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Abstract—This paper presents a study on a Muscle like 
System based on a PID Controller tuned by a Neural Network. 
The approach is based on a non linear Muscle Model using 
system identification based on a NNARX (Neural Network 
AutoRegressive eXogenous) [3] structure.   This model is used 
in a special configuration of an MLP in order to let the output 
of the closed loop formed by the motor and controller to follow 
that of this non linear Muscle Model. Two structures are 
compared and the robustness of the approach is tested with 
different models of DC motors. 

I. INTRODUCTION

Creating an artificial system that can behave as a real 
Muscle is an important task that has many applications in 
two domains: 

The first one is in the field of artificial prostheses for
handicap applications.
The second is in the field of bio inspired robots in
which we try to let a robot leg for example to behave as
a human or an animal one.

Our aim is to control an existing walking robot that walk 
and behave like a human or an animal. To do that, one way 
consists to control implemented DC-Motors and their PID-
Controllers to obtain with legs same equivalent behaviors as 
real muscles.  Thus, the muscle-like system is based on a 
PID controller tuned by an external system that has learned a 
model of the muscle. Some researchers in the field of muscle 
modeling created different models like Hill [22] and others 
used linear or non linear system identification. In the 
modeling of a muscle, like model based on non linear 
system identification, many studies have been done. Some 
are based on an RBF network [1]. This structure is found to 
be suitable only for muscle with a majority of fast motor 
units. Big number of RBF neurons function was noted. 
Others are based on Local Model Network [2] which is 
proved to be suitable for a wider range of muscles than the 
previous one, but with a more complicated system design. In 
our approach, the identification was done based on an 
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NNARX structure. Good performances of ARX method in 
non linear system identification and the properties of 
learning of Neural Networks have contributed to a 
simplified network structure with better identification 
results. Then we have implemented the learned neural 
network that can change on-line the parameters of the PID-
Controller. 

This paper is organized as follows: In section II, a non 
linear identification of a muscle model based on NNARX 
structure is presented. In section III, a special Neural 
Network architecture is discussed and implemented for 
controlling the parameters Kc, Ti and Td of the PID 
Controller. Here two configurations are being discussed. In 
section IV, comparison results for the two configurations, 
presented in the previous section, are discussed. The paper 
concludes with a perspective for future works.  

II. MUSCLE MODEL 

To represent the muscle, we propose to use a system 
identification based on NNARX structure [3]. NNARX 
stands for Neural Network ARX in which the internal 
engine is a Neural Network. NNARX model are similar to 
their ARX linear counterpart. This predictor is always stable 
(even if the system is unstable) because there is a pure 
algebraic relationship between prediction, past 
measurements and inputs. This is a very important feature of 
the NNARX structure in the nonlinear case since the 
stability issue is more complex than for linear systems. In 
[3], Norgaard shows that this is a very good method for 
deterministic or noiseless system. The principle of NNARX 
method consists to use past measurements and past inputs as 
inputs to the NNARX network, while considering the 
internal architecture as a feed forward MLP network. 
The regression vector is represented as follows: 

            T
kbka )1nnt(u...)nt(u)nt(y...)1t(y)t(    (1) 

 y(t) is the output of the Muscle Model, u(t) is the 
neuromuscular command (input), na indicates the number of 
past measurements used (here na = 3), nk is the time delay 
(here nk=1), nb is the number of past inputs used (here nb=3). 
The predictor vector is represented as follows: 

            )),t((g),1t|t(y)|t(y (2) 
 is the vector of adjustable parameters. 
The training algorithm used is the Levenberg-Marquardt 

method [4], this algorithm is the most widely used 
optimization algorithm. It outperforms simple gradient 
descent and other conjugate gradient methods. The problem 
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for which the LM algorithm provides a solution is called 
“Nonlinear Least Squares Minimization”. The Levenberg-
Marquardt algorithm dynamically mixes Gauss-Newton and 
Gradient-Descent iterations and thus the update rule is the 
following:       )()( 1

1 iii xfHdiagHxx
H  Being the Hessian matrix and )( ixf is the gradient of 
the function to be minimized both evaluated at xi. 

The system identification used in this paper is based on 
the toolbox created by Magnus Norgaard, which is a 
nonlinear system identification toolbox developed under 
Matlab. 

Figure 1 presents the NNARX structure for our problem 
of muscle identification. In this scheme, y(t-nk) are data 
issued from experimentation described by Gollee and 
Donaldson et al. in [1] and [2]. More details of our approach 
used in the creation of this muscle model and its comparison 
with other models will be presented in another next paper.  

Fig. 1. NNARX Muscle Model 

The results obtained with this method are presented in 
figure 2. We can see that the error is of 10-4 order and thus 
the superposition of the real Muscle output and the NNARX 
model is acceptable. A good amelioration compared with the 
identification based on RBF network developed by 
Donaldson et al. [1] and with the LMN Muscle Model 
created by H. Gollee et al. [2] was obtained. 
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Fig. 2. Results of superposition between the real signal and the NNARX 
Model (the superposition is perfect so we cannot distinguish between 

dashed and solid lines). 

III. PHYSICAL EMULATION OF A MUSCLE

The idea discussed in this section, is to keep the output of 
the DC Motor, combined with the PID Controller in closed 
loop, behave like a real muscle by simple variation of the 
parameters Kc, Ti and Td of the PID Controller. So a 
comparison with the Muscle Model Output is necessary. In 
order to tune the parameters of the PID Controller to let the 
output y(t) of the DC Motor follows that of the Muscle 
Model yd(t), we use an Artificial Neural Network (MLP) in 
two different structures: 

1-In the first one (see Fig. 3), the Muscle Model is
connected in parallel with the system [DC-Motor and PID
controller]. In this structure, I(t) is the ANN Input vector
defined by :

)t(),2t(e),1t(e),t(e),2t(y),1t(y),t(y),2t(r),1t(r),t(r)t(I ddd     (3)
y(t) is the torque output of the DC motor, yd(t) is the output 
of the Muscle Model, r(t) is the neuromuscular command . 

Fig. 3. Block diagram of the parallel configuration.  

As mentioned in [5] by S. Takagi et al., )t( is a signal 
which gives the neural network information about the 
direction when the command signal )t(r rises up or falls 
down. These authors have demonstrated that it will be 
useful to use this signal (t) as input to the neural network. 
They propose the next expression for (t): 

0)Tt(r)t(r)t(r
0)Tt(r)t(r)t(r)1t(
0)Tt(r)t(r)t(r

)t(

s

s

s
              (4) 

2- In the second structure (see Fig.4), the output of the
Muscle Model is connected like a reference to the
system (DC – Motor and PID Controller). 



Fig. 4. Block diagram of the serial configuration 

In this structure, I(t) is ANN vector Input defined by : 

)t(,
dt

)t(de,)t(e),t(e)t(I (5)

The Architecture of the ANN used is the two structures is 
represented as follows in figure 5: 

Fig. 5. Artificial Neural network tuner 

The parameters of this ANN tuner have been determined 
after few experiments. In this way, the parameters of the two 
nonlinear functions corresponding to the internal neurons 
layer depend of the structure: 

For the first one, we have a=b=1 and c=0.3.
For the second one, we have a=b=1 and c=4.

The number of neurons in the hidden layer depends also of 
the structure. 

For the first one, we have NH=60.
For the second one, we have NH=12.

The number and types of input variables depends also of the 
structure. 

For the first one, input I(t) is given by equation (3)
For the second one, input I(t) is given by (5)
Which gave the same result as for:

)t(),2t(e,)1t(e),t(e)t(I

The value of the sampling time period Ts used for 
calculating the outputs and for updating the weights of the 
network is set at 10 ms for the first structure and 100 ms for 
the second structure. 

In order to update the weights of the network, we have to 
design a special back-propagation algorithm. In fact, the 
usual algorithms for back-propagation are based on direct 
calculations in which we compare each output with its 
desired value and we calculate the corresponding error etc... 
Here the training of the network must be implemented in an 
indirect manner because we don't know the desired value of 
the parameters Kc, Ti and, Td. However, the output of the 
DC-Motor y(t) must follows that of the Muscle Model yd(t).
Then, it is necessary to develop an indirect training 
algorithm that is presented in next section. 

III.1. Indirect Learning with Back–Propagation Algorithm

The basic Back–Propagation Algorithm is based on the 
minimization of the classical output quadratic error: 

2
d

2 )t(y)t(y)t( (6) 

But, referencing [5], S. Takagi et al. propose to use the 
following expression for training: 

2
d

2 )t(y)t(y)t(

This is equivalent to the expression: 
2

dd
2 )Tst(y)t(y)Tst(y)t(y)t(

This will result in a quicker learning rate in the field of fast 
variations of the input signal and slower learning rate in the 
field of slow variations. Therefore, this form is very 
convenient for our study because the muscle present many 
fast variation zones. 

Referencing to figure 5, we consider the following 
parameters: 

Vij and Wjk are the weights of the two successive
Neural Network layers.
Hj , is the output of the hidden layer :

p

0i
iijj I.VfH (7) 

Ok is the output of the output layer :
q

0j
jjkk H.WgO (8) 

III.1.1. Calculation for Output Layer

We have to recalculate the entire back-propagation
algorithm for both the output and the hidden layer of the 
neural network. The idea is to update the value of the neural 
network weights in order to minimize the global error:  

)t(
2
1)t( 2 (9) 
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This minimization leads to have the partial derivative 

jkW
)t(  equal to zero, so this partial derivative is 

decomposed in the following form: 
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Some terms are easily calculated: 

)t(   and    1
y

(11-12) 

Due to the PID control, we know that: 

)t(e
T
T

T
T

K)t(u
s

d2

i

s
c (13) 

where: 1z1 , then :  

                                                                       (14) 

The partial derivative of the output of the neural network 
in correspondence to the weights is simply the derivative of 
the non-linear function of the output layer, so:  

HjOcO
c
b

W
O

kk
jk

k (15) 

The general transfer function of the motor is as follows: 

)p1)(p1(
A

)p(U
)p(Y)p(H              (16)   

Then we can write in the discrete time: 

Tstyty
Ts

)t(y)t(Au

)Ts2t(y)Tst(y2)t(y
sT2

and, 

Ts2ty)Tst(y
Ts

)Tst(y)Tst(Au  

)Ts3t(y)Ts2t(y2)Tst(y
sT2

So, we have: 

Tsty)t(y
Ts

)t(y)]Tt(u)t(u[A s  

       )Ts2t(y)Tst(y2)t(y
sT 2

Finally, we obtain:  

)t(y
sT

3)t(y
Ts

21

A
)t(u
)t(y

2
2

         (17) 

This expression will contribute to the following updating 
rule for the weights of the output layer Wjk as: 

)1t(W
W

)t()t(W jk
jk

jk             (18)

III.1.2. Calculation for the Hidden Layer

The same calculations and derivations could be done for
updating the weights of the hidden layer:

: 
ij

j3

1k j

k

kij V
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V
)t(            (19) 

We have:           )t(      and    1
u

       (20-21) 

And  
kO
u   is given by equation (14)

Also we have: jkkk
j

k WOcO
c
b

H
O

(22)      

and          )H
2
1)(H

2
1(a

V
H

jj
ij

j (23)     

Finally, we can compute the expression of the updating rule 
for the hidden layer Vij as: 

 )1t(V
V

)t()t(V ij
ij

ij (24) 

IV. IMPLEMENTATION AND RESULTS

We have implemented the two models under Simulink in 
order to test the performance of each of the two structures: 
the parallel one (Fig 3) and serial one (Fig 4). Each 
performance is based on the calculation of the mean square 
error given by: 

N

0n

2
d ))n(y)n(y(

N
1 (25) 

IV.1. Tuning the PID with a Parallel structure

In the parallel structure, we have connected the Muscle
Model in parallel with the physical system (DC Motor – PID 
Controller) as we can see in the Simulink scheme (Fig. 6). 

Fig. 6. Simulink Block scheme for the parallel structure 



The PID controller is designed to have its parameters Kc, 
Ti and Td as inputs, also having the integral of the error e(t) 
and the derivative of the error as outputs. 
The Neural Network is designed as an S-Function. The 
Motor block is a transfer function of the designated DC 
Motor, and the input command r(t) is an especially designed 
signal under Matlab in order to emulate as much as possible 
the neuromuscular command. 

In order to tune the parameters and to choose the 
appropriate inputs to the neural network and the necessary 
number of neurons in the hidden layer, we have made many 
combinations with these parameters. Four significant results 
are presented in next sub-sections.  

IV.1.1 First Result

In this first simulation we set the parameters as follows: 
Ts = 20ms for the sampling period.
30 neurons in the hidden layer.

)t(),t(y),t(y),t(r d as inputs.

Results are presented on Fig 7.  
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Fig. 7. First results obtained (Muscle Model output in Magenta )(tyd  and 

physical system output in Cyan )(ty , in blue is r(t)) 

It is clear that we have obtained some kind of superposition 
but it is not so perfect. The error   is remarkable in the two 
zones of fast and slow variations of the Muscle Model 
output. Calculation of  gives: 

 = 20% in the field of Slow variation.
 =29% in the field of Fast variation.

IV.1.2 Effect of size of hidden layer and of sampling period
time 

From the first result, we have increased the number of 
neurons in the hidden layer up to 60 and decreased the 
sampling period down to 10ms. Some amelioration in the 
superposition was noted. But in another way, more 
increasing in the number of neurons in the hidden layer for 

more than 60 and/or decreasing the sampling period time for 
less than 10ms haven’t contributed to any enhancements in 
the results. 
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Fig. 8. Second result obtained.  

The error in the two zones of fast and slow variations of the 
Muscle Model output is: 

 =10% in the field of Slow variation.
 =33% in the field of Fast variation.

IV.1.3 Effect of adding delayed inputs

In this simulation, we change the nature or the inputs of 
the neural network in order to give more information about 
past inputs, past outputs, errors and past errors. So, to 
consider only the first order of past input, past output and 
past error, the new input vector is:  

)]t(),1t(e),t(e),1t(y),t(y),1t(r),t(r[)t(I dd  
And we set: 

Ts = 10ms for the sampling period.
60 neurons in the hidden layer.

The results obtained are presented below (Fig.9): 
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Ameliorations are clear in the two zones of fast and slow 
variations of the Muscle Model output. Calculation of error 
gives: 

 = 8% in the field of Slow variation.
 = 14% in the field of Fast variation.

IV.1.4 Increasing the size of hidden layer with delayed
inputs 

In the fourth experiment, we increase the neurons in the 
hidden layer up to 80.The input vector I(t) is given by (3). 
Results are presented below: 
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Fig. 10. Fourth result obtained(Ts=10ms) 

Ameliorations are clear in the two zones of fast and slow 
variations of the Muscle Model output. The error is:  

 =6% in the field of Slow variation.
 =10% in the field of Fast variation.

It’s clear that this combination of parameters gives the
best superposition between the Muscle Model output and 
the physical system output (DC motor – PID controller). 
This is normal because finally, the input gives more 
information on the dynamic of the muscle, the sample 
frequency is higher, and the number of hidden neurons 
allows the network to better interpolate. For this set of 
parameters, we plot on Fig 11 the mean square error during 
the learning phase. The curve shows clearly the convergence 
of the network. 
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IV.2 Tuning the PID with a Serial structure

The second structure (Fig 11) consists in connecting in
serial the output of the Muscle Model as a reference to the 
closed loop of the physical system (DC Motor – PID 
controller). 

Fig. 12. Simulink block diagram of the second configuration 

In this scheme, the blocks are the same as the first one of the 
Fig 6. The only modification made here is that we have 
implemented three transfer functions for the DC Motor, In 
order to evaluate the robustness of our controller… So, we 
have implemented those transfer functions corresponding to 
different operating conditions in order to see how the system 
will behave when the DC Motor or its parameters change. 
The nominal plant is given below (taken from Ching-Hung 
Lee et al. [6]): 

305.1s1.0s005.0
15

2

Plant with loading variant: 

28.1s072.0s0032.0
18

2

The third function is an identification of the DC-Motor: 

25.1s077.0s0031.0
18

2

To do that, we have implemented a random function 
which selects one of the three transfer function randomly 
and continuously during each simulation and a test of 
robustness is being given in IV.2.3. Like for the parallel 
structure, we test the serial one with different parameters. 
Significant results are presented next. 

IV.2.1 First Result

An example of result of superposition between the output
of the Muscle Model and the physical system was with the 
following values: 

Ts = 100ms
10 neurons in the hidden layer

)t(),t(y),t(y),t(r d as inputs

The results obtained are the following:
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If we compare to the parallel structure, ameliorations are 
clear, particularly in the two zones of fast and slow 
variations of the Muscle Model output. More precisely, we 
obtain:  

 =3% in the field of Slow variation.
 =1% in the field of Fast variation.

Others simulations show that more increases to the 
number of neurons in the hidden layer and/or decreases of 
the sampling period have not contributed to any 
enhancements. 

IV.2.2 Effect of delayed errors as inputs

The more important signal working in this configuration 
is the error, the integral of the error and the derivative of the 
error. Hence, why not use them as inputs to the neural 
network and this configuration had given better results than 
those mentioned above with 1% error on all zones of 
operations. This simulation uses the following variables: 

Ts = 100ms
12 neurons in the hidden layer

)t(,)2t(e),1t(e),t(e as inputs

The graph is represented in Fig. 14: 
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Ameliorations are clear in the two zones of fast and slow 
variations of the Muscle Model output: calculation of the 
Means square error gives: 

1% in the field of Slow variation.
1% in the field of Fast variation.

However, the mean square error plot during the learning is 
given below (Fig 15). 
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Fig. 15 Serial Structure Mean Square Error Plot 

IV.2.3 Test of Robustness

The final simulation consists of the behavior of the system
when the transfer function of the DC Motor changes (test of 
robustness). Fig.16 presents an enlarged scale of the graph: 
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Fig. 16. Test of robustness 

We can see clearly that an error will be presented when 
the transfer function changes but for less than 2 seconds the 
neural network reprogram the PID controller with the 
necessary parameters and the superposition remain very 
good. 

I.V. 3 Discussion

In the first tuning structure, we put the Muscle Model in
parallel with the closed loop of the DC Motor and the PID 
controller. This approach is interesting because after training 



the Neural Network we can eliminate the Muscle Model for 
real time implementation. However, this structure is very 
complex (have 10 inputs and 80 neurons in the hidden 
layer), the training time is very long (about 10 hours), the 
sampling period is low (10ms) and the overall error obtained 
at the final stage is about 8% which is disadvantageous. 

In the second structure, the Muscle Model is connected as 
a reference for the closed loop formed by the PID controller 
and the DC Motor. It is more advantageous. Because of its 
simple structure (4 inputs and 12 neurons in the hidden 
layer), the training time is about 1 minute and the sampling 
period is not necessary high (100ms). It has contributed in a 
much less calculation time with output error about 1%. The 
system has also passed the test of robustness. In the latter 
test we have changed online the transfer function of the DC 
Motor. It was demonstrated that the Neural Network has 
responded and programmed the PID controller for perfect 
results in less than a second. 

 The second structure presented good performance, 
simple structure and acceptable calculation time that 
facilitate the implementation in real time. All those results 
obtained had encouraged us to continue development in 
implementing this muscle model already created into a 
robot. This robot must have DC-Motors acting as actuators 
and PID controller. We think that it is possible for us to let 
the robot walk in a way similar to that of a human or animal 
one by adopting the second structure as control for the 
motors of the robot. 

V. CONCLUSION AND FUTURE WORK

In conclusion, we can see well that we were able to create 
a physical emulation of a real muscle based on a DC Motor, 
PID controller and tuned by a Neural Network. So this study 
could be incorporated into an existing robot that is using a 
DC Motor as joint actuators and a PID as controller in order 
to let the robot walk like a human. 

We are now working on implementing this emulation, and 
emulation of others kind of muscles, into two robots. The 
first one is Rabbit simulator and the second one is ROBIAN, 
an anthropomorphic biped robot that is being developed at 
LIRIS Laboratory.  
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