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ON THE REAL ZEROS OF POSITIVE SEMI-DEFINITE

BIQUADRATIC FORMS

RONAN QUAREZ

Abstract. For a positive semi-definite biquadratic forms F in (3, 3) variables,
we prove that if F has a finite number but at least 7 real zeros Z(F ), then it

is not a sum of squares. We show also that if F has at least 11 zeros, then it
has infinitely many real zeros and it is a sum of squares. It can be seen as the
counterpart for biquadratic forms as the results of Choi, Lam and Resnick for
positive semi-definite ternary sextics.

We introduce and compute some of the numbers BBn,m which are set
to be equal to sup |Z(F )| where F ranges over all the positive semi-definite
biquadratic forms F in (n,m) variables such that |Z(F )| < ∞.

We also recall some old constructions of positive semi-definite biquadratic
forms which are not sums of squares and we give some new families of examples.

1. Introduction

Throughout this paper, a form will just denote an homogeneous polynomial over
the reals andHn,k the set of all forms of degree k with n variables. A form F (x) with
variables (x0, . . . xn−1) is said to be positive semi-definite if F (x) ≥ 0 for all x ∈ R

n.
The form F ∈ Hn,2k is a sum of squares if it can be written F (x) =

∑r

s=1 F
2
s (x)

for some forms Fs ∈ Hn,k.
The study of positive semi-definite forms which are not sums of squares has been

(and still is) an intensive area of researchs since Hilbert showed (see [Hi]) that the
cone of positive semi-definite forms coincide with the cone of forms which are sum
of squares if and only if n = 2, or k = 2, or (n, k) = (3, 4).

In [CLR1], Choi, Lam and Resnick gave some more precise statement for ternary
sextics and quaternary quartics, using the real zeros set of the forms viewed in some
projective space. For instance, one of their main results is :

Theorem[CLR1]. If f ∈ H3,6 is positive semi-definite with at least 11 real zeros
in the projective plane, then f has infinitely many real zeros and it is a sum of
squares.

Our principal motivation is to establish a counterpart for biquadratic forms.
A form F (x; s) is called biquadratic in the variables x = (x0, . . . , xn−1) and

s = (s0, . . . , sm−1) if for each x ∈ R
n, F (x; s) is a quadratic form in the variables

s ; and for each s ∈ R
m, F (x; s) is a quadratic form in the variables x. The set

of all biquadratic forms with respect to the variables (x; s) is denoted by BQn,m.
A biquadratic form F (x; s) is said to be positive semi-definite if F (x; s) ≥ 0 for all
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(x, s) ∈ R
n+m. Finally, the set of all positive semi-definite biquadratic forms in

BQn,m is denoted by PQn,m.
Biquadratic forms naturally arise in several areas of pure and applied mathe-

matics, for instance in control theory and also in theoretical physics.
Among all the bibliography about biquadratic forms, we will mention first the

result of Calderon (see [Ca]) which says that any positive semi-definite biquadratic
form in BQn,2 is a sum of squares. Later, Choi in [C1] gave an example of a positive
semi-definite biquadratic form in BQ3,3 which is not a sum of squares. Maybe less
known, Terpstra already in [Te] had also given a geometric construction of positive
semi-definite biquadratic forms in BQ3,3 which are not a sum of squares.

Throughout the paper, we view the real zeros set Z(F ) of a biquadratic forms
F ∈ Hn,m in the product of projective spaces Pn−1 × P

m−1.
In section 4, we set the numbers BBn,m to be equal to sup |Z(F )| where F ranges

over all biquadratic forms in PQn,m with |Z(F )| < ∞. This definition is analogous
to the definition, for forms in Hn,k, of the numbers Bn,k in [CLR1]. We will give
some properties of the BBn,m and compute some values, for instance we show that
BBn,2 = n using the well known values of the degrees of Segre varieties. We also
prove that 7 ≤ BB3,3 ≤ 10.

In Section Section 5 we show that if F ∈ PQ3,3 has a finite number but at least
7 real zeros, then it is not a sum of squares. We show also that if F has at least 11
zeros then it has infinitely many real zeros and it is a sum of squares.

In Section 6, we recall Terpstra’s construction [Te] and give some variations
around the Choi example [C1]. We also give some new families of examples of
positive semi-definite non sum of squares biquadratic forms.

In Section 7, we study the possible configurations in P
n−1 × P

m−1 of the zero
sets of biquadratic forms in PQn,m. Of particular interest are the maximal config-

urations which are defined to be the finite subsets Ω ⊂ P
n−1 × P

m−1 such that if
F ∈ PQn,m vanishes at Ω and also at another point in P

n−1 × P
m−1, then Z(F )

is infinite. We give some characterisations of maximal configurations in the case
(n,m) = (2, 2) and (n,m) = (3, 2). In the case (n,m) = (3, 3), we give some
necessary conditions and we also give a complete worked example .

For a maximal configuration Ω, we are interested to determine PQ(Ω) the set
of all possible biquadratic forms F ∈ PQ3,3 such that Ω ⊂ Z(F ). This seems to
be a difficult task in general. Again, we give a complete worked example when
(n,m) = (3, 3).

2. Preliminaries

The set of all real matrices of size n×m is denoted by Mn,m(R) or alternatively
by R

n×m. The symbol T will denote the transposition.
To any biquadratic form F (x; s) with variables x = (x0, . . . , xn−1) and s =

(s0, . . . , sm−1) running overR, one may canonically associate a matrixMs(F ) whose
entries are forms in Hm,2 with variables s (resp. a matrix Mx(F ) whose entries are
forms in Hm,2 with variables x) such that

F (x; s) = xMs(F )xT = sMx(F )sT .
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Of course, the biquadratic form F (x, y) is positive semi-definite if and only if
the matrix Ms(F ) (respectively Mx(F )) is positive semi-definite for all s ∈ R

m

(respectively for all x ∈ R
n).

One motivation for studying biquadratic forms is that they are related to positive
linear maps (see [C2] for background).

2.1. Positive linear maps. A linear map Φ : Mn(R) → Mm(R) preserving sym-
metry is said to be positive if the matrices Φ(A) are positive semi-definite for all
symmetric positive semi-definite matrices A ∈ Mn(R).

The linear map Φ is entirely determined by the image of positive semi-definite
matrices of rank 1. Indeed, the matrix xTx has rank 1 and we have

Φ(xTx) =
∑

1≤i,j≤n

Aijxixj ,

where Aij ∈ R
m×m. Then, we define

φ(x; s) = sΦ(xTx)sT = s




∑

1≤i,j≤n

xiAijxj



 sT .

Although the notion of complete positivity does not work as well as in the com-
plex case, an easy computation shows the property :

Proposition 2.1. Let Φ be a linear map preserving symmetry. The map Φ is
positive if and only if the biquadratic form φ is positive semi-definite. Moreover,
the following properties are equivalent :

a) there exists some Vk ∈ R
n×m for k ∈ {1 . . . , r} such that

Φ(M) =

r∑

k=1

V T
k MVk

for all M ,
b) the biquadratic form φ is a sum of squares.

Let us mention that the complex counterpart of theses notions, namely positive
semi-definite non sum of squares bihermitian forms, are important in theoretical
physics (see for instance [SZ]).

2.2. Zeros in projective spaces. Let F (x; s) be a biquadratic form where x =
(x0, . . . , xn−1) and s = (s0, . . . , sm−1). To any non trivial zero A0 ∈ R

n × R
m of

F , we may canonically associate an element P0 ∈ P
n−1 × P

m−1. Throughout the
paper, we are considering real projective spaces.

We denote respectively by Π1 and Π2 the two projections of Pn−1 × P
m−1 onto

P
n−1 and respectively P

m−1.
We denote by Z(F ) the set of all real zeros of F in P

n−1 × P
m−1. Here again,

we emphasise that all the considered zeros are real.

Proposition 2.2. Let F (x; s) ∈ PQn,m be a positive semi-definite biquadratic
form.

a) There exists S0 such that P0 = (X0, S0) ∈ P
n−1 × P

m−1 is a real zero of F
if and only if det(Mx(F )) vanishes at X0.
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b) If we view the coefficients of F (x; s) as variables, the condition F (P0) = 0
where P0 ∈ P

n−1 × P
m−1 gives a set of n + m − 1 linearly independent

equations.

Proof. a) If P0 is a real zero of F , the vector S0 is an isotropic vector for
the quadratic form defined by M = Mx(F )(X0). Since it is positive semi-
definite, it must be a singular matrix : det(M) = 0.

The converse is easy : if M is singular, it admits an isotropic vector S0.
b) If F (P0) = 0, then P0 necessarily is a critical point for F and all the partial

derivatives vanishes at P0. By the Euler identity for forms, the cancellation
of all partial derivatives implies that F (P0) = 0.

We may be more explicit. First, to simplify, we may assume that P0 =
(1, 0, . . . , 0; 1, 0, . . . , 0). Let us write also F (x; s) =

∑
i,j;k,l ai,j;k,lxixjsksl.

The cancellation of all partial derivatives gives ai,1;1,1 = a1,1;k,1 for all i
and k. We find a set of n+m− 1 linearly independent equations.

�

3. Biquadratic forms in dimensions (n, 2)

3.1. The result of Calderon. The case of biquadratic forms in BQn,2 has been
considered by Calderon :

Theorem 3.1 ([Ca]). Let F (x; s, t) = a(x)s2 + 2b(x)st + c(x)t2 ∈ BQn,2 where
x = (x0, . . . , xn−1) and s, t are real variables.

If F is positive semi-definite, then it is a sum of squares. Namely, there exists
an integer N and some linear forms ui(x), vi(x) in x such that

F (x; s, t) =

N∑

i=1

(ui(x)s + vi(x)t)
2.

The original proof of Calderon is based on a convexity argument. We will give
another proof without convexity. The advantages are that it yields an effective
construction of the sum of squares and gives a better bound on the number of
needed squares. Moreover, we will deal with very similar constructions in the
following of the paper.

Our proof can be thought as a constructive version of [Ca], in the same way as
[Pf] is a constructive version of original Hilbert’s Theorem on ternary quartics.

Proof. Let us assume first that F is positive definite, namely for all x 6= 0 and all
(s, t) 6= (0, 0), F (x; s, t) > 0.

Let

Fǫ(x; s, t) = F (x; s, t)− ǫx2
0(s

2 + t2)

and introduce I = {ǫ | Fǫ ∈ PQn,2}. Then, I is a non empty interval [0,m). Since
I is defined by some closed conditions, we have I = [0,m]. Necessarily m 6= 0 and
Fm is not positive definite.

Hence, we have reduced to the case where F is not positive definite : there is
(s0, t0) 6= (0, 0) and X0 6= 0 such that F (X0; s0, t0) = 0.

Up to a linear change of the coordinates we may assume that (s0, t0) = (0, 1)
and X0 = (1, 0, . . . , 0). Then, there are some identities between quadratic forms :
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a(x) = (λx0 + α(y))2 + ã(y)

b(x) = ηx2
0 + (λx0 + α(y))β(y) + b̃(y)

c(x) = µ(x0 + γ(y))2 + c̃(y)

Where λ, µ, η are reals, α(y), β(y), γ(y) are linear forms and ã(y), b̃(y), c̃(y) are
quadratic forms in the variables y = (x1, . . . , xn−1).

By assumption we have µ = 0. By positivity of F , we get η = 0. Thus

F (x; s, t) = [(λx0 + α(y))s + β(y)t]2 + F̃ (y; s, t)

where

F̃ (y; s, t) = ã(y)s2 + 2b̃(y)st+ (c̃(y)− β(y)2)t2.

Since F is positive semi-definite, we deduce that F̃ is also positive semi-definite.
Then, by induction on the number of variables n, we conclude that F is a sum

of squares.
Moreover, at each step we get rid of one of the variables xi and we increase by two

the needed number of squares to decompose our positive semi-definite biquadratic
form. It gives the bound N ≤ 2n. �

Let us mention also that Theorem 3.1 can also be seen as a particular case of
[CLR1, Theorem 7.1], which provides another different proof.

3.2. On the number of squares. It is common in real algebra to study the
minimal number of squares in a decomposition of a given sum of squares.

For positive semi-definite biquadratic forms in BQn,2, our proof of Theorem 3.1
gives the bound N ≤ 2n, whereas the original argument of Calderon who relies on
a convexity argument leads to N ≤ 3n(n+ 1)/2 squares.

By [CLR1, Theorem 7.1], we also recover the bound 2n, but in fact it is possible
to do even better. The needed number of squares is showed in [CLR1] to be bounded
by

(1) ⌊
√
3n+

√
3− 1

2
⌋.

In general, if F ∈ BQn,m is assumed to be a sum of squares, then according to
the work in [CLR2] about the so-called pythagoras numbers, one can say that F is
a sum of at most

(2)

(√
1 + 2mn(m+ 1)(n+ 1)− 1

)

2

squares.
See also [LS] for other bounds.

4. Counting the roots of a biquadratic form

In [CLR1] is defined Bn,k (resp. B′
n,k) by sup |Z(p)| where p ranges over all

positive semi-definite forms in Hn,k (resp. sum of squares of forms) with |Z(p)| <
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∞. The determination of these numbers is a rather awesome task. Some partial
results are given in [CLR1]. For instance :






B3,4 = 4,
B3,6 = 10,

For k > 6, k2

4 ≤ B3,k ≤ (k−1)(k−2)
2 and B′

3,k = k2

4 .

Note that in general, we do not even know if the numbers Bn,k are finite.

We naturally introduce the counterpart for biquadratic forms. Namely, let
BBn,m (resp. BB′

n,m) be equal to sup |Z(F )| where F ranges over all forms in
PQn,m (resp. sum of squares of forms) with |Z(F )| < ∞.

Proposition 4.1. We have :

a) BBn,m ≥ BB′
n,m,

b) BBn,2 = BB′
n,2,

c) BBn,m = BBm,n,
d) BBn1+n2,m1+m2 ≥ BBn1,m1 +BBn2,m2 ,
e) BBn,m ≤ Bn,2m ·Bm,2n.

Moreover, (c) and (d) remain true if BB is replaced everywhere by BB′.

Proof. Properties (a) and (c) are obvious, and (b) follows from Theorem 3.1.
To show property (d), we take two biquadratic forms

F1(x; s) ∈ PQn1,m1
, with x = (x0, . . . , xn1−1), s = (s0, . . . , sm1−1)

and

F2(y; t) ∈ PQn2,m2
with y = (y0, . . . , yn2−1), t = (t0, . . . , tm2−1).

Then, consider the biquadratic form

F (x, y; s, t) = F1(x; s) + F2(y; t)

which is in PQn1+n2,m1+m2
.

Let us show now property (e). Let F (x; s) ∈ PQn,m and let us introduce p(x) =
det(Mx(F )) ∈ Hn,2m and q(s) = det(Ms(F )) ∈ Hm,2n. They are both positive
semi-definite. We recall from Proposition 2.2 that if P ∈ Z(F ), then Π1(P ) is a zero
of p(x) and Π2(P ) is a zero of q(s). Then, |Π1(Z(F ))| ≤ Bn,2m and |Π2(Z(F ))| ≤
Bm,2n. This concludes the proof. �

In the sequel, we compute the values of BB′
n,m, using the notion of degree of an

algebraic variety embedded in a projective space.
Let us consider the Segre embedding

Φ : Pn−1 × P
m−1 → P

nm−1

([x0, . . . , xn−1], [s0, . . . , sm−1]) → [x0s0, x0s1, . . . , xn−1sm−1]

Let us recall (see [Ha] for instance) that if the algebraic variety V ⊂ P
n has

dimension r, then its degree d is equal to the number of intersection points with a
generic linear variety in P

n of dimension n−r. Moreover, the number of intersection
points of V with any linear variety in P

n of dimension n− r, is then at most d.
We have :

Theorem 4.2. BB′
n,m =

(
m+n−2
m−1

)
.
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Proof. Let F ∈ PQn,m such that F =
∑r

i=1 F
2
i . Let us write

Fi =
∑

0≤j≤n−1,0≤k≤m−1

aj,k;ixjsk

and let us consider the hyperplane Hi in P
mn−1 of equation

∑

0≤j≤n−1,0≤k≤m−1

aj,k;itj,k = 0.

Then, F (P ) = 0 if and only if F1(P ) = . . . = Fr(P ) = 0. In other words,
Φn−1,m−1(P ) belongs to the linear space H defined by H = ∩iHi. Namely

|Z(F )| = |{P ∈ P
n−1 × P

m−1 | ∀i Fi(P ) = 0}| = |ImΦ ∩H |.
According to [Ha], the dimension of ImΦ is m + n − 2 and the degree of the

embedding Φ is
(
n+m−2
n−1

)
(this is true over any field of characteristic zero). The

degree of Φ being precisely the maximal number of intersection points of ImΦ with
a linear space such that the intersection is finite, we are done. �

Remark 4.3. An analogous argument may be used to bound BBn,m. Indeed, the

coefficients of a biquadratic form yield an element in P
q(n)−1×P

q(m)−1 where q(k) =
(k + 1)(k + 2)/2. Hence, BBn,m is bounded by the degree of the image of the

associated Segre embedding in P
q(n)q(m)−1. Then

BBn,m ≤
(
q(n) + q(m)− 2

q(n)− 1

)
.

But, it seems that this bound is very loose. This is due to the fact that in fact
we should consider fiber products of closed subvarieties of Pd(n)−1 and P

d(m)−1 (for
instance the variables X = x2

0, Y = x0x1 and Z = x2
1 are related by XZ−Y 2 = 0).

Besides, the hypothesis of positivity of the biquadratic forms is not taken into
account.

Example 4.4. In the case n = 3, we have 6 = BB′
3,3. Here are two examples F1 and

F2 of biquadratic forms in PQ3,3 with the maximal umber of real zeros :

a)

F1(x, y, z; s, t, u) = (xs)2 + (yt)2 + (zu)2 + ((x + y + z)(s+ t+ u))2.

b)

M(x,y,z)(F2) =




x2 + y2 + z2 xy + z2 xz + y2

xy + z2 x2 + y2 + z2 yz + x2

xz + y2 yz + x2 x2 + y2 + z2



 .

In both cases, the set of real zeros is
{

(1, 0, 0; 0,−1, 1), (0, 1, 0; 1, 0,−1), (0, 0, 1;−1, 1, 0),
(1,−1, 0; 1, 1,−1), (0, 1,−1;−1, 1, 1), (−1, 0, 1; 1,−1, 1)

}
.

As a direct consequence of the definition of the numbers BB, BB′ and Theorem
4.2, we have

Proposition 4.5. Let F ∈ PQn,m be such that BB′
n,m < |Z(F )| ≤ BBn,m. Then, F

is not a sum of squares. For instance, if F ∈ PQ3,3 is such that |Z(F )| > 6, then
F is not a sum of squares.
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5. Zeros of biquadratic forms in BQ3,3

The main purpose of this section is to show that if a biquadratic form in PQ3,3

has more zeros than BB3,3, then it is a sum of squares (Theorem 5.4). It is a kind of
counterpart for biquadratic forms of the property [CLR1, Theorem 3.5] for positive
semi-definite forms in H3,k.

Although, some differences remain between these two contexts. For instance,
if a positive semi-definite form in H3,k has an infinite number of zeros, then it is
divisible by the square of some indefinite form. Whereas, for biquadratic forms, it
is no more true. Indeed, let us consider

F (x, y, z; s, t, u) = (xs)2 + (yt)2 ∈ PQ3,3.

It has an infinite number of zeros (for instance (0, 0, 1; s, t, u), for any (s, t, u) ∈ P
2),

but cannot be divided by a bilinear form.

We are mainly interested in the case of the dimension 2, since it is the easiest
case where positive semi-definite biquadratic forms do not coincide with sums of
squares. Besides, in higher dimensions, such a property is hopeless as it is shown
by :

Example 5.1. Let F (x, y, z; s, t, u) be a positive semi-definite non sum of squares
biquadratic form in BQ3,3. Assume that (1, 0, 0; 1, 0, 0) is a zero of F in P

2×P
2 and

let L(x, y, z) be a non zero linear form such that L(1, 0, 0) = 0. Then, the following
biquadratic form

G(x, y, z; s, t, u, v) = F (x, y, z; s, t, u) + L(x, y, z)2v2 ∈ PQ3,4

is not a sum of squares. Moreover, G has an infinite number of zeros in P
2 × P

3,
for instance (1, 0, 0; 1, 0, 0, v) for any v ∈ R.

That is why, in the following, we cannot reproduce the whole method of [CLR1],
although some steps will look very similar.

Let us begin with

Lemma 5.2. Let F ∈ PQ3,3 be a positive semi-definite biquadratic form which

admits two different zeros A and B in P
2 ×P

2 such that Π1(A) = Π1(B). Then, F
is a sum of squares and admits an infinite number of zeros.

Proof. After a linear change of coordinates, we may assume that A = (1, 0, 0; 1, 0, 0)
and B = (1, 0, 0; 0, 1, 0). Denoting by (x, y, z; s, t, u) the new coordinates, the bi-
quadratic form F can be written as

F (x, y, z; s, t, u) = a3,3(x, y, z)u
2 +2a1,3(x, y, z)su+2a2,3(x, y, z)tu+G(y, z; s, t, u)

where G is a biquadratic form and a1,3, a2,3 and a3,3 are quadratic forms. If a3,3
does not depend on the variable x, then it is the same for a1,3 and a2,3, namely F
does not depend on x. In that case, (α, 0, 0; 1, 0, 0) would be a zero of F for any
α ∈ R, and F would be a sum of squares by Theorem 3.1.

In the following, we assume that a3,3 does depend on x. We may rewrite F as

F (x, y, z; s, t, u) = a3,3(x, y, z)u
2 + 2xα1(y, z)su+ 2xα2(y, z)tu+H(y, z; s, t, u)
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where H is a biquadratic form and α1 and α2 are linear forms. Up to a linear
change of the coordinate x, we may assume that a3,3(x, y, z) = x2 + b3(y, z) where
b3 is a quadratic form.

We have then

F (x, y, z; s, t, u) = (xu + α1s+ α2t)
2 + F̃ (y, z; s, t, u)

where F̃ is a biquadratic form.

Since F is positive semi-definite, so it is the case for F̃ . Then, F̃ is a sum of
squares by Theorem 3.1. Moreover, (1, 0, 0;α, β, 0) is a zero of F for any (α, β) ∈
R

2. �

As a consequence, we have

Proposition 5.3. Let F ∈ PQ3,3 be a positive semi-definite biquadratic form with

at least 11 zeros in P
2 × P

2. Then, F admits an infinite number of zeros. In other
words, BB3,3 ≤ 10.

Proof. Let us consider the associated matrixM(s,t,u)(F ) whose entries are quadratic
forms in the variables (s, t, u). According to Lemma 5.2, we may assume that the
number of zeros Z(F ) of F is equal to |Π2(Z(F ))|. Then, the number of zeros of
F is the number of zeros in P

2 of det(M(s,t,u)(F )) by Proposition 2.2.
According to [CLR1, Theorem 3.7], we deduce that |Z(F )| is either infinite or it

is bounded by B3,6 = 10. �

Our purpose now is to show in addition that F necessarily is a sum of squares.

Theorem 5.4. Let F ∈ PQ3,3 be a positive semi-definite biquadratic form with an

infinite number of zeros in P
2 × P

2. Then, F is a sum of squares.

Proof. Up to a linear change of coordinates, we may assume that (1, 0, 0; 1, 0, 0) is
an accumulation point in Z(F ) ⊂ P

2 × P
2.

Then,

F (x, y, z; s, t, u) = q2,0(y, z)s
2 + 2q2,1(y, z; t, u)s+ q2,2(x, y, z; t, u)

where the q2,k’s are quadratic forms in (x, y, z) and forms of degree k in (s, t, u).
Note that necessarily q2,0 and q2,2 are positive semi-definite. Let us show a

Lemma which is very close in spirit as [CLR1, Lemma 5.2] :

Lemma 5.5. With the above notations, we have rk(q2,0) < 2.

Proof. Assume that rk(q2,0) = 2. Up to a linear change of coordinates, we may
assume that q2,0 = y2 + z2. Consider a sequence (1, yn, zn; 1, tn, un) of zeros of F
in P

2×P
2 which converges to (1, 0, 0; 1, 0, 0). We may assume that (yn, zn) 6= (0, 0)

for all n otherwise we may directly use Lemma 5.2.
Let us choose an integer n0 such that

2|q2,1(yn0 , zn0 ; tn0 , un0)|
q2,0(yn0 , zn0)

<
1

2
.

This is possible since, given (a, b, c) ∈ R
2, the map

P
1 −→ R

(x, y) 7→ ax2+bxy+cy2

x2+y2

is bounded.



10 RONAN QUAREZ

We have then

F (1, yn0 , zn0 ; 1, tn0 , un0) = 0 ≥ q2,0(yn0 , zn0)− 2|q2,1(yn0 , zn0 ; tn0 ;un0)| > 0

a contradiction. �

If rk(q2,0) = 0, then we are done by Theorem 3.1. Hence, we are reduced to the
case rk(q2,0) = 1, i.e. after a linear change of coordinates, q2,0 = y2.

We have
F = y2s2 + 2q2,1(y, z; t, u)s+ q2,2(x, y, z; t, u),

where y2q2,2 − q22,1, the discriminant of F with respect to the variable s, is positive

semi-definite. Hence, there is no coefficient z2 in q2,1, namely

q2,1 = α(t, u)yz + β(t, u)y2

where α, β are linear forms. We have

(3) F = (ys+ α(t, u)z + β(t, u)y)2 +G(x, y, z; t, u)

where G is a biquadratic form.
Since, for any choice of (y, x, z, t, u) ∈ R

∗ × R
4 there is a s such that

F (x, y, z; s, t, u) = G(x, y, z; t, u),

we conclude that G is also positive semi-definite. It suffices to uses Theorem 3.1 to
conclude that G is a sum of squares. �

Remark 5.6. A little inspection of the proofs of 5.4 and 5.2 shows that if F ∈ PQ3,3

has an infinite number of zeros, then it is a sum of at most 5 squares. Indeed, when
F does not depend on x, we may consider that F ∈ PQ3,2 and we get the bound
by (1).

We assume now that F does depend on x, and we use equality (3). If G had only a
finite number of zeros, it would mean that F had zeros of the form (1, yn, zn; 1, 0, 0),
as a consequence F would not depend on s and we are done by the previous case.

Hence, we may assume that G has an infinite number of zeros and we repeat the
same argument to the biquadratic form G.

We have to successively use the bounds given by (1) : it gives at most 4 squares
for BQ3,2, at most 3 squares for BQ2,2 and at most 2 squares for BQ2,1.

In summary, the maximal number of needed squares in all sums of squares lying
in BQ3,3 is at most 8 according to (2). But when we restrict to those sum of squares
with an infinite number of zeros, the bound drops to 5.

At least, we cannot expect less than 5 squares as shown by the following example

F = x2s2 + y2t2 + (x2 + y2 + z2)u2.

6. Examples of positive semi-definite biquadratic forms which are
not sum of squares

Positive semi-definite biquadratic forms which are not sums of squares have
some important applications in several areas such as control theory and theoretical
physics, even if in that last case the complex counterpart of theses notions are most
commonly studied, namely positive semi-definite bihermitian forms which are not
sums of squares (see for instance [SZ]).

In this section, we mention some known examples given in the literature, for
instance in [C1] and [Te]. We revisit them by making use of the notion of real zeros
of biquadratic forms we have developed in the previous sections.
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To end, we will also produce some new families of examples.

6.1. Arrow matrices. If F (x; s) ∈ BQ3,3 has some associated matrix Mx(F ) with
more than two zero entries, then it obviously is a sum of squares. Hence, the
simplest candidate for an example of a positive semi-definite biquadratic form not
being a sum of squares is an arrow matrix. In this section, we show that such
examples exist.

Proposition 6.1. The biquadratic form Fα whose associated matrix is

Mα =




x2 + z2 0 −xz
0 x2 + y2 −yz

−xz −yz z2 + αy2




is positive semi-definite but not a sum of squares for all α ∈ [α0,+∞[, where α0 is
a smallest positive root of the polynomial 9x4− 36x3+62x2− 20x+1 (α0 ≃ 0.006).

Proof. The matrixMα is positive semi-definite if and only if all its symmetric minors
are positive semi-definite. The only non trivial condition to check is det(Mα) ≥ 0.
Let us compute

det(Mα) = (αy2)x4 + (αy4 + (α − 1)y2z2 + z4)x2 + αy4z2.

An elementary computation shows that det(Mα) ≥ 0 if and only if α ∈ [α0,+∞[.
Now, let us see why Fα is not a sum of squares. We have :

Fα = (x2 + z2)s2 + (x2 + y2)t2 + (z2 + αy2)u2 − 2xzsu− 2yztu

If we look at Fα as a form of degree 4 in the 6 variables (x, y, z, s, t, u), then we
may consider its associated Gram matrices (see [CLR2] for background on Gram
Matrices and sums of squares) with respect to the basis (xs, xt, yt, yu, zs, zu). We
find that there is a unique Gram matrix :

Gα =




1 0 0 0 0 −1
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 α 0 0
0 0 0 0 1 0
−1 0 −1 0 0 1




.

Its signature is (5, 1) whenever α > 0. Hence Gα is never a positive semi-definite
matrix, and Fα is never a sum of squares when α > 0. �

In this example, each associated matrices M(x,y,z)(Fα) and M(s,t,u)(Fα) of the
biquadratic form Fα are both arrow matrices.

We end this section by giving another example of an arrow matrix associated to
a positive semi-definite biquadratic form which is not a sum of squares. Namely :




x2 + z2 0 −xz − xy
0 x2 + y2 −yz

−xz − xy −yz 2y2 + 2z2


 .
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6.2. Terpstra’s construction. A geometric construction of positive semi-definite
biquadratic forms which are not sum of squares can be found in [Te]. For the con-
venience of the reader, we will recall the construction, although we give a different
proof from the original, making use of our previous results on the real zeros set of
biquadratic forms.

Let us consider L1, L2, L3, L4, four lines in general position in the projective
plane P

2. Let us introduce the intersection points

A1 = L1 ∩ L2

A2 = L2 ∩ L3,
A3 = L2 ∩ L4,
A4 = L1 ∩ L4,
A5 = L1 ∩ L3,
A6 = L3 ∩ L4.

Up to multiplying the equations by −1, we may assume that L1(A6) · L2(A6) > 0
and L3(A1) · L4(A1) > 0. Let us define the following points in P

2 × P
2 :

P1 = (A1, A6)
P2 = (A2, A4)
P3 = (A3, A5)
P4 = (A4, A2)
P5 = (A5, A3)
P6 = (A6, A1).

Theorem 6.2. Let us consider the biquadratic form

Fλ(x; s) = (L1(x)L1(s))
2 + (L2(x)L2(s))

2 + (L3(x)L3(s))
2 + (L4(x)L4(s))

2

+λL1(x)L2(x)L3(s)L4(s)

where λ ∈ R.
Then,

a) There is a δ > 0 such that for all 0 < λ < δ, the biquadratic form Fλ is
positive semi-definite,

b) For any λ > 0, the biquadratic form Fλ is never a sum of squares.

Proof. One easily checks that Fλ(P1) = . . . = Fλ(P5) = 0 and Fλ(P6) > 0.
Let us show that Fλ ≥ 0 in a neighbourhood of each Pi for i = 1, . . . , 5 (it is

obvious for i = 6 since Fλ(P6) > 0). Let

F2,δ(x; s) = L2
1(A2)L

2
1(s) + L2

2(A4)L
2
2(x) + L2

3(A2)L
2
3(x) + L2

4(A2)L
2
4(s)

+δL1(A2)L3(A4)L2(x)L4(s)

Since Fλ − F2,δ is infinitely smaller than F2,δ in a small neighbourhood of P2, it
suffices to note that F2,δ > 0 in a neighbourhood of P2 for δ small enough.

We proceed likewise in a neighbourhood of P3, P4 and P5.
Around P1, we also proceed likewise but the expression we consider is a little bit

different : we set

F1(x; s) = L2
1(A6)L

2
1(x) + L2

2(A6)L
2
2(x) + L2

3(A1)L
2
3(s) + L2

4(A1)L
2
4(s)

which is > 0 in a small neighbourhood of P1.
In summary, there is a δ > 0 and an open neighbourhood V of P1, P2, P3, P4, P5

such that Fλ > 0 on V \ {P1, P2, P3, P4, P5} for any 0 < λ < δ.
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On Ω = P
2 \ V , the quantity

(L1(x)L1(s))
2 + (L2(x)L2(s))

2 + (L3(x)L3(s))
2 + (L4(x)L4(s))

2

|L1(x)L2(x)L3(s)L4(s)|
never vanishes, hence reaches a minimum which we may assume greater than δ.

We have shown that Fλ is positive semi-definite for any 0 < λ < δ.

Let us now show that Fλ is never a sum of squares.
By the contrary, let us assume that F =

∑r
i=1 G

2
i where Gi is a bilinear form in

the variables (x; s).
Let us consider the linear map which sends a bilinear map G to the 6-tuple

(G(P1), . . . , G(P6)). The range of this map is contained in an hyperplane of R6.
Namely, there are some real numbers α1, . . . α6 such that for any bilinear form G,
we have

α1G(P1) + . . .+ α6G(P6) = 0.

Let us assume that α6 = 0. We consider the bilinear form G = L2(x)L3(s). It
vanishes at P1, P2, P3, P4 but not at P5, P6, and hence we get α5G(P5) = 0. Thus,
α5 = 0 and we shall proceed likewise to show that all αi are zero, a contradiction.
Then, necessarily α6 6= 0.

Now, it suffices to notice that we obviously have, for all i,

Gi(P1) = . . . = Gi(P5) = 0.

Hence Gi(P6) = 0 for all i which implies that F (P6) = 0, a contradiction. �

6.3. Around the Choi example.

6.3.1. The Choi example. As defined in [C1], we consider the following biquadratic
form :

C1(x, y, z; s, t, u) = (x2 + y2)s2 +(y2 + z2)t2 +(z2 + x2)u2 − 2xyst− 2xzsu− 2yztu

Denote by C its zero set Z(C1) in P
2 × P

2. We have

(4) C = {A1, A2, A3, B0, B1, B2, B3}
where

A1 = (1, 0, 0; 0, 1, 0), A2 = (0, 1, 0; 0, 0, 1), A3 = (0, 0, 1; 1, 0, 0), B0 = (1, 1, 1; 1, 1, 1)
B1 = (−1, 1, 1;−1, 1, 1), B2 = (1,−1, 1; 1,−1, 1), B3 = (1, 1,−1; 1, 1,−1).

Proposition 6.3. [C1] The biquadratic form C1 is positive semi-definite but not a
sum of squares.

We will not discuss much the fact that C1 is positive semi-definite. For instance,
it comes from the property that all the symmetric minors of M(x,y,z)(C1) are sums
of squares.

The original proof to show that C1 is not a sum of squares is rather elementary
: we assume that C1 is a sum of squares and we carefully look at the monomials in
C1 to get a contradiction.

Now, referring to our background on real zeros of biquadratic forms, the quickest
way to reprove it, is to use Proposition 4.5. But let us show again another proof of
that fact !
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Our motivation for this new proof is that it might lead to another direction to
study positive semi-definite biquadratic forms which are not sum of squares. This
proof is close in spirit than the one Robinson used (a strategy suggested by Hilbert’s
work) to show that its polynomial

(5) R(x, y, z) = x6 + y6 + z6 − x4y2 − x4z2 − y4x2 − y4z2 − z4x2 − z4y2 +3x2y2z2

is positive semi-definite but not a sum of squares. In modern literature, it would
be referred as a Cayley-Bacharah type result (see [EGH]). Namely, it exploits the
redundancy that exists among the real zeros of cubic forms, redundancy which is
looser among the real zeros of sextic forms.

Our proof could be seen as a counterpart for biquadratic forms, namely a Cayley-
Bacharah type result for biquadratic forms :

Proof. Assume that C1 =
∑r

i=1 f
2
i . The bilinear form fi can be written

fi = a1xs+ a2xt+ a3xu+ b1ys+ b2yt+ b3yu+ c1zs+ c2zt+ c3zu.

Since each fi has to vanish at A1, A2, A3, we deduce that a2 = b3 = c1 = 0.
Moreover, if we write the system saying that fi vanishes also at B0, B1, B2, B3,

we conclude that

fi = a1xs+ b2yt+ c3zu with a1 + a2 + a3 = 0

As a consequence, we get that each fi vanishes also at Aα = (0, 1, α; 1, 0, 0) for any
α ∈ R. And hence C1 should also vanishes at all Aα, a contradiction. �

In fact, we have shown that :

Proposition 6.4. If G is a biquadratic form which vanishes at C and not at Aα =
(0, 1, α; 1, 0, 0) for some α ∈ R, then G is not a sum of squares.

Example 6.5. As an application, if G is a positive semi-definite biquadratic form
which vanishes at C, then C1+G is positive semi-definite but not a sum of squares.

For instance :

C1 + (2xs− yt+ zu)2

or

C1 + (xs− yt)2 + (xs− zu)2 + (yt− zu)2.

6.3.2. Some homotopy around the Choi example. First note, as observed in [Qz],
that the biquadratic form associated to the matrix

M0 =




x2 + z2 −xy −xz
−xy x2 + y2 −yz
−xz −yz y2 + z2




is positive semi-definite but not a sum of squares for the same reasons than C1 is.
Here is some homotopy around M0 :

Proposition 6.6. The matrix

Ma =




x2 + z2 + a(x2 − z2) −xy −xz
−xy x2 + y2 + a(y2 − x2) −yz
−xz −yz y2 + z2 + a(z2 − y2)




is positive semi-definite for all a ∈ [0, 1]. The associated biquadratic form Fa has
zero set C, and it is positive semi-definite but not a sum of squares until a = 1.
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Proof. The 1× 1 minors of Ma are positive semi-definite forms if and only if −1 ≤
a ≤ 1. Adding the conditions given by the 2× 2 minors, we get that a ∈ [0, 1]. To
end, we compute

pa = det(Ma) = α(y2x4 + y4z2 + x2z4) + β(x4z2 + y4x2 + z4y2)− 3γx2y2z2

where 




α = 1− a− a2 + a3,
β = 2a− a2 − a3,
γ = 1 + a− 2a2.

Our aim is to show that pa(x, y, z) is a positive semi-definite sextic but not a
sum of squares. We will follow the same proof that is commonly used to show that
the Motzkin polynomial is positive semi-definite but not a sum of squares.

First note that the arithmetico-geometric inequality gives pa(x, y, z) ≥ 0. Hence,
Ma is positive semi-definite if and only if a ∈ [0, 1].

Let us show now that the form pa(x, y, z) is not a sum of squares until a = 1
(and then pa = 0). By the contrary assume that

pa =
∑

i

(aix
3+bix

2y+cix
2z+dixy

2+eixyz+fixz
2+giy

2+hiy
2z+kiyz

2+ liz
3)2.

We obviously have for all i,
{

ai = gi = li = 0,∑
i bici =

∑
i bidi =

∑
i dihi = 0.

Moreover, looking at the coefficient of x2y2z2, we get

(6)
∑

i

e2i + 2biki + 2cihi + 2difi = −3γ.

We have also

α =
∑

b2i =
∑

f2
i =

∑
h2
i

and

β =
∑

c2i =
∑

d2i =
∑

k2i .

Since a ∈ [0, 1], we have γ ≥ 0 and by the Cauchy-Schwartz inequality, we deduce
from (6) that

3γ +
∑

i

e2i ≤ 6αβ

Hence we get γ − 2αβ ≤ 0 which is satisfied only if a = 1.

The fact that Fa is positive semi-definite and not a sum of squares for a 6= 1 is
now a direct consequence of the Cauchy-Binet formula. Given matrices A ∈ R

m×s

and B ∈ R
s×m, the Cauchy-Binet formula states that

det(AB) =
∑

S

det(AS) det(BS)

where S ranges over all the subsets of {1, . . . s} with m elements, and AS (re-
spectively BS) denotes the matrix in R

m×m whose columns are the columns of A
(respectively whose rows are the rows of B) with indexes from S.
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If Fa were a sum of squares, then we would have Ma = ATA for some matrix A
whose entries are linear forms in the variables x, y, z. Then,

det(Ma) =
∑

S det(AT )S det(AS)
=

∑
S det(AT

S ) det(AS)
=

∑
S det(AS)

2.
.

Which is a contradiction since pa is not a sum of squares. �

7. Configuration of zeros sets

In order to study the possible geometry of the zeros sets of biquadratic forms in
PQn,m, we introduce the notion of maximal configurations which are finite subsets

Ω ⊂ P
n−1 × P

m−1 such that if F ∈ PQn,m vanishes at Ω and also at another point

in P
n−1 × P

m−1, then Z(F ) is infinite.
To begin with, one may look at what happens already for positive semi-definite

forms.

7.1. Maximal configurations of Sextics. We say that Ω ⊂ P
n−1 is a maximal

configurations if it is a finite subset Ω such that if f ∈ Hn,k is a positive semi-
definite form which vanishes at Ω and also at another point in P

n−1, then Z(f) is
infinite.

From the definition of the number Bn,k, it follows that for any positive semi-
definite f ∈ Hn,k such that |Z(f)| = Bn,k, the set Z(f) is a maximal configuration.

For instance, the Robinson polynomial R as defined in (5) gives an example of
a 10-points maximal configuration since |Z(R)| = 10.

It is given as an open question in [CLR1] whether it is possible to give examples
of other (of all up to a linear change of coordinates ?) maximal configurations of
cardinal 10 ? The question is difficult and seems not to be answered so far.

Unfortunately we will not contribute to this problem. We will give some elemen-
tary facts which will serve us as background for the next section about biquadratic
forms.

Proposition 7.1. Let Ω ∈ P
2.

a) If f is a positive semi-definite sextic such that |Z(f)| = 10, then Z(f) is a
maximal configuration.

b) If |Ω| = 8, then Ω is not a maximal configuration.
c) Let D1, D2, D3 (resp. ∆1,∆2,∆3) be the three lines of equations x =

−z, x = 0, x = z (resp. y = −z, y = 0, y = z). Let Ω = ∪i,j(Di ∩ ∆j).
Then, Ω is a 9-points maximal configuration.

d) The maximal sets containing Ω = Z(R) \ {(1, 1, 0), (1,−1, 0)} are exactly
the sets Z(R) and Ω ∪ {P} where P is any point in P

2 such that P /∈
{(1, 1, 0), (1,−1, 0)}.

Proof. a) It is a direct consequence of the equality B3,6 = 10.
b) Let |Ω| = 8. Let us consider two linearly independent cubics curves p1 = 0

and p2 = 0 going through all of these 8 points. Then, p = p21+p22 is a sextic
such that |Z(p)| = 9.

c),d) Let f be a positive semi-definite a sextic. We consider the coefficients of
f as variables. Each zero of f is a singular point, hence we get 3 linearly
independent equations. We then reduce the rows of our big linear sys-
tem by using the Gauss algorithm and we are able to conclude our proofs.
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Completely similar techniques will be given with more details in the next
section.

�

Of course, not all 9-points sets can be contained in a maximal configuration ; for
instance take the case where the 9 points are lying in the same line.

7.2. Biquadratic forms in BQ2,2. Let us recall that BB2,2 = 2. We have

Proposition 7.2. The maximal configurations in P
1 × P

1 are the sets Ω such that
|Ω| = |Π1(Ω)| = |Π2(Ω)| = 2.

Proof. If |Ω| 6= 2, then Ω is clearly not a maximal configuration.
Let us assume now that |Ω| = 2.
If |Π1(Ω)| = 1, then up to linear change of coordinates, we may assume that

Ω = {(1, 0; 1, 0), (1, 0; a, 1)}, with a ∈ R. A biquadratic form F vanishing at Ω will
be a sum of squares of elements of the form αys + βyt with (α, β) ∈ R

2. Hence,
|Z(F )| = ∞, namely Ω is not maximal. We have shown that the conditions are
necessary.

Let us show now that they are sufficient. If |Π1(Ω)| = 2 = |Π2(Ω)|, then up to
linear change of coordinates, we may assume that Ω = {(1, 0; 1, 0), (0, 1; 0, 1)}. The
biquadratic form F = (xt)2 + (ys)2 is an example where Z(F ) = Ω. Hence Ω is
maximal. �

We know from the identity BB2,2 = 2 that if the biquadratic form F ∈ PQ2,2

has 3 zeros or more, then (it is a sum of squares and) it has an infinite number of
zeros. One may give a little bit more precise and geometric statement :

Proposition 7.3. Assume that F vanishes at 3 different points A1, A2, A3. Then, F
vanishes at any point A4 satisfying the following identity on the cross ratios over
P
1 :

[Π1(A1),Π1(A2),Π1(A3),Π1(A4)] = [Π2(A1),Π2(A2),Π2(A3),Π2(A4)].

Proof. Up to a linear change of coordinates, we may assume that A1 = (1, 0; 1, 0),
A2 = (0, 1; 0, 1) and A3 = (1, y0; 1, t0). Then, F is a sum of squares of bilinear
forms of the type αxt + βys where (α, β) ∈ R

2 is satisfying αt0 + βy0 = 0. Hence
F vanishes at (1, y1; 1, t1), for all (y1, t1) such that y0t1 − y1t0 = 0.

It remains to translate this last equality using the cross ratios over P1. �

7.3. Biquadratic forms in BQ3,2.

Proposition 7.4. The maximal configurations in P
2 × P

1 are the sets Ω such that
|Ω| = |Π1(Ω)| = |Π2(Ω)| = 3 and such that the 3 points in Π1(Ω) ∈ P

2 are not lying
on the same line.

Proof. If |Ω| 6= 3, then Ω is clearly not a maximal configuration. Likewise, if
|Π1(Ω)| 6= 3 or |Π2(Ω)| 6= 3.

Let us assume from now on that |Ω| = |Π1(Ω)| = |Π2(Ω)| = 3. Let Ω =
{P1, P2, P3} ⊂ Z(F ) where F ∈ PQ(3, 2).

Let us check that if Π1(P1),Π1(P2),Π1(P3) are lying on the same line, then all
the line is contained in Π1(Z(F )).

Up to linear change of coordinates, we may assume that

A1 = (1, 0, 0; 1, 0), A2 = (0, 1, 0; 0, 1), A3 = (1, y2, 0; 1, t2)
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where y2t2 6= 0. Let us write F =
∑

i(Fi)
2, where

Fi = axs+ bxt+ cys+ dyt+ ezs+ fzt

with (a, b, c, d, e, f) ∈ R
6. By assumption, we have a = d = 0 and bt0 + cy0 = 0.

Hence

Fi = λ(y0xt− t0ys) + z(es+ ft).

Thus, all the Fi’s vanish at (1, β, 0; t0, β) for any β ∈ R. Hence Z(F ) is infinite
and Ω is not maximal. We have shown that the condition of the proposition is
necessary.

Let us now show it is sufficient. Up to a linear change of coordinates, we may
assume that

Ω = {(1, 0,−1; 1, 0), (0, 1,−1; 0, 1), (0, 0, 1;−β, α)}
where (α, β) ∈ R

2 \ {(0, 0)}. We just consider the biquadratic form

F = (xt)2 + (ys)2 + ((x + y + z)(αs+ βt))2 ∈ PQ3,2

and check that Z(F ) = Ω. �

Here is a statement on how to construct an infinite family of zeros when at least
4 zeros are given :

Proposition 7.5. Assume that F vanishes at the 4 different points

A1 = (1, 0, 0; 1, 0), A2 = (0, 1, 0; 0, 1), A3 = (x3, y3, z3; 1, t3), A4 = (x4, y4, z4; 1, t4).

Then, F vanishes at any point A5 = (x5, y5, z5; 1, t5) satisfying :

(7) det




z3 t3 y3
z4 t4 y4
z5 t5 y5



 = det




t3z3 t3 y3
t4z4 t4 y4
t5z5 t5 y5



 = 0

Proof. Let F ∈ PQ3,2. By Proposition 2.2, each point A1, A2, A3, A4 is a singu-
lar point of the biquadratic form F , and hence it yields 4 linear equations whose
variables are the coefficients of F . Namely, let us write

(8)

F = s2(a0x
2 + a1xy + a3y

2 + a2xz + a4yz + a5z
2)

+2st(b0x
2 + b1xy + b3y

2 + b2xz + b4yz + b5z
2)

+t2(c0x
2 + c1xy + c3y

2 + c2xz + c4yz + c5z
2)

Since A1 and A2 are critical points, we have

a0 = a1 = a2 = b0 = b3 = c1 = c3 = c4 = 0.

With respect to the remaining variables

X = (a3, a4, a5, b1, b2, b4, b5, c0, c2, c5),

the fact that A3 and A4 are critical points yields the equations

AXT = 0

where

A =

(
A3

A4

)
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and

Ak =




t2k 2tkyk y2k 2tkzk t2kzk ykzk 2tkykzk z2k 2tkz
2
k t2kz

2
k

0 0 0 2tk t2k yk 2tkyk 2zk 4tkzk 2t2kzk
tk yk 0 zk tkzk 0 ykzk 0 z2k tkz

2
k

0 2tk 2yk 0 0 zk 2tkzk 0 0 0


 .

First, let us assume we are in the generic case, namely z3y4 − z4y3 6= 0. We

reduce the rows of our matrix A with the Gauss algorithm to a matrix Ã = (Id7|B)
where Id7 ∈ R

8×8 is the identity matrix and B is the matrix :









































































−(y4z3−y3z4)2

(t4y3−t3y4)2
−2(−y4z3+y3z4)(−t3y4z3+t4y3z4)

(t4y3−t3y4)2
−(t3y4z3−t4y3z4)2

(t4y3−t3y4)2

(t4z3−t3z4)(y4z3−y3z4)

(t4y3−t3y4)2

t3t4y3y4z3z4

(

2z3
y3z4

−

1
y4

−

t4
t3y4

−

t3
t4y3

−

1
y3

+
2z4
y4z3

)

(t4y3−t3y4)2
t3t4(z3−z4)(t3y4z3−t4y3z4)

(t4y3−t3y4)2

−(t4z3−t3z4)2

(t4y3−t3y4)2
2t3t4(z3−z4)(−t4z3+t3z4)

(t4y3−t3y4)2

−(t23t24(z3−z4)2

(t4y3−t3y4)2

y4z3−y3z4
−t4y3+t3y4

t3y4z3−t4y3z4
−t4y3+t3y4

0

0
2(y4z3−y3z4)
−t4y3+t3y4

2(t3y4z3−t4y3z4)
−t4y3+t3y4

2t4z3−2t3z4
t4y3−t3y4

2t3t4(−z3+z4)
−t4y3+t3y4

0

0
t4z3−t3z4
t4y3−t3y4

t3t4(−z3+z4)
−t4y3+t3y4

0 0 0









































































Next, we check, under the conditions (7), that the equation F (A5) = 0 corre-
sponds to a row which is a linear combination of the rows of A. Indeed, a com-
putation shows that the row reduction of the matrix A augmented with the new

row given by F (A5) = 0 is the matrix Ã augmented with the trivial compatibility
equation 0 = 0.

In the non generic case, we proceed likewise, replacing z4 with z3y4/y3 in the
matrix A. �

7.4. Biquadratic forms in BQ3,3. Contrarily to what we have done in the pre-
vious subsections, we are not able yet to describe all the possible maximal config-
urations in P

2 × P
2. We first give elementary negative results :

Proposition 7.6. Let Ω ∈ P
2 × P

2 be such that |Ω| ≥ 4.

a) If there are P1, P2 ∈ Ω such that Π1(P1) = Π1(P2), then Ω is not maximal.
b) If Π1(Ω) contains 4 points lying on the same line, then Ω is not maximal.
c) If Ω contains 3 points P1, P2, P3 such that Π1(P1),Π1(P2),Π1(P3) are lying

on the same line and Π2(P1),Π2(P2),Π2(P3) are lying on the same line,
then Ω is not maximal.

d) If Ω is maximal, then we may assume, up to a linear change of coordinates,
that it contains the points (1, 0, 0; 1, 0, 0), (0, 1, 0; 0, 1, 0), (0, 0, 1; 0, 0, 1).

Proof. a) It is a direct application of Lemma 5.2.
b) Let {P1, P2, P3, P4} ⊂ Ω be such that Π1(P1),Π1(P2),Π1(P3),Π1(P4) are

lying on the line of equation z = 0. We may assume that

P1 = (1, 0, 0; 1, 0, 0), P2 = (0, 1, 0; 0, 1, 0),
Π1(P3) = (x1, 1, 0), Π1(P4) = (x2, 1, 0).
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Let F ∈ PQ3,3 be such that Ω ⊂ Z(F ). We set G = F (x, y, 0; s, t, u).
Then, we have G ∈ PQ2,3 and |Z(G)| > 3. Hence, |Z(G)| = ∞ and also
|Z(F )| = ∞, which shows that Ω is not maximal.

c) As in the previous case, we may assume that

P1 = (1, 0, 0; 1, 0, 0), P2 = (0, 1, 0; 0, 1, 0), P3 = (x0, 1, 0; s0, 1, 0)

with x0s0 6= 0.
Let F ∈ PQ3,3 be such that Ω ⊂ Z(F ). Let G = F (x, y, 0; s, t, 0). We

have G ∈ PQ2,2 and |Z(G)| > 2. Hence, |Z(G)| = ∞ and also |Z(F )| = ∞,
which shows that Ω is not maximal.

d) We just repetitively use the previous case.
�

Next, we give one example of maximal configuration, namely the Choi set C as
defined in (4). Again our method relies on basic linear algebra.

Proposition 7.7. The Choi set C is maximal in P
2 × P

2.

Proof. Let F ∈ PQ3,3 be such that Z(F ) contains the whole set C and an extra
point B4 = (x4, y4, z4, s4, t4, u4). According to Proposition 2.2, each point of Z(F )
is a singular point of the biquadratic form F , and hence yields 5 independent linear
equations whose variables are the coefficients of F . Namely, let us write

(9)

F = s2(a0x
2 + a1xy + a2xz + a3y

2 + a4yz + a5z
2)

+2st(b0x
2 + b1xy + b2xz + b3y

2 + b4yz + b5z
2)

+2su(c0x
2 + c1xy + c2xz + c3y

2 + c4yz + c5z
2)

+t2(d0x
2 + d1xy + d2xz + d3y

2 + d4yz + d5z
2)

+2tu(e0x
2 + e1xy + e2xz + e3y

2 + e4yz + e5z
2)

+u2(f0x
2 + f1xy + f2xz + f3y

2 + f4yz + f5z
2).

In the generic case (i.e. when s4y4− t4z4 6= 0), the line reduction with the Gauss
algorithm gives :
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a0 = a1 = a2 = a4 = a5 = 0,
b0 = b1 = b2 = b3 = b5 = 0,
c0 = c2 = c3 = c4 = c5 = 0,
d0 = d1 = d2 = d3 = d4 = 0,
e0 = e1 = e3 = e4 = e5 = 0,
f1 = f2 = f3 = f4 = f5 = 0,

a3 = f0(u4x4−t4z4)
2

(s4y4−t4z4)2
,

b4 = − f0(u4x4−s4y4)(u4x4−t4z4)
(s4y4−t4z4)2

,

c1 = − f0(u4x4−t4z4)
(s4y4−t4z4)

,

d5 = f0(u4x4−s4y4)
2

(s4y4−t4z4)2
,

e2 = f0(u4x4−s4y4)
s4y4−t4z4

.

These values of the variables correspond to the biquadratic form :

F = f0

(
(s4y4 − t4z4)ux+ sy(−u4x4 + t4z4) + (u4x4 − s4y4)tz

s4y4 − t4z4

)2

.

Since it is a square having more than 6 zeros, it necessarily has an infinite number
of zeros. Then, C ∪ {B4} is not contained in a maximal set.

To end, we have to consider the non-generic case, namely when s4y4 − t4z4 = 0.
If, y4 6= 0, then by line reducing the system, we get F = d5(sy − tz)2. Likewise,

if z4 6= 0.
We have shown that C is maximal. �

One idea to show that BB3,3 = 7 (if it were true !) would be to consider
F ∈ BQ3,3 having 8 zeros, the coefficients of F being viewed as 36 variables. The
cancellation of the partial derivatives at the first three zeros which are assumed
to be (1, 0, 0; 1, 0, 0), (0, 1, 0; 0, 1, 0), (0, 0, 1; 0, 0, 1) shows that 15 variables are zeros
and it remains 21. The cancellation of the partial derivatives at the other five zeros
(which are written with formal parameters) gives 25 equations. And we would
like to construct then an infinite family of points (Pλ)λ∈R such that the equation
F (Pλ) = 0 would be a linear combination of our previous 25 equations.

This method has been successful in the previous section for reproving that
BB3,2 = 3 (Proposition 7.5) but here the computation becomes two expensive.

In relation with zeros configuration, one may also ask the following problem.

Question 7.8. Let Ω be a finite set in P
2 × P

2. Can we determine PQ(Ω) the set
of all positive semi-definite biquadratic forms F ∈ PQ3,3 such that Ω ⊂ Z(F ) ?

One main interest would be to find PQ(Ω) when Ω is a maximal configuration.
We are able to answer the question in the case of the Choi Set :

Theorem 7.9. With the notation of (9), all the biquadratic forms F ∈ PQ3,3 which
are vanishing on the Choi Set C are described by
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(10)

M2(F ) =




(d5 + 2e2 + f0 + f3)y

2 + f3z
2 (−d5 − e2 − f3)yz (−e2 − f0 − f3)xy

(−d5 − e2 − f3)yz f3x
2 + d5z

2 e2xz
(−e2 − f0 − f3)xy e2xz f0x

2 + f3y
2





with the conditions

(11)





f0 = 1
1 ≥ f3 ≥ 0
d5 ≥ 0
d5 − e22 ≥ 0
−e22 + d5 − d5f3 − 2e2f3 − f2

3 ≥ 0
−e22 + d5 − 2e2f3 − f3 − f2

3 ≥ 0

or d5 = e2 = f0 = f3 = 0.

Proof. Let F ∈ PQ3,3 be such that C ⊂ Z(F ). We write F as in (9), and consider
the coefficients as variables. Writing down the 35 equations given by the cancel-
lation of all the partial derivatives at all points of C yields that all the possible
biquadratic forms can be described by the free parameters d5, e2, f0, f3. More pre-
cisely, we exactly get the F ’s whose associated matrix is M2(F ) as given in (10).
This matrix M2(F ) if positive semi-definite for all x, y, z if and only if all its sym-
metric minors are positive semi-definite for all x, y, z. The non-negativity of all the
1× 1 and 2× 2 minors gives the following conditions :

(12)






f0 ≥ 0
f3 ≥ 0
d5 ≥ 0
d5 + 2e2 + f0 + f3 ≥ 0
d5f0 − e22 ≥ 0
−e22 + d5f0 − d5f3 − 2e2f3 − f2

3 ≥ 0
−e22 + d5f0 − 2e2f3 − f0f3 − f2

3 ≥ 0.

The non-negativity of the 3× 3 minor is

p(x, y, z) = det(M2(F (x, y, z)) ≥ 0.

We compute :

p(x, y, z) = −f3(e
2
2 − d5f0 + 2e2f3 + f3f0 + f2

3 )x
4y2 + f0f

2
3x

4z2

+f2
3 (d5 + 2e2 + f0 + f3)y

4x2 − f3(e
2
2 + 2e2f3 + f2

3 − d5f0 + d5f3)y
4z2

+f3(−e22 + d5f0)z
4x2 + d5f

2
3 z

4y2

+f3(3e
2
2 + 2e2f3 − f0f3 + f2

3 − 3d5f0 + d5f3)x
2y2z2.

Let us note that p depends only on x2, y2, z2, hence we will introduce the un-
derlying cubic and use the following :

Lemma 7.10. Let c(x, y, z) = 0 be the equation of a cubic going by the points
(1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1). If c(x, y, z) is non-negative on the semi-
lines x = y ≥ 0, x = z ≥ 0 and y = z ≥ 0, then c(x, y, z) is non-negative on all the
positive orthant x ≥ 0, y ≥ 0, z ≥ 0.
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Moreover, the equation of the cubic curve is of the type
{

c(x, y, z) = α1x
2y + α2x

2z + β1y
2x+ β2y

2z + γ1z
2x+ γ2z

2y + δxyz
(α1, α2, β1, β2, γ1, γ2, δ) ∈ R

7

where all the coefficients except δ are non-negative and satisfying

(13)






α1 + α2 + β1 + β2 + γ1 + γ2 + δ = 0,
α1 + α2 = β2 + γ2,
β1 + β2 = α2 + γ1.

Proof. The positivity condition on the coefficients is obviously necessary. Moreover,
we check that the positivity condition on the semi-lines x = y ≥ 0, x = z ≥ 0 and
y = z ≥ 0 is equivalent to the cancellation of all the partial derivatives at (1, 1, 1),
which in turn gives the desired equalities (13).

Conversely, let us assume that we have (13) and that all the coefficients except
δ are non-negative. To get lighter notations we write, for some (a, b, s, t) ∈ R

4
+ :

c = ax2y+bxy2+(−a+s)x2z+(−b+t)y2z+(a−s+t)xz2+(b+s−t)yz2−(a+b+s+t)xyz.

Let us consider the family of lines Lλ : y = z+λ(x− z) going by (1, 1, 1). We have

cλ(x, z) = c(x, z + λ(x− z), z) = (x− z)2(λ(a+ bλ)x − (−1 + λ)(s+ λ(b − t))z).

We have to distinguish several cases :
If λ < 0, then we check that cλ(x, 1) ≥ 0 for any 0 ≤ x ≤ λ−1

λ
. Indeed, it suffices

to see that

cλ(0, 1) = (λ− 1)(λ(t− b)− s) ≥ 0

and

cλ

(
λ− 1

λ
, 1

)
= (λ− 1)(λt+ a− s) ≥ 0.

Likewise, if 0 ≤ λ ≤ 1 we check that for all x ≥ 0

cλ(x, 1) ≥ cλ(0, 1) ≥ 0.

And if λ ≥ 1 we check that for all x ≥ λ−1
λ

cλ(x, 1) ≥ cλ

(
λ− 1

λ
, 1

)
≥ 0.

We have shown that all the restrictions of c to the intersection of any lines going
by (1, 1, 1) and the positive orthant take non negative values. �

The conditions (12) imply that the form p(x, y, z) is associated (by the change
of variables X = x2, Y = y2, Z = z2) to a cubic satisfying the conditions of Lemma
7.10. Hence p(x, y, z) is non-negative. Namely the non-negativity of the 1× 1 and
2× 2 minors implies the non-negativity of the determinant.

In order to get a more geometric description, we deshomogenize by setting f0 = 1
(if f0 = 0, then M = 0) and we consider the Euclidean space with coordinates
(d5, e2, f3). Looking at the system of inequalities (12), we note that if f3 ≥ 0 and
f5 ≥ 0, then the sixth inequality −e22 + d5 − d5f3 − 2e2f3 − f2

3 ≥ 0 implies that
1− f3 ≥ 0. There are two cases.

The first is f3 < 1. Then, it gives d5 + 2e2 + 1 + f3 ≥ (e2 + 1)2 and hence the
fourth inequality of (12) is obviously satisfied.
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The second case is f3 = 1, then e2 = −1 and again the fourth inequality is
obviously implied by the sixth.

Thus, system (12) is equivalent to system (11).
�

Remark 7.11. The set PQ(C) is obviously convex since its defining conditions are
convex with respect to the coefficients of the biquadratic forms.

The example M0 in subsection 6.3.2 corresponds to (d5, e2, f3) = (1,−1, 1), the
only point which belongs to the three hypersurfaces




d5 − e22 = 0
−e22 + d5 − d5f3 − 2e2f3 − f2

3 = 0
−e22 + d5 − 2e2f3 − f3 − f2

3 = 0

which are delimiting the boundary of PQ(C).

Looking carefully at the proof of Lemma 7.10, we note that Z(F ) will be strictly
greater than C only if (t, s) = (a, 0) or (s, t) = (0, b) or t− s+a = 0 or t− s− b = 0.
In each case, we get f3 = 0.

Hence, Theorem 7.9 gives a family of positive semi-definite biquadratic forms
with parameters (d5, e2, f0, f3) which are not sum of squares until f3 = 0. More
precisely, the sum of squares in the family PQ(C) are points corresponding to f3 = 0
and delimited by the parabola d5 ≥ e22. The associated homogenized sum of squares
identity is

F = (xu + e2zt− (e2 + f0)ys)
2 + (d5f0 − e22)(zt− ys)2.

8. Quadratic determinantal representations

Historically, a determinantal representation for a form p(x) of degree k in the
variables x = (x0, x1, x2) is an identity of the kind

p(x) = λ det(x0A0 + x1A1 + x2A2)

where λ ∈ R+ and A0, A1, A2 are matrices in R
k×k. The study of determinantal

representations of polynomials goes back to the end of 19th century, when were
studied the relation between the determinantal representations and the geometry
of the curve defined by the form.

More recently, determinantal representations over the reals where considered (see
[Vi]), and of particular interest in applications such as in Control theory, is the /it
symmetric and unitary determinantal representations when the Ai’s are symmetric
and A0 is the identity matrix (see [HV]).

In this last section, we would like to introduce a discussion about what could
happen if we replace the linear pencil with a quadratic one. Namely, we would like
to deal with Positive semi-definite quadratic determinantal representations. The
new problem would be to write a given form p(x) of degree 2k as

p(x) = λ det(M(x))

with λ ∈ R+ and

M(x) = x2
0M0 + x0x1M1 + x0x2M2 + x2

1M3 + x2x1M4 + x2
2M5

where the Mi’s are symmetric matrices in R
k×k and such that M(x) is positive-

semi-definite for all x ∈ R
3.
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Given a biquadratic form F (x; s) ∈ BQ3,3 we have two canonical associated
matrices Πx(F ) and Πs(F ) which are positive semi-definite if and only if F is.
Hence positive semi-definite quadratic determinantal representations are naturally
related to positive semi-definite biquadratic forms.

But it seems not so easy to develop a general theory of positive semi-definite
quadratic determinantal representations, the positivity condition being the most
difficult to handle. Let us just discuss two examples.

Since BB(2, 2) = 2, we know that the form

p(x, y, z) = (x2 − z2)2 + (y2 − z2)2

cannot have a positive semi-definite quadratic determinantal representation, al-
though without the positivity condition, we may write

p(x, y, z) = − det

(
x2 − z2 y2 − z2

y2 − z2 −x2 + z2

)
.

If BB3,3 = 7 (or at least if BB3,3 < 10) as conjectured in the previous section,
then we would derive that the Robinson polynomial R(x, y, z) (as defined in (5))
would not admit any positive semi-definite quadratic determinantal representation.

Whereas we know that the polynomial

S(x, y, z) = y2x4 + y4z2 + x2z4 − 3x2y2z2

admits such one (Proposition 6.6).
One may also ask the same question for the celebrated Motzkin polynomial

M(x, y, z) = z6 + y2x4 + y4x2 − 3x2y2z2,

which (like S(x, y, z)) has 7 zeros in P
2.
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