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Abstmct- The elderly part increases each year and 
their needs on technical aids represent a great chal- 
lenge for robotics. This article presents a study 
about a mobility aid system integrating robotics and 
learning adaptive control. The particularity system 
depends on using of an auto-adaptive interface that 
improves the interpretation of the patient driving ac- 
tions. The experimentation results show the advan- 
tage of such an approach for a deambulation task. 
We present, in this paper, two methods for an adap- 
tive deambulation mode to the person. 

Keywords- Mobile Robotics, Neural Network, 
Adaptive Control, Interface Human/Machine, Hand- 
icaps, Technical Aids. 

I. INTRODUCTION 

According to the French National Institute for Statis- 
tics INSEE (Institut National de la Statistique et des 
Etudes kconomiques)[l][2], the mean lifetime expecta- 
tion in France is 75.2 years for men and 82.7 years for 
women. Lifetime increased with 3.5 months in the year 
2000. The same trend is observed in many developed 
countries. Furthermore, according to the "Canadian 
Review of the Ageing" : Autonomy represents a funda- 
mental value that elderly place ahead of life itself 131. 

The loss of autonomy is the main syndrom of geri- 
atrics and is responsible for almost half of the total 
health spendings (the population over 60 years old rep- 
resents more than half of these spendings). Robotics 
could allow these old and/or disabled persons to retrieve 
part of their autonomy, avoiding an undesired and often 
apprehended hospitalization. This solution has a double 
benefit : firstly a satisfaction of these people recovering 
a part of their autonomy, and secondly a substantial 
reduction of the cost of hospitalization or admission in 
specialized houses. 

Many laboratories working on robotics have already 
begun to develop and to work on such new applications 
of the cooperation between human and robot by tech- 
nical aid. Particularly, in the field of mobile robotics 
: powered wheelchairs, intelligent sticks and service 
robots [9][5][6][7][8][4]. Most studies are focused on 
means to strengthen the movements of these people and 
on the simplification of the controls (Interface, sensors, 
automatic processes). Our works are focused on the 
adaptation of the system to the specific needs of a pa- 
tient in the aim of keeping the human most actively in 
the processus. Then, the system must adapt itself to the 
particularities of the patient and not the opposite. It is 
important to improve the understanding of the robot to 
the user's orders, even if these are sidesteps, perturbed, 
or not completed. Our findings show two sides for this 
adaptation. 

Task 

a " behavior adaptation" side which allows to take the 
way of the person driving into account. 

a "structural adaptation" (or "biomechanical" side), 
which takes the physical particularities of the person 
into account. 

The behavior adaptation procedure can be realized 
using a number of formalisms of adaptive control based 
on neural networks, fuzzy logics or expert systems. In 
this article, a study on behavior adaptation based on 
neural technics for a robotic walker is presented (fig. 
1). The benefits of these technics are multiple : they 
are noise robust. They can be easily integrated in on- 
board real time process and they are remarkably efficient 
for learning some non-linear system and/or not deter- 
mined models like human actions (they are universal 
approximator [12] and possess the parcimonie property 
[141[131). 

"1 .- *. , _--- *- 

Fig. 1. Principle of Robotic Walker 

Waiting the construction end of a robotic walker, we 
use one realized from a reconfigured mobile robot. A 
turret,which is able to revolve around a vertical axis 
and is equipped with an orientation sensor, has been 
fit to the robot (fig. 1). On this turret, handlebars 
with a force sensor have been mounted. Only these two 
information sensors were interpreting the orders. The 
interest of this approach is the utilization of neural net- 
works which allow, with their generalized properties, the 
realization of this complex task with a minimal sensor 
configuration. 

This paper is divided in four parts. The first part in- 
troduces the control architecture and the neural network 
used in this application including our proposed learn- 
ing methods. The second part is about these learning 
phases of the patient behavior. The third part presents 
experimental results of the two approaches in the evalu- 
ation phase. Finally, in a fourth part, we conclude and 
discuss possible perspectives of such an approach. 
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11. CONTROL ARCHITECTURE 
A .  Neural Approach 

To learn the driving way of the patient, an adaptive 
controller named ACANN is used. This architecture is 
an on-board software kernel which monitors and controls 
the learning and executive phases. It insures the correct 
information management and communications between 
the patient (handicapped 
walker (figure 2). 

and/or old person) and the 

Fig. 2. Neural Control Architecture 

ACANN integrates a process based on the multi- 
layers Perceptron Neural Network. The neural con- 
troller can be seen as an auto-adaptive control sys- 
tem based on the minimization of a cost function (gra- 
dient back propagation) which use a robot behavior 
model (figure 2). ACANN uses a modified version of 
the software Matrix Back Propagation [lO][lS], which 
was implemented on the real time operating system 
named QNX. The learning algorithm of the gradient 
back propagation trains neural controllers on-line in a 
non-supervised approach [ll] [15]. 

B. Learning Protocols 
Two different protocols for the adaptation of the 

walker to the patient have been chosen. The first proto- 
col consists of an instrumented learning, the second, of a 
non-instrumented learning. The instrumented approach 
is a learning method in which some informations about 
the patient and the task are configurable by an external 
process: parameters, predefined trajectories, measure- 
ments. For the non-instrumented approach, no infor- 
mation about the patient is known. The constraints 
on these two protocols, in order to realize the learn- 
ing of the deambulatory function, are to ensure user 
friendly which includes the need of simple and fast learn- 
ing phases. It is very important to ensure secure and 
predictable behavior from the first run, in order to main- 
tain confidence between the patient and the robot. 

B.l Instrumented Learning Way 
To adapt the system to the patient, the controller 

ACANN must train the neural network first. We are 
talking about an instrumented learning protocol where 

the controller has informations about the patient like 
his comfort speed in movement or on the desired task. 
The neural system integrates a representation of the test 

Fig. 3. Instrumented Control Architecture Way 

task. It compares operator actions with expected results 
for a predefined sequence of actions in term of traject+ 
ries and/or speed. In this approach, neural adaptation 
works on the interface function : which is understand- 
ing the manner in which the patient gives a waited order 
(fig. 3). The neural network must calculate the speed 
of the right and of the left wheel from four measured 
inputs : 

the force F measured by the force sensor, 
the rotation angle 0 measured by the angular sensor, 
the difference EV between the walker and the patient 

linear speed, 
the difference EB between the walker and the patient 

rotation speed. 

J = a(Vreal - Vdesl2 + B(breal - ides)* 
Where a et j3 are normalization parameters. 

The cost function, in which the gradient is used for 
the learning phase, is the difference between real lin- 
ear and rotation speeds of the robotic system and linear 
and rotation speeds of the patient. Learning with back- 
propagation allows to minimize J with neural weight 
updating. For this protocol, the experimentation is for 
the patient to realize many different actions like "going 
fast" or "going slowly", "turn fast" or " turn slowly". 
Actions are achieved several times to refine the neural 
network weights. In our case, it means predefine con- 
tinuous actions in which the order sequence is : "stay 
still", "go slowly and fast", "turn left slowly and fast", 
"turn right slowly and fast", "stay still". These contin- 
uous actions are repeated three times in order to refine 
the neural network convergence. The learning phase has 
three same order cycles, it lasts 240 seconds and for 80 
seconds a cycle. Experimental results are presented on 
figure 4. Each main peak corresponds to a new order 
in the action sequence. One can observe that the cost 
function, expressed by the error value, decreases faster 
and faster during the learning. The error decreases in 
amplitude and the larger of each peak too. Between the 
first cycle and the third one, convergence time of the 
criterion decreases faster and faster, after each new or- 
der. The network responds to order immediately with 
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Fig. 4. Evolution of the Cost Function during the Instru- 
mented Learning 
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Fig. 5. Inputs and Responses of the Mobile Robot during 
the Instrumented Learning 

minimization of the cost function. For this experiment, 
the network is composed with 4 neurons in input, 15 
neurons on the hidden layer and 2 neurons on output. 
The maximum speed of the robot is 0,4 m/s. The maxi- 
mum measured rotation speed is 1,3 rad/s. Each order, 
corresponding to  a specific couple of inputs (F, e), is 
associated to a measured speed. During the learning, 
the robotic walker velocities converge to the measured 
velocities faster and faster (fig. 5) .  The reaction time 
between the execution order and the obtention of known 
speeds decreases significantly between the first and the 
third cycle. 

B.2 Non-Instrumented Learning Way 
In this second approach, ACANN controller doesn’t 

have any information about the patient displacement 
speeds or about a typical trajectory. The procedure 
consists for the neural controller in learning the walker 
function with the only goal to satisfy the actions of the 
patient. The neural network has been modified to cope 
with such a lack of informations. The input layer has 
2 neurons, the hidden layer 10 neurons and the output 
layer 2 neurons. Inputs are : 

the force F measured by the sensor, 
the rotation angle 0 measured by the sensor. 
The unknownledge of the characteristic speeds or on 

the reference trajectories gives the person high flexibility 
in the use of the learning robotic system. Such flexibility 
involves constraints for the learning phase which must 
be short and secure. Taking these constraints imposes 
fast convergence of the neural system into account. 

Fig. 6. Non-Instrumented Control Architecture Way 

For the non-instrumented approach, the cost function 
must face up to the lack of informations while maintain- 
ing optimal security. So, the function is now: 

Where a and 0 are constraint parameters. /.L and $ are 
normalization and target parameters 

The modification is realized by introducing a criterion in 
this function. This criterion includes a part expressing 
the walker function, and terms describing the quality 
relation. The goal is to follow the patient orders. Then 
the optimization has to minimize fast accelerations and 
discontinued changes of the sensor measures which de- 
scribe a no adaptation function. Actually, if the network 
doesn’t identify correctly the couple of inputs sensors 
with the right couple of velocities, the system responds 
with a Werent way to the one desired by the patient. 
The orders will be changed, or amplified. Then the net- 
work outputs will have to be modified. To simplify, if 
the patient pushes on the handlebar, the force increases. 
The system goes to have a specific speed. When this 
speed goes over, it means that the system have a higher 
speed than the patient and then the force applied on 
the handlebar decreases. When the force decreases, the 
system slows down and if the speed is lower to the pa- 
tient one, the applied force will increase. The system 
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stabilizes itself when its speed satisfy the patient. For 
the learning phase, the patient only has to control the 
walker through a predefined set of landmarks. During 
the learning phase the patient walked along a free tra- 
jectory with turns. 
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Fig. 7. Evolution of the cost function during the Non- 
Instrumented Learning: two views of the same order at 
different times 

Figure 7 focus a tempore1 evolution of the criterion 
on two different periods during the learning phase. The 
control architecture tries to reduce the error €or each 
new order. A reduction of the cost function for the 
same orders can be observed at both different times. 
The neural network has converge. But with the lack 
of informations, we can not talk about a right conver- 
gence. On the fist graphic of the figure 8, the neural 
controller anticipates the orders. A sudden change of 
the force value can be observed at time 16 seconds (the 
force goes from 1 to -0.6). The controller replies a very 
small speed variation (about 0.4m/s). It is the "no- 
shake" effect. The duration of the evaluation phase is 
around 60 seconds. Different sequences can be observed 
on other both graphics (fig. 8) : 4 advance sequences 
and 4 rotation sequences at time t=15, t=32, t=45 and 
t=60 seconds. The reaction time of the system to the 
given orders decreases faster and faster. So the neural 
network has identified a relationship between the robot 
and the person. 

111. EVALUATION PHASE 
The evaluation phase consists on testing the con- 

troller after the learning phase for both approaches. It 
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Fig. 8. Inputs of the Neural Network and the Walker Re- 
sponses during the Non-Instrumented Learning Phase 

is done without any modification of the obtained net- 
work weights. The patient must drive the walker and 
crosses landmark on a rectangular trajectory of 1.70 me- 
ters length by 2.20 meters large in a constrained envi- 
ronment (displacements are made with reduced leaving 
area : 50cm for a 60cm a t  the largest side of the mobile 
robot). The idea is to impose a constraint on the person 
to evaluate the pertinence of both methods. This eval- 
uation phase allows to observe the convergence quality 
with the final configuration of the neural network. 

A .  Instrumented Approach 

The network uses the speed difference between the de- 
sired and those realized by the system (ev, &e) .  When 
the network converges to 0, these two inputs also con- 
verge to 0. The inputs are only F and 8. The duration 
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Sliding problems on a very smooth evolution floor and 
the speed of displacement cause this odometric error. 

B. Non-Instrumented Approach 

For this approach, no modification has been made. 
The controller ACANN has the same architecture as 
in the learning phase. The duration of the evalua- 
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Fig. 9. Inputs of the Neural Network and Walker Responses 
during the Evaluation Phase 

of the evaluation phase is around 60 seconds. Figure 
9 shows 4 identical sequences in first graphic and three 
sequences in the second. These sequences correspond 
to the given orders and define the trajectory : the ad- 
vances are the sides and rotations are the right angles 
of the rectangle. The maximum velocity is 0.2m/s. The 
maximum rotation speed 0.7rad/s. For each variation 
of the two robotic system inputs, we obtain similar vari- 
ation of the moving velocities. Then the function has 
been correctly identified by the neural controller. The 
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Fig. 10. Displacement Trajectory during the Evaluation 
Phase 

displacement along the rectangle ends with a final static 
error of lOcm on X axis and 0.5cm on Y axis (fig. 10). 

Fig. 11. Inputs of the Neural Network and the Walker Re- 
sponses during the Non-Instrumented Evaluation Phase 

tion phase is around 50 seconds. Different sequences 
can be observed (fig. 9) : 4 advance sequences and 3 
rotation sequences at time t=13, t=26 and t=37 sec- 
onds. Maximum linear speed is 0.25m/s and maxi- 
mum rotation speed 0.8rad/s (fig. 11). These speeds 
are slightly higher than those obtained with the instru- 
mented method (fig. 8). The static final error after the 
displacement is negligible (around the millimeter). The 
position error and the linear speed error along the tra- 
jectory are very small. Maximal position error is 3cm 
and maximal linear speed error is 4cm/s (fig. 12). 

IV. CONCLUSION 
As a result of these experiences we can conclude that 

correct results were obtained with both methods. With 
accurate measurements on the patient, the instrumented 
method enables to modify the force/speed relation as 
well as angle/speed relation. This allows to compensate 
for any weakness of the user. The main benefit resides 
in the knowledge of the neural controller convergence. 
This method enables to validate learning before tests. If 
a correct learning path is chosen, the non-instrumented 
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Fig. 12. Displacement Trajectory and Position Error with 
Linear Velocity Error during the Evaluation Phase 

method results in better learning adaptability. Such ef- 
ficient pa th  should explore t h e  configuration phases as 
the whole of the robot system. This method gives also 
a greater adaptability t o  the  behavioral aspects thus 
allowing easy modifications of the  Patient/Walker rela- 
tion. An hybrid approach could eliminate the  difficulties 
encountered in both methods. It is now important to 
improve efficiently by performance analysis on t h e  cho- 
sen user group. With this correct results, t he  methods 
are actually experimented with medical team on handi- 
capped and/or old persons to validate the  medical side. 
A bet ter  interface for t he  adaptation is going t o  be re- 
alized for knowing handicap compensation. 
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