
reach or get close to the objective. These results there-
fore allows to ensure a reasonable opportunity for the
robot to express at the best their potentialities before
assessment. This is confirmed on Fig. 9 where we can
see that the evolution process converges rapidly (com-
pare to Fig. 2) to best solutions : 4, 3 or 2 diagonally
wheeled robots. Furtheremore, the performances of each
generation are better than those of global evolution, be-
cause the on-line learning control allows great accuracy.
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Fig. 9. Evolution result with learning abilities (50 individu-
als/generation)

III. CONCLUSION

We propose here to give learning abilities during the
evaluation of a robots population wich have to peform a
task of positioning. The evolution results show that
only good solutions are quickly found , but also ill-
conditioned solutions (a one-wheeled robot for instance)
that perform fairly well on the task, remain in the
population and thus, contribute to the optimization of
the whole population. This approach of evolutionary
robotics allows for a much better evolvability level of
artificial creatures since they can not only propose new
morphologies, but also new control strategies that fit
together.
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