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Abstract— This paper presents a preliminary study on the
advantages of two bio-inspired homeostatic mechanisms in
neural controllers of legged robots. We consider a robot made
up of one leg of 3 dof pushing a body that is sliding on a
rail with a friction force. The synthesis of the controller is
done by an evolutionary algorithm which choose to attach to
each synapse a particular plastic law. Four models of network
incorporating or not each homeostatic law are proposed. After
evolution, effectiveness of each kind of adaptive controllers
is compared in term of statistics on a task of controlling
the speed of the robot. The robustness to a perturbation
generated by the viscous friction is analyzed in term of
control. Results show that homeostatic mechanisms increase
evolvability, stability and adaptivity of those controllers.

I. INTRODUCTION

In the field of legged robots, evolving neural controllers
has been successfully applied to various problems [7],
[12], [14], [16]. In the majority of the cases, these kind
of controllers are able to control the legs of the robot
(hexapod or quadripod) to move it following a desired
velocity or a target without holding account internal and
environmental perturbations like transmission breaking,
loss of legs or loss of adherence (see figure 1). Our research

Fig. 1. An hexapode with two lost legs: how could we make a control
system adaptive to such a situation ?

project named IRON1, is intended to increase the autonomy
and the robustness of robots by confronting evolutionary
adjusted neural controllers with different kinds of perturba-
tions. A promising way to do this is to incorporate to neural
controllers some plasticity mechanisms which are inspired
from biology [6]. Nevertheless, this plasticity might not be
sufficient because it tends to destabilize those controllers.

In this paper, we achieve a comparative study of the
effects of two bio-inspired homeostatic mechanisms on
the evolvability of plastic neural controllers embodied in
a single-legged robot. Then, we will analyse the control
stability and its adaptivity to an external perturbation.

The paper is organized as follows: the following section
presents the robotic problem on which we apply our
approach, the third section is devoted to the neuronal
models from a biological, mathematical and evolutionary
points of view. Then, the next section shows statistical
and behavioral results. Thereafter, results and mechanisms
modelling are discussed in the next section. Finally, in the
last section, we conclude by giving further developments
within our project.

II. ROBOTIC PROBLEM

The aim of our project is to provide to a multi-legged
robot a neuro-controller, synthesized by evolution, that
should adapt its behavior to perturbations. These perturba-
tions can be external (environment) or internal (mechanical
or electrical faults). However, a main issue of evolutionary
robotics, called the scalability problem, is the application
of its methods to systems that show a high degree of com-
plexity. Also, to compare the four neural models described
in section III-B, we apply our approach to a single-legged
robot simulation2.

The robot (figure 2) is composed by a body and a leg
endowed with three degrees of freedom: two for the hip
and one for the knee (see table I for mass and geometrical

1Implémentation RObotique de Neuro-contrôleurs adaptatifs (http:
//www.liris.uvsq.fr/iron/Iron.html). This project, initiated
with J.-A. Meyer from the AnimatLab, is supported by the ROBEA
program of the CNRS (http://www.laas.fr/robea).

2Based on a simulator called Open Dynamic Engine (http://q12.
org/ode/).



Fig. 2. Morphology of the single-legged robot. Left: Kinematic model.
Right: Simulation view.

parameters). A binary contact sensor is fixed on the leg
tip and on each joint, a servo-motor ordering its angular
position is simulated.

TABLE I

MECHANICAL PARAMETERS OF THE ROBOT

Part Shape Mass [kg] Dimension [cm]

body box 3 20×20×10

hip sphere 0.5 ∅8

thigh capped
cylinder

0.5 15×∅4
shank

A prismatic link connecting the robot body to the
ground, constrains its movements by guiding it on

−→
X axis.

A viscous friction force is applied to the robot. This force
Ffr is equal to −kfrVeff where Veff is the effective speed
of the robot body’s centre of mass and kfr is the viscous
coefficient.

The task of the robot is to respect a desired walk speed
Vdes and to simultaneously offset a potential perturba-
tion which consists of varying the coefficent kfr. This
perturbation, external from the leg’s point of view, could
simulate, from a multi-legged robot’s point of view, an
internal perturbation as a mass growth or a disruption of
another leg.

The performance p, of a controller is evaluated at the end
of a simulation of T = 10 sec. according to the following
expression:

p =
1
T

∫ T

0

|Vdes − Ṽeff |dt

where Ṽeff is the global walk speed of the robot3.

III. METHODS

A. Homeostatic mechanisms in biological neurons

Historically, research in neurophysiology are first cen-
tered on synaptic plasticity [10]. The mechanisms con-
trolling this plasticity are commonly considered as the
main vector of information storage in neural networks
and synaptic connection refinement during cerebral de-
velopment. Thus, by establishing correlation between si-
multaneous active neurons, Hebbian rules allow neural

3Temporal average calculed by application of a second order low-pass
filter on Veff . This value is preferred to Veff , subject to high amplitude
variations at the time of each stride.

circuits to adapt to received information. Nevertheless,
these flexibility mechanisms are source of instability [15].
Recents studies [18], show that they are associated with
homeostatic rules which regulate intrinsic properties of
each neuron. In this paper, we are interested in two kinds
of them: one regulating neuronal excitability and the other
stabilizing total synaptic input strength of each neuron.

1) Regulation of excitability: Excitability of a neuron,
i.e. its propensity to transmit more or less action potentials
according to information it gets, depends on concentrations
of various molecules which are present in its cell body and
in its closed vicinity. Ion channels inserted in its membrane
actively regulate these concentrations. According to Desai
and al. [3], this regulation seems to be driven by the average
activity of the cell. Thus, when activity of a neuron is high,
its excitability decreases to return to a functional firing rate.
Conversely, if the cell tends to be silent, its excitability
increases until its firing rate gets back to a functional range
(top of figure 3).

Fig. 3. Two homeostatic mechanisms regulating intrinsic properties
of neurons. Circles represents nerve cells. (These figures are directly
inspired from the work of Turrigiano [18]) Top: Regulation of excitability.
The cell’s activation threshold is regulated according to its own activity.
Bottom: Multiplicative scaling of all synaptic inputs strengths. After
an hebbian potentiation of a synapse, the scaling mechanism induces
synaptic competition on postsynaptic cell’s inputs. Bold circles symbolize
activated neurons. Line widths indicate the strength of the corresponding
connection.

2) Stabilization of total synaptic strength: During de-
velopment and learning, synapses number and properties
are submitted to deep changing. These modifications can
severely alter activity patterns of neurons. According to
Turrigiano and al. [19], to preserve their functionalities,
neurons regulate their total synaptic input strength. Thus,
the excitations amplitude remains in a relevance domain
(bottom of figure 3). Experimental observations tend to
state that this regulation is applied multiplicatively and
globally to all synaptic inputs of a related cell. By its multi-
plicative nature, this mechanism ensures relative weights of
the different connections. Otherwise, far from neutralizing
individual synaptic plasticity, this process induces compe-



tition: if some connections are potentiated, strengths of the
others have to decrease.

B. Neuron and synapse model

In the following, we propose a generic and versatile
neuronal model allowing the comparative study of the two
homeostatic mechanisms presented above. By versatile, we
mean a model that allows to turn each mechanism on or off,
independently of the other one. It should be noted that these
mechanisms, naturally dynamic and activity-dependent, are
formalized here in a static way. Since the time constant
of these mechanisms is much higher than those of the
activation and learning processes, we assume this is an
acceptable simplification.

Nerve cells composing our neural controller are based
on a leaky integrator model [2]:

τneu
i

dyi

dt
= −yi +

Ni∑
j=1

wijoj − θi + Ii (1)

oi =
1

1 + e−αiyi
(2)

where yi represents the mean membrane potential of the
neuron i and oi its activity. wij is the synaptic strength of
the connection from neuron j to neuron i, Ni is the number
of synaptic inputs of the neuron i and τneu

i denotes the
time constant of the membrane potential. Ii corresponds,
in the case of the cell i is a sensory neuron, to an external
excitation coming from a sensor. Finally, αi is a gain
determining the slope of the sigmoidal activation function
and θi is the threshold of the neuron’s activity.

The formal description of the synapse model results
directly from the work of Floreano and al. [5] in which
a local adaptation rule is assignated to each connection as
suggested by biological observations:

τ syn
ij

d|wij |
dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Plain Hebb rule

(1 − |wij |)ojoi

Pre-synaptic rule

(1 − |wij |)ojoi + |wij |oj(oi − 1)
Post-synaptic rule

(1 − |wij |)ojoi + |wij |(oj − 1)oi

Covariance rule{
(1 − |wij |)δ(oj , oi) if δ(oj , oi) > 0

|wij |δ(oj , oi) otherwise

where δ(oj , oi) = tanh(4(1− |oj − oi|)− 2) is a measure
of the difference between oj and oi. τ syn

ij is the time
constant of the corresponding learning law (comparable to
the learning rate, η, in the Floreano’s model). Note that, in
this model, values of synaptic weights are contained in the
interval [-1,1].

In order to model the mechanism that regulate neuronal
excitability, we use the model of center crossing networks
proposed by Mathayomchan and al. [13]. This paradigm
consists in determining the ideal activation threshold of a

neuron according to its synaptic input weights.

θi =
1
2

Ni∑
j=1

wij (3)

Thus, the operating range of each neuron is centered about
the most sensitive region of its activation function. Indeed,
due to the sigmoid asymmetry (about the x-axis), the
excitation range of a neuron can be shifted according to
the weight values of its synaptic inputs.

We adapt this concept to build our versatile model by
reformulating it. Thus, after transformation4 and homoge-
nization5, we obtain the modified activity õi as follows:

õi =

{
2(oi − 1

2 ) Center-crossing model

oi Classical model
(4)

Moreover, in order to generalize the model by enabling
several types of neurons (ones sensitive to weak excitations,
others sensitive to strong excitations), we introduce a new
activation threshold, θ∗i (7), independent of the synaptic
input strengths of the related neuron.

On the other hand, the mechanism that regulates total
synaptic input strengths is modeled by a multiplicative

normalization of ‖−→w i‖ =
√∑Ni

j=1 wij
2 [8]. The synaptic

weights are updated according to the following expression:

|wt+dt
ij | =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|wt

ij | + d|wt
ij |

‖−→w t
i + d−→w t

i‖
Normalized synapses

|wt
ij | + d|wt

ij | Classical synapses

(5)

Finally, to abstract the model from the value of Ni, we
define a coefficient, µi, normalizing the sum

∑Ni

j=1 wij õj ,
as follows:

µi =

{√
Ni Normalized synapses

Ni Classical synapses
(6)

Using the above definitions, the general expression of
our neuronal model is:

τneu
i

dyi

dt
= −yi +

1
µi

Ni∑
j=1

wij õj − θ∗i + Ii (7)

oi =
1

1 + e−αiyi
(8)

This versatile model allows instantiation of four sub-
models:

• center-crossing model with normalized synapses
(CCNS),

• center-crossing model (CC),
• normalized synapses model (NS),
• classical model (CM).

4∑ wijoj − θi =
∑

wijoj − 1
2

∑
wij =

∑
wij

(
oj − 1

2

)
5
(
oj − 1

2

)
is multiplied by 2 to preserve the same range of values

(|õj | ∈ [0, 1]) in any model used.



C. Neural controller structure

Figure 4 represents an example of an evolved controller.
We arbitrarily fix the network size to eight neurons. Two
neurons receive sensorial information from the environ-
ment, the first one is excited with the consign error Vdes −
Veff , the second one is connected to the contact sensor.
Three motoneurons drive angular positions of servomotors.
The three remaining neurons form the hidden layer of the
network.

Fig. 4. Example of the phenotype structure of an evolved controller.

Controllers are genetically encoded with numerical and
symbolic alleles strings divided in eight neuronal blocks.
Figure 5 shows structure of the neuron genotype. A neu-

Fig. 5. Structure of the neuron genotype.

ronal block is composed of a list of intrinsic neuronal
parameters (τneu, α et θ∗) and a list of eight synaptic
blocks defining properties of cell’s output connections
with others neurons (including itself). The first synaptic
block gene condition the network structure by activating
or not the related connection. The next gene indicates its
excitatory or inhibitory mode. The two remaining genes
dictate the connection dynamic by associating to it one of
the four learning rules showed above and the related time
constant, τ syn. The value of each numerical gene is taken
from a five length allele set. Table II shows these allele
sets.

From a complexity point of view, each geno-
type is provided with 8 × (3 + 8 × 4) = 280
genes and the size of the genotype search space is(
5 × 5 × 5 × (2 × 2 × 4 × 5)8

)8

= 3.74 × 10138 possi-
bilities.

TABLE II

ALLELES SETS OF NUMERICAL GENES

Gene Alleles set

τneu 0.02, 0.165, 0.31, 0.455, 0.6

α 2.46, 3.53, 5.34, 9.43, 31.26

θ∗ -0.2, -0.1, 0, 0.1, 0.2

τsyn 0.2, 2.65, 5.1, 7.55, 10

D. Evolutionary approach

Controllers are evolved by a generational and elitist ge-
netic algorithm. Genetic operators are the allelic mutation
(Pmut = 0.001) and the uniform crossover (Pcross =
0.6). Individuals are selected by the stochastic universal
sampling algorithm [1] according linearly to their rank in
the population [9] (with the best individual producing an
average 1.1 offspring).

During evolution, each controller is evaluated through
three successive simulations with different scenarios. As
we can see on table III, a scenario is defined by temporal
variations of Vdes and kfr parameters. The scenario A

TABLE III

THREE EVALUATION SCENARIOS

Scenario A Scenario B Scenario C

Vdes[m.s−1] 0.3

kfr[N.s.m−1] 10 10

corresponds to a simple control behavior, the scenario B
reward the capacity of inhibiting robot gait and the scenario
C favours adaptation to the perturbation. The global fitness
of an individual is the quadratic combination of the three
elementary scores obtained from these evaluations (the
lower the fitness is, the better the controller behaves).

fitness =
√

pA
2 + pB

2 + pC
2

This kind of combination restricts the compensation effect
produced by a classical average and supports behaviors that
include the three qualities described by the scenarios.

IV. RESULTS

A. Statistical analysis

For each neuronal models, we performed 10 evolution
runs with different random initializations of populations
of 200 individuals. Populations are evolved during 2000
generations. Figure 6 shows statistical results of this ex-
periment in term of best fitness. From these data, we draw
the following main results:

• Compared with the classical model (CM), both home-
ostatic mechanisms (CC and NS) clearly improve
evolvability of the controllers, either in final solution
or in evolution speed.

• CC model is, on average, more efficient than NS
model, but results variability indicates that evolution



Fig. 6. Best fitness for each neuronal model averaged over 10 runs with
different random initializations of the population.

of CC controllers strongly depends on initial random
populations.

• CCNS model is the most performant model and
always results in high fitness controllers (low value).

To verify relevance of the homeostatic mechanisms
to stabilize neural networks, we avaluated the long-term
behavior of the 10 best controllers for each neuronal model.
To do this we applied to those controllers a constant
desireed speed of 0.3m.s−1. The stability test is succeeded
if the robot reach the distance of 150m in less than
1000s. In case of perfect controllers this distance must
be reach in 500s. Controllers are tested in non-perturbed
(kfr = 10N.s.m−1) and perturbed (kfr = 20N.s.m−1)
environments (the perturbation occurs at t = 250s). Suc-
cess rates and average times spent to reach the given
distance in case of success are indexed in table IV. These

TABLE IV

STABILITY OF EACH CONTROLLER MODEL

Model
Non-perturbed Perturbed

Success[%] Avg. time[s] Success[%] Avg. time[s]

CCNS 90 537 80 586

CC 64 576 37 675

NS 72 597 70 669

CM 55 792 20 849

results corroborate the previous fitness observations except
for relative performances of CC and NS models. Indeed,
prolonged-time simulations appear to favour models which
incorporate normalized synapses, especially in perturbed
environment.

B. Control analysis

To complete the above statistical results, we achieved
behavioral and functionnal analysis of the best controllers.
During these simulations, a periodic squared signal is
submitted to the robot as desired speed while a perturbation
occurs. Figure 7 shows an example of time-plots of the
desired and the effective speed obtained for the best CCNS

controller (figure 4). Friction coefficient and joint com-
mands computed by the neural network are also plotted.
From these plots, we can see that control task is satisfied
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Fig. 7. Time-plots of Vdes, Ṽeff , kfr and joint commands for a CCNS
controller. The robot is perturbated at t = 30sec. Oscillations of the
effective speed correspond to the robot strides.

even when the perturbation occurs. The perturbation does
not significantly alter the robot speed and the control task
error remaining relatively small. Moreover, the adaptation
to the perturbation is confirmed by time-plots of joint
commands. Increasing of the friction force causes the
amplification of signals send to servo-motors (particularly
obvious on the knee joint). Note that walking frequency is
not altered by the perturbation. In addition, we can see
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Fig. 8. Cartesian trajectories of the end of the robot leg with or without
perturbation

on figure 8 that the robot gait is adapted in perturbed
environment. Indeed, the robot strides are lengthened and
shifted back from the body, this leg configuration increases
the resulting force when contact with the ground occurs.
Finally, we show, on the figure 9, the time-plots of synaptic
strengths of the corresponding neural network. This figure
indicates that the network adjusts its synaptic strengths
according to the desired speed and the perturbation.

V. DISCUSSION

As the above results show, when simulation time is
prolonged, NS controllers are more efficient than CC
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Fig. 9. Time-plots of synaptic strengths

controllers. By analysing long-term behavior of the both
model, it can be seen that normalized synapses contribute
to stabilize neural networks function. Indeed, CC and
CM controllers produce less robust oscillatory patterns.
Preliminary obervations indicate that these neural networks
cannot reconfigure their synaptic strengths after an inhibi-
tion or a perturbation of the robot gait. We suppose that
the synaptic normalization constraint favours dynamical
stability of neuronal systems. Also, this could explain the
low variance of NS and CCNS evolution results (figure 6).

Either during evolution (figure 6) or at post-evolutionary
evaluations (table IV), statistical results show that CCNS
model is clearly more efficient than CC and NS mod-
els. Since their association is more powerful than their
respective individuality, we can state that there is a synergy
between the both mechanism.

In our model, the synaptic normalization is expressed
in a static way. This assumption is made due to the fact
that, from a biological point of view, this mechanism is
relatively slow. However, it should be interesting to study
its dynamic modelling as in the Oja’s learning rule [17].
Moreover, by its local nature, this rule is more biologically
plausible. Likewise, a dynamical regulation of neurons
excitability could be more powerful by allowing a more
wider range of dynamics.

VI. CONCLUSION AND FURTHER WORK

In this paper, we show that evolvabilty, in term of
both speed and final result, of plastic neural controllers is
improved by including to them bio-inspired homeostatic
mechanisms that regulate neuronal excitability. Evolved
controllers show increased stability and perturbation adap-
tivity. On the other hand, since our neuronal model is
not specifical to the task we test it on, our results sug-
gest that these mechanisms could be benefical to others
applications or approach (back-propagation, reinforcement
learning, etc).

Within the scope of the IRON project, the aim of our
current work is to extend our approach to robots of several
morphologies undergoing various kind of perturbations.
To this end, the addition of a dynamic system, driving

intrinsic neuronal properties and synaptic plasticity, could
improves neural controllers adaptivity by allowing them to
reconfigurate themself. A potential issue is to integrate to
our neural model some bio-inspired paradigms based on
chemical messengers [4], [11].
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