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ABSTRACT

We present the DESAM Toolbox, a set of Matlab functions
dedicated to the estimation of widely used spectral models for mu-
sic signals. Although those models can be used in Music Informa-
tion Retrieval (MIR) tasks, the core functions of the toolbox do not
focus on any specific application. It is rather aimed at providing
a range of state-of-the-art signal processing tools that decompose
music files according to different signal models, giving rise to dif-
ferent “mid-level” representations.

After motivating the need for such a toolbox, this paper of-
fers an overview of the overall organization of the toolbox, and
describes all available functionalities.

1. INTRODUCTION

Audio signal processing has made tremendous progress in the last
decade, on both quantitative and qualitative levels. It now extends
way beyond “traditional” audio engineering community (“hi-fi”
hardware and software design, audio effects, audio coding, ...),
sharing strong interaction with neighboring fields such as mu-
sic perception and psychoacoustics, Music Information Retrieval
(MIR), auditory displays, tools for composition and home studios,
human-machine interfaces, ... to name but a few.

Arguably, one of the most challenging tasks, shared by
most of these communities, is to decompose a complex, multi-
instrumental, music signal into meaningful entities, or “objects”,
that not only convey some information from the signal processing
point of view, but are also carry intrinsic meaning from a musico-
logical / perceptual prospective (as opposed to e.g. time-frequency
“atoms” in the analysis/synthesis framework, or signal “features”
in the frame-based analysis). This type of processing has some-
times been called “mid-level” representations in the literature, and
is also related to CASA framework [1]. Here, “objects” or “sound
elements” can be notes, or structural elements of a note, such as
harmonic tracks of partials. From these, one could possibly infer
what notes are being played ( i.e. the score), but also what are
the instruments, what type of playing technique is being played or
what type of recording techniques have been used.

Obviously, no single technique can perform such a task per-
fectly on any type of real-life, polyphonic music. But what does
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“perfect” mean in this context? Obviously, this task will remain
an ill-posed problem unless a specific signal model is defined. The
goal of the DESAM Toolbox (that draws its name from the collab-
orative project: Décomposition en Eléments Sonores et Applica-
tions Musicales, funded by the French ANR), is to provide a range
of state-of-the-art signal processing tools that decompose music
files according to different signal models, giving rise to different
“mid-level” representations, in other words a set of coefficients
of a parametric model. As the main target of this toolbox is a
widespread use for rapid prototyping of algorithms, especially in
the academic community, as well as an educational purpose, it is
composed of a set of MATLAB functions, that can be used for
academic research under the only restrictions of a GPL license. A
preliminary version is available online 1 and will be maintained
and upgraded according to user’s feedback.

After motivating the need for such a toolbox in Section 2, the
collaborative project that led to the set of tools presented in this
toolbox is described in Section 3. The overall organization of
the toolbox is then introduced in Section 4. The core tools, re-
spectively based on sinusoidal models and more general spectral
models are described in Sections 5 and 6, and the application to
automatic music transcription is finally presented in Section 7.

2. RELATION TO OTHER MATLAB TOOLBOXES

Yet, why another audio Matlab toolbox? At time of writing, most
widely-used Matlab toolboxes have two targets:

• either related to perception such as the Auditory Tool-
box [2], in which case the main goal is to make some
perceptually-relevant pre-processing for further analysis
tasks;

• or related to Music Information Retrieval tasks (MIR Tool-
box [3], MA Toolbox [4]), in which case the signal param-
eters are relatively simple, most of the time extracted on a
frame-by-frame basis.

We believe there is still a widespread need for tools that imple-
ment recent state-of-the-art analysis methods, able not only to an-
alyze audio signals according to various audio signal models - and
can hence be used as input parameters for MIR systems - , but
also to resynthesize the music from the extracted parameters - in-
tended for audio coding in the engineering point of view, or sparse
coding in the neural information processing community. These
newer techniques, such as high-resolution methods, or NMF, have

1http://www.tsi.telecom-paristech.fr/aao/logiciels-et-bases-de-
donnees/desamToolbox.tgz
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already proven their usefulness for a wide range of real-life prob-
lems. It is now time to deliver them to the whole community in
order for them to become “classic” tools, in the same way as the
Short Time Fourier Transform or the Additive Synthesis have been
for decades. The users will notice that the core algorithm of each
of these powerful tools is always strikingly simple and compact,
we believe that they provide foundations for a multitude of future
improvements.

3. DESAM PROJECT

The DESAM project was a fundamental research project involving
four French laboratories:

• CNRS LTCI (Laboratoire Traitement et Communication de

l’Information), Paris, France;

• LAM (Lutheries - Acoustique - Musique) team, Institut Jean
Le Rond d’Alembert, UPMC Univ. Paris 6;

• LaBRI (Laboratoire Bordelais de Recherche en Informa-

tique), Bordeaux 1 University;

• STIC (Laboratoire Sciences et Technologies de

l’Information et de la Communication), Var and Toulon
University.

Headed by the LTCI, the project started in November, 2006
and it ended in February, 2010. It was divided in two parts. The
first one was devoted to the theoretical and experimental study of
parametric and non-parametric techniques for decomposing audio
signals into sound elements. The second part focused on some
musical applications of these decompositions.

3.1. Decompositions into sound elements

Their pitch and their timbre, specific to the instrument, character-
ize musical notes. When these notes are well modeled by a mix-
ture of sinusoids, the estimation of frequencies, amplitudes, and
their time-variations, are useful to analyze the pitch and timbre
of the sound. In this project, we have developed innovative high-
resolution (HR) methods for time-frequency analysis, in order to
estimate the fine time variations of these two parameters [5, 6, 7].
The modeling of non-stationary sinusoids was further addressed
in [8].

Besides, since a musical piece is composed of multiple notes
played at different times, it is naturally described as a combination
of sound elements (which can be either isolated notes, combina-
tions of notes, or parts of notes). Such a representation is called
sparse, since a limited number of sound elements permits to de-
scribe the whole musical content. Therefore, the first approach
that we investigated in order to decompose a sound aims at pro-
ducing the sparsest representation [9]. The second approach was
based on the non-negative matrix factorization (NMF), which we
have refined for our needs [10, 11]. It exploits the redundancies
in a musical piece (a single tone being generally repeated several
times) in order to identify the sound elements via their spectral
characteristics and their various occurrences through time.

3.2. Musical Applications

Analyzing a polyphonic recording in order to extract or to modify
its musical content (e.g. the instruments, the rhythm or the notes)

is a difficult exercise, even for an experienced musician. The DE-
SAM project aimed at making a machine capable of performing
such tasks. Let us mention some of them:

• The ability of identifying musical instruments from record-
ings is a key task in music indexation retrieval. An impor-
tant characteristic of a sound that defines the perception of
timbre is its spectral envelope.

• The ability to estimate the pitch of a sound (on a scale from
low to high) is critical for identifying musical notes, but
remains difficult in a polyphonic recording, because of the
overlap of sounds.

• If producing a sound given a musical score happens to be
easy both for the musician and computer, the inverse prob-
lem, called automatic transcription, which aims at recov-
ering a musical score from a recording, proves to be much
more complex and requires expert skills.

• Storing and transmitting an increasing volume of musical
recordings requires coding this data in a format as compact
as possible, making a compromise between the quantity of
coded information, and the quality of the reproduced sound.

The decompositions into sound elements provide a represen-
tation of the signal as a sum of more elementary entities. From
these entities, high level descriptors are extracted and are useful
for instrument recognition, rhythm estimation, and multiple pitch
estimation. These tasks are all necessary when the design of an
automatic transcriber is targeted.

We have thus proposed new methods for estimating and com-
paring the spectral envelopes of musical sounds [12, 13]. We have
also proposed original pitch estimation methods, capable of esti-
mating up to ten simultaneous notes [14, 15], which have been
used in an automatic transcription algorithm designed for piano
music [16]. An alternate transcription scheme based on NMF has
been developed for a larger class of instruments [17]. Besides,
the precision of the decomposition permitted a physical analysis
of sound production in musical instruments [18], and the develop-
ment of more effective methods for coding and modifying sounds.
Two approaches have been retained for coding. The first one,
based on HR methods, permitted to reach very low bit rates [19].
The second one, based on sparse decompositions, was a scalable
audio coder which can reach transparency [20]. Signal modifica-
tions were performed either by resampling the sinusoidal modeling
parameters [21], or by modifying the sound elements of a sparse
decomposition [22].

4. OVERVIEW OF THE TOOLBOX

The main contributions of the DESAM project have been inte-
grated in the DESAM Toolbox, a software library written in Matlab
language and distributed under the terms of the GNU General Pub-
lic License (GPL). As shown on Figure 1, the toolbox is organized
in three main parts. The first two parts are dedicated to the core of
the toolbox, namely the representation of audio using sinusoidal or
spectral models. The last part is dedicated to an application task:
the transcription of polyphonic music.

The part dedicated to sinusoidal models is further separated
into 2 subparts. The first one groups methods that deal with the
estimation of the parameters of the sinusoidal model over a short
time observation interval (i.e. frame level). The second one groups
methods which address the issue of estimating and/or tracking
those parameters over a long period of time (i.e. song level).
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Figure 1: Overview of the DESAM Toolbox.

Another complementary way of describing the spectral con-
tent of audio signals, explored in the second part, is to introduce
constraints on spectral shapes or envelopes. Once estimated, they
can be considered for deriving timbral features or estimating the
fundamental frequencies of polyphonic sounds.

5. SINUSOIDAL MODELS

5.1. Short-term Models

Given a short observation window of a given audio signal, one
would like to estimate the frequency and the amplitude of a given
number of sinusoidal components. The DESAM Toolbox provides
several and complementary ways of achieving this task. A first ap-
proach is able to estimate those parameters as well as their first
derivative by considering the Fourier spectrum as its underlying
representation. In order to get rid of frequency resolution con-
straints, a second approach considers High Resolution (HR) meth-
ods.

5.1.1. Fourier-based Methods

The DESAM Toolbox includes efficient non-stationary sinusoidal
estimation using enhanced versions of either the reassignment
method or the derivative method (see [8]).

Both methods have been proven to be equivalent in theory and
practice and to achieve nearly-optimal results in terms of estima-
tion precision (provided that the frequency resolution is sufficient

to isolate the spectral peaks corresponding to the sinusoids), see
[23, 24, 8, 25].

Although the resolution is still limited to the width of a bin of
the discrete Fourier transform (see Figure 2 for an example of this
frequency overlap phenomenon), the precision is close to the opti-
mal. Moreover, the non-stationary model is more general than the
one used in HR analysis, since it considers more general frequency
modulations:

s(t) =

P
X

p=1

ap(t) exp(jφp(t)),

where P is the number of partials, and

ap(t) = ap exp(µpt),
φp(t) = φp + ωpt+ 1

2
ψpt

2.

For the reassignment method, the syntax is:

[a, mu, phi, omega, psi, delta_t] =

reassignment (x, Fs, m)

The input parameters are:

• x, the signal frame to be analyzed;

• Fs, the sampling frequency (in Hz);

• m, the bin index where to pick the spectral peak (optional);

and the output values are a, mu, phi, omega and psi, corre-
sponding respectively to the estimated amplitude, amplitude mod-
ulation, phase, frequency and frequency modulation of the spectral
peak. delta_t is the reassigned time.

For the derivative method, the syntax is quite similar:

[a, mu, phi, omega, psi] =

derivative (x, d1, d2, Fs, m)

except that this function requires the first and second derivatives
d1 and d2 of the signal x, which can be computed using the func-
tion

drv = discrete_derivative (src, Fs)

where src is the source signal and drv is its derivative. The
test function of the discrete differentiation generates the Figure 1
of [8]. The test_global.m procedure generates the full tests
(Figures 2–6 of [8]) with heavy computations requiring some time,
though. For now, the implementation of the reassignment method
is more efficient. Thus, we recommend this method for the estima-
tion of the sinusoidal parameters. See the test_example.m2

script for a small example using this method.

5.1.2. Simple High Resolution (HR) analysis/synthesis

An analysis/synthesis scheme for musical signals has been pro-
posed in [26]. It is based on the Exponentially Damped Sinusoids
(EDS) model:

s(t) =

P
X

p=1

αp z
t
p,

where P is the number of partials, the complex amplitudes αp are
of the form αp = ap exp(jφp) (where ap > 0 is the real ampli-
tude and φp ∈ R is the phase of the partial p), and the complex

2Directory "sinusoidalModels/shortTerm/phaseBased"
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Figure 2: Fourier Spectrogram of glockenspiel tones.

poles zp are of the form zp = exp(δp + j2πfp) (where δp ∈ R is
the damping factor and fp ∈ R is the frequency of the partial p).

This model is estimated by means of a HR subspace method
called ESPRIT, which overcomes the spectral resolution limit of
the Fourier transform, and achieves an accurate estimation of the
sinusoidal components of the signal. Initially, the signal is pre-
accentuated. The noise autoregressive envelope is estimated, and
the signal is whitened with a FIR Filter [26].

The function HR_analysis.m3 decomposes the audio sig-
nal into a sum of exponentially damped sinusoids, on a single
time-segment, and the noise component is discarded. The function
HR_synthesis.m re-synthesizes the audio signal correspond-
ing to these EDS components. An optional wide-band whitening
filter is proposed in the analysis function. The syntax is:

[poles, amplitudes] = HR_analysis(signal,

order, whitening)

signal = HR_synthesis(poles, amplitudes,

signal_length)

The parameters are:

• signal, signal to be analyzed or synthesized;

• order, model order;

• whitening, flag for optional whitening;

• poles, vector containing the signal poles;

• amplitudes, vector containing the complex amplitudes;

• signal_length, length of the signal to be synthesized
(in samples).

5.1.3. Subband analysis and dynamic segmentation for HR

audio coding

For an efficient audio coding application, the HR analy-
sis/synthesis can be performed in frequency subbands and on a
dynamic frame-by-frame basis. In order to reduce the complex-
ity, we use a perfect-reconstruction filter bank, which keeps only

3Directory "sinusoidalModels/shortTerm/highResolution_lma".
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Figure 3: Estimating the frequencies of glockenspiel tones us-

ing the fast HR subspace tracking method. Notice how the fre-

quency overlap is reduced compared to a conventional Fourier-

based spectrogram.

the positive-frequencies in the signal. A dynamic frame-by-frame
segmentation is performed according to an onset detection algo-
rithm [27]. The corresponding script is demo.m. The audio codec
described in [19] is based on this analysis/synthesis scheme.

5.1.4. Adaptive subband analysis and fast HR subspace track-

ing

An adaptive version of this method, using a classical filter bank
(with subband-by-subband whitening) and a fixed frame-length
analysis/synthesis, is also described in [26]. This scheme leads
to a new representation, called the HR-ogram, where the signal
components are represented as points in the time-frequency plane,
see Figure 3. The stochastic part is then defined as the residual
of this decomposition. The deterministic and stochastic parts can
thus be processed separately, leading to high quality audio effects.

The program included in the DESAM Toolbox4 decomposes
the audio signal into a sum of exponentially damped sinusoids and
autoregressive noise. Then the ESTER method [28] is used to
estimate the number of sinusoids, and a fast adaptive algorithm
(called Sequential Iteration) performs the subspace tracking [29].
Sinusoids/noise separation is achieved by projection onto the sig-
nal subspace and the noise subspace [30], and by reconstruction
with the synthesis filter bank. The whole processing is described
in Part III of reference [26], and was presented at Acoustics’08 [5].
The main function is analyse.m, whose syntax is the following:

[z,alpha,x] = analyse(s,Fs)

The input and output parameters are:

• s, signal to be analyzed;

• Fs, sampling frequency (preferably 44100 Hz);

• z, matrix containing the signal poles;

• alpha, matrix containing the complex amplitudes;

4Directory "sinusoidalModels/shortTerm/highResolution_telecomParisTech".
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• x, sinusoidal part of the signal.

This code was successfully applied to the decomposition of
sounds from various musical instruments.

5.2. Long-term Models

5.2.1. Conventional Partial Tracking

Following pioneering work of MacAulay & al [31] and Serra & al
[32], most partial tracking algorithms link together spectral peaks
estimated using short-term methods such as the ones described in
the previous section in order to form partials, i.e. sinusoidal oscil-
lators whose parameters evolve slowly with time.

The approaches cited above, respectively termed Maq and
Serra consider heuristics such as frequency proximity in order
to enforce the slow variation of the parameters. In [33], more so-
phisticated approaches were developed in order to ensure those
constraints, respectively by considering the predictability of the
evolution and by enforcing that the spectral content of those evolu-
tion is of low frequency. Those approaches are respectively termed
LP (for Linear Prediction) and HF (for High Frequency analysis),
see Figure 4 for some results.

The syntax for the Maq tracking method is:

[P, Z,tag] = peaks2partialsMaq(A, F, tag,

Z, deltaF)

where

• A, F are respectively the amplitudes and the frequencies
of the spectral peaks;

• tag is the partial index value assigned to the next created
partial;

• Z is the state of the active tracks;

• deltaF is the maximal frequency deviation allowed be-
tween 2 successive peaks in any partial.

• P is the partial’s label assigned to the spectral peaks.

The 3 other methods follow a similar syntax. One can notice that
this syntax allows the trackers to be used in a streaming fashion
as shown in the demo.m5 script where the spectral data to be pro-
cessed is split in two successive sets of peaks.

The four methods have been successfully tested in a small set
of audio data. However, it should not be considered as authorita-
tive implementation of the above described algorithms at this stage
(as more extensive testing is still required).

5.2.2. Tracking of frequency components: the HRHATRAC

algorithm [6]

HRHATRAC stands for High Resolution HArmonics TRACking

and denotes an algorithm aiming at modeling musical sounds as
multiple, slowly varying, spectral trajectories surrounded by an
additive noise. HRHATRAC combines the efficiency of one of
the most recent subspace tracking algorithm [34] with a gradient
update for adapting the signal poles estimates. Hence it is able to
update the frequency of each component from a time-instant to the
next. It leads to a representation of the sinusoidal content of the
signal in terms of spectral trajectories (slowly varying frequency
components).

5Directory "sinusoidalModels/longTerm/telecomParisTech_echeveste"
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Figure 4: Tracking the harmonics of a clarinet using the LP

method.

The corresponding DESAM Toolbox function hrhatrack

returns for the kth frequency component its instantaneous fre-
quency fp(t) = (2π)−1φ′

p(t) and instantaneous amplitude modu-
lation ap(t). The sinusoidal part of the signal can thus be obtained
as

P

p
ap(t) exp(jφp(t)). The main function is hrhatrack.m6,

whose syntax is the following:

[freqs,amps] =

hrhatrack(s,Ns,P,beta,muL,muV)

The input and output parameters are:

• s, signal to be analyzed;

• Ns, size of the signal subspace. Ideally, the number of com-
plex frequency components, if it is known. If not known,
overestimate Ns (typically by a factor 1.5 to 2);

• P, size of the autocovariance matrix (P × P ), default P =
3*Ns;

• beta, forgetting factor for the updated covariance matrix,
default: 0.99;

• muL,muV, gradient steps for the eigenvalues and the eigen-
vectors updates respectively, default 0.9;

• freqs,amps, fp(t) and ap(t).

A demo script is also included: demo_hrhatrack.m.

5.2.3. Adaptive estimation scheme for instantaneous ampli-

tudes

In [7] an adaptive estimation scheme is proposed for sample-wise
update of the instantaneous amplitudes of known frequency com-
ponents. The resulting decomposition of the signal in terms of
sinusoidal content + noise is derived simultaneously. A fast se-
quential Least Squares algorithm is used which, for a given basis
of r distinct frequency components, recursively derives the Least

6Directory "sinusoidalModels/longTerm/telecomParisTech_david"
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Squares estimates of the associated amplitudes and phases. While
a direct calculation would achieve a O(nr2) (n being the total
number of samples) complexity, the main cost of our implementa-
tion is only of 4r multiplications per sample.

The main function is fastls.m7, whose syntax is the fol-
lowing:

[b,xc,er] = fastls(s,z,n)

The input and output parameters are:

• s, signal to be analyzed;

• z, z = [z1, z2, z3,...], complex poles;

• n, length of the analysis snapshot;

• b, matrix of the instantaneous amplitudes sequence;

• xc, sinusoidal part of the signal;

• er, residual (s = xc + er).

A demo script is also included: demo1_fastls.m.

5.2.4. Enhanced resampling

Once estimated using the above described methods, the parameters
of the partials can be resampled using the method proposed in [21]
which is suitable for general signals (non necessarily zero-centered
or uniformly-sampled) and used for time scaling purposes as in
[35]. The syntax is:

dst = enhanced_resample (src,

src_param, dst_param)

where src and dst are the source and destination (resampled)
signals, respectively. The other input parameters src_param
and dst_param are either the sampling rate given as a scalar
(uniform sampling case) or the sampling times given in a vector
(non-uniform sampling case).

This function resamples the source signal according to the
specified rates or times (see the test_global.m8 function for
a small example).

6. SPECTRAL MODELS AND APPLICATIONS

In this section, tools related to the estimation of the spectral en-
velope of a sound spectrum are presented, with applications to the
study of the timber and the multipitch analysis.

6.1. ARMA envelope estimation

We proposed in [12] new algorithms for estimating autoregressive
(AR), moving average (MA), and ARMA models in the spectral
domain. These algorithms were derived from a maximum like-
lihood approach, where spectral weights are introduced in order
to selectively enhance the accuracy on a predefined set of frequen-
cies, while ignoring the other ones. This is of particular interest for
modeling the spectral envelope of harmonic signals, whose spec-
trum only contains a discrete set of relevant coefficients. In the
simple case of AR modeling, we proved that the proposed algo-
rithm converges to the optimal solution, and that the convergence
rate is enhanced by remapping the poles at each iteration. In the
context of speech processing, our simulation results showed that

7Directory "sinusoidalModels/longTerm/amplitudeEstimation"
8Directory "sinusoidalModels/longTerm/parametersResampling".

the proposed method provides a more accurate ARMA modeling
of nasal vowels than the Durbin method.

The main demonstration function is test.m
9, which per-

forms the numerical simulations presented in [12], and plots the
corresponding figure.

6.2. Timbral descriptors

Most of the approaches dealing with timbre description consider a
concise encoding of the spectral envelope like the Mel-Frequency
Cepstral Coefficients (MFCCs). Alternatively, we studied in [36]
descriptors which are encoding the pseudo-periodic evolution of
some relevant part of the envelope through time and demonstrated
that those new features can conveniently be combined with the
previous ones in order to improve the description capabilities of
the features set.

Also, it is commonly considered that all the data is described
using the same set of features. However, one can easily notice ma-
jor discrepancies in some realistic settings between the database
and the request side, for example regarding audio quality. Consid-
ering the matching scheme proposed in [13], a smooth description
of the spectral content is required on the database side in order to
maximize generalization properties. To that end, we studied vari-
ous envelopes based on AR modeling and the True Envelope ap-
proach. On the request side, the audio quality can be much lower,
only some prominent spectral peaks are considered.

The script demo.m10 computes a large set of those spectro-
temporal features over a predefined signal and displays its self-
similarity matrix. Features based on MFCC computation rely on
the Matlab code published by Dan Ellis [37].

6.3. EM-based Multiple pitch estimation

The problem of multi-pitch estimation consists in estimating the
fundamental frequencies of multiple harmonic sources, with possi-
bly overlapping partials, from their mixture. In [15], we introduced
a novel approach for multi-pitch estimation, based on the statisti-
cal framework of the expectation-maximization algorithm, which
aims at maximizing the likelihood of the observed spectrum. The
proposed method was particularly promising, due to its robustness
to overlapping partials, and its capacity to simplify the multi-pitch
estimation task into successive single-pitch and spectral envelope
estimations. It requires a proper initialization, involving a first
stage of basic multi-pitch estimation for instance, and could advan-
tageously make use of heuristics, in order to avoid staying trapped
in local maxima. The effectiveness of this approach was confirmed
by our simulations in the context of musical chord identification,
performed on audio-like synthetic signals.

The main function is test.m11, which performs the numeri-
cal simulations presented in [15], and plots the corresponding fig-
ures.

7. AUTOMATIC MUSIC TRANSCRIPTION

In reference [17], we presented a new method for automatic music
transcription. The proposed approach was based on a Bayesian
model which introduces harmonicity and temporal smoothness

9Directory "spectralModels/envelope/telecomParisTech_badeau".
10Directory "spectralModels/envelope/telecomParisTech_lagrange"
11Directory "spectralModels/harmonicMixture/telecomParisTech_badeau".
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constraints into the non-negative matrix factorization of time-
frequency representations, providing a meaningful mid-level rep-
resentation of the data. The model involves superimposed Gaus-
sian components having a harmonic structure, while temporal con-
tinuity was enforced through an inverse-Gamma Markov chain
prior. We then presented two algorithms which perform the max-
imum a posteriori (MAP) estimation of the model parameters.
The first one [17] is a space-alternating generalized expectation-
maximization (SAGE) algorithm, whereas the second one [38] is
a novel multiplicative algorithm designed for minimizing an ob-
jective function composed of the Itakura-Saito divergence plus a
prior penalty term. The proposed algorithms outperformed other
benchmarked NMF approaches in a task of polyphonic music tran-
scription, evaluated on a realistic piano music database.

Thus the program included in the DESAM Toolbox12 com-
putes the fast Bayesian constrained Itakura-Saito NMF of a magni-
tude ERB (equivalent rectangular bandwidth) transform, with ba-
sis spectra representing partial clusters and fundamental frequen-
cies on the MIDI scale tuned at 440 Hz.

The main function is bertin_multipitch.m, whose syn-
tax is the following:

bertin_multipitch(wavfile,

framewise_f0file,notewise_f0file)

The parameters are:

• wavfile, input wave file to be transcribed;

• framewise_f0file, output file with framewise funda-
mental frequency (f0) transcription every 10 ms;

• notewise_f0file, output file with transcription of the
onset, offset and f0 of each note.

8. CONCLUSION

The initial version of the DESAM Toolbox was described. It in-
troduces a rather large set of processing tools for estimating pa-
rameters of widely used spectral models. This toolbox is therefore
aimed at the researchers community interested in the modeling of
musical audio but could be of potential interest for anyone inter-
ested in audio and acoustics.

The Matlab code is distributed under the GNU Public License
(GPL) and anyone willing to add new methods and/or improve
the existing ones is encouraged to contact the maintainer of the
toolbox (Mathieu Lagrange).

Further development will include, a more coherent Applica-
tion Programming Interface (API) for methods tackling similar
problems, Octave compatibility, and the development of experi-
mental testbeds for evaluating and comparing the proposed meth-
ods.
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