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ABSTRACT 

 

 

EEG (Electroencephalography) resting state were studied by means of group blind source separation (gBSS), 

employing a test-retest strategy in two large-sample normative databases (N=57 and N=84). Using a BSS 

method in the complex Fourier domain and a model-driven distributed inverse solution we closely replicate both 

the spatial distribution and spectral pattern of seven source components. Norms were then constructed for their 

spectral power so as to allow testing patients against the norms. As compared to existing normative databases 

based on scalp spectral measures, the resulting tool defines a smaller number of features with very little inter-

correlation. Furthermore, these features are physiological meaningful as they relate the activity of several brain 

regions, forming a total of seven patterns, each with a peculiar spatial distribution and spectral profile. This new 

tool, that we name normative independent component analysis (NICA), may serve as an adjunct to diagnosis 

and assessment of abnormal brain functioning and aid in research on normal resting-state networks.  
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INTRODUCTION 

 

Over two decades ago it was demonstrated that the resting state of the brain in normal individuals is 

characterized by spectral features that could be reliably described by a series of mathematical equations as a 

function of age across the human life span (6-90 years).  Patients with psychiatric and neurological conditions 

show significant deviations from such spectral patterns, (Ahn et al. 1980; John et al. 1977, 1980a, 1980b, 1987, 

1988).  These norms have been shown to be culture-fair and replicable, with high sensitivity and specificity to 

neuropsychiatric disorders (Kondacs and Szabo, 1999; Prichep, 2005; Hughes & John, 1999; Coburn 2006). It 

has been theorized that this baseline or “ground state” of the brain results from a complex homeostatic system 

regulated by neurotransmitters and exists as a property of the resonant systems of the brain (John and Prichep, 

2009).  

For several reasons EEG is a suitable tool for building and using large-sample normative databases. 

First, modern EEG equipment is small, light and economical; EEG can be safely recorded on individuals of any 

age (including premature newborns), in any condition (even if extremely disabling such as profound states of 

unconsciousness), and virtually anywhere (e.g., at the bed of an intensive care unit, in the incubator, on top of a 

mountain, etc.). Second, given enough data are averaged, EEG spectral measures of the same individual are 

highly reliable over months and even years (Fein et al. 1984; Kondacs and Szabo, 1999). EEG spectral features 

stabilize after a few handfuls of seconds, with as few as one minute of artifact-free EEG yielding reliable 

spectral measures (Nunez and Srinivasan, 2006; Oken and Chiappa, 1988). Such reliability is better verified in 

EEG continuously recorded during a resting state with the eyes closed and for relative power measures (John et 

al. 1987). Such stability is now also reported with PET (although norms still do not exist), but not with fMRI 

(Raichle and Snyder, 2007). Third, consistent EEG norms have been found across cultures and ethnicities, as 

verified comparing independent studies from a multitude of countries (Hughes and John, 1999; Prichep 2005). It 

is accepted that the independence of the EEG spectrum from cultural and ethnic factors reflects the common 

genetic heritage of the mankind. For example, a study on a large sample of 16-year-old twins found that the 

variance of EEG power is mostly (76% to 89% depending on the frequency band) explained by heritability (van 

Beijsterveldt et al. 1996). In summary, intra-subject reliability, inter-subject consistence and the ease of 
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recording procedures can be considered the fundamental properties of EEG enabling quantitative assessment of 

brain integrity in persons of any age, origin or background through comparison to normative values.  

 

 The interest for brain function in resting state has recently re-gained considerable interest with the 

advent of PET (positron emission tomography) and fMRI (functional magnetic resonance imaging). We now 

know that on average the human brain extracts about 40% of available oxygen in the blood and disposes about 

20% of the energy for the whole body. Still, it amounts to only 2% of the total body weight. A considerable 

amount of this energy is consumed when the brain is at rest. On the other hand, it is has been estimated that the 

local task-related increase of energy consumption relative to the baseline is less then 5% (Fox and Raichle, 

2007; Raichle and Mintum, 2006). It is still unclear why the brain requires such an important supply of energy 

in the absence of targeted goals, but these observations have prompted a new wave of investigation on the 

“baseline” (ground level) brain functions. The functional organization of the brain at rest is currently conceived 

in terms of resting state networks (RSN), clusters of brain regions, mostly cortical, inter-connected anatomically 

and functionally. The study of RSNs has shifted the focus in neuroimaging from the exact localization of 

specialized brain functions (looking for “things in a place”) to the understanding of the interplay of widespread 

brain structures (identifying networks). A consistent finding is that regions in the brain with similar functionality 

tend to be correlated in their spontaneous activity (Fox and Raichle, 2007).  Several of such RSNs have been 

identified by PET and fMRI, relating to the motor, auditory and visual system, language, memory, dorsal and 

ventral attention and the default mode (Auer, 2008; Beckmann et al. 2005; Damoiseaux et al. 2006; Fox et al. 

2005, 2006; Fox and Raichle, 2007; Fransson, 2005; Mantini et al. 2007; van den Heuvel et al. 2008). The 

default mode network (DMN), appears the most active RSN at rest (for a review see Auer, 2008; Broyd et al. 

2008; Buckner et al. 2008; Fox and Raichle, 2007), thus it is putatively the most energy-demanding brain 

function of all. As for EEG spectral measures, the DMN appears to have a counterpart in primates (Rilling et al. 

2007; Vincent et al. 2007) and to develop with age (Bluhm et al. 2008; Fair et al. 2007), while clinical studies 

accumulate evidence on the alteration of the DMN in Attention Deficit Disorder (Castellanos et al. 2008; Uddin 

et al. 2008), Alzheimer’s disease (Greicius et al. 2004; Rombouts et al. 2005; Sorg et al. 2007), autism 

(Kennedy et al. 2006), chronic pain (Baliki et al. 2008), epilepsy (Laufs et al. 2007) and schizophrenia (Garrity 

et al. 2007). That is to say, as for EEG spectral norms discussed above, the DMN is not a mere epiphenomenon, 
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but an essential ingredient of the healthy brain functioning, peculiar to the phylogenetic and ontogenetic 

evolution of the mankind.  

 

Two main data analysis approaches have been used to study functional connectivity in resting state 

networks by fMRI (Buckner et al. 2008. For a comparison see Bluhm et al. 2008): a seed-based connectivity 

analysis and independent component analysis (ICA). The latter is currently enjoying increasing popularity 

thanks to its complete data-driven nature (Beckmann et al. 2005; Bluhm et al. 2008; Greicius et al. 2004; 

Eichele et al. 2008; Mantini et al. 2007; Scheeringa et al. 2008). Regarding EEG, biophysical and 

neurophysiological studies suggest that each resting state pattern may exhibit complex dynamics unfolding over 

time with multiple frequencies (Jann et al. 2009; Mantini et al. 2007). The mass of recent literature suggests that 

checking univariate power measurements (at each electrode separately) may not be the best methodology for 

studying the resting brain, (see concerns expressed by Jann et al. 2009). Studying the distribution of scalp EEG 

power at rest, as in the aforementioned studies on EEG normative database or more recently in Chen et al. 

(2008), does not allow the study of baseline patterns because scalp voltage is a mixing of underlying source 

activity (volume conduction: see Nunez and Srinivasan, 2006) and because scalp power is an appropriate 

measure of local neuronal synchronization, not of widespread coherent synchronization. Instead, we aim at 

extracting spatial maps of widespread synchronizations over the cortex, which can be treated as a single 

phenomenon and can be tested altogether (the whole cohort) along the frequency dimension. Besides allowing 

the study of co-activation of several brain areas, such approach allows the standardization of the spatial extent of 

the activations across individuals and also a smaller number of features (data compression) with lower inter-

correlation (reduction of volume conduction effects). With fMRI such investigation in large samples of 

individuals has been performed by group ICA (Calhoun et al. 2001; Schmithorst and Holland, 2004), an 

approach that we introduce here in the context of EEG. This approach is essentially different from the seed-

based approach in that we do not need to define explicitly measures of synchronization between different brain 

areas. This is particularly advantageous in the context of EEG, since many of such measures are influenced by 

the effect of volume conduction (Nunez and Srinivasan, 2006). 
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In this paper we describe the Normative Independent Component Analysis (NICA). Using this method 

we describe the extraction of eyes-closed resting EEG patterns using group ICA and the norming of the 

components thus extracted.  ICA extracts scalp spatial maps and associated EEG time-courses, referred together 

to as components (Makeig et al. 2004). Since there is no way to establish a-priori how many of such 

components should be extracted nor if they are reliable, we employ a test-retest strategy using two independent 

large sample normative databases (N=57 and N=84) and retain only replicable components; such strategy has 

been previously employed by Damoiseaux et al. (2006) in an fMRI study. Once robust ICA normative 

components are extracted, we characterize the cortical structures involved in each component using source 

localization, sLORETA (Pascual-Marqui, 2002), a model-driven distributed inverse solution of the components 

spatial maps (Greenblatt et al. 2005; Lopes da Silva, 2004) and their associated spectral profile. In the two 

databases, we describe seven replicable components with nearly identical spatial distribution and spectral 

profile. These components are then normed and patients tested against the normative values for each 

component.  

 

METHOD AND RESULTS 

 

Subjects and EEG recording procedures 

In order to avoid age effects we consider in this study only adult individuals between 17 and 30 years of 

age. Two independent normative databases previously acquired were used for this study. One is a subset of the 

normative database of the Brain Research Laboratory (BRL), New York University School of Medicine (N=57; 

age range 17-30) and the other the normative database of Nova Tech EEG (NTE), Inc., Mesa, AZ (N=84; age 

range 18-30). Exclusion criteria for the BRL database were known psychiatric or neurological illness, history of 

drug/alcohol abuse, current psychotropic/CNS active medications, history of head injury (with loss of 

consciousness) or seizure disorder. Exclusion criteria for the NTE database were a psychiatric history in any 

relative and participant of drug/alcohol abuse, head injury (at any age, even very mild), headache, physical 

disability and epilepsy.  

Recording procedures and settings were very similar for the two databases. In both cases 3-20 minutes 

of EEG data was continuously recorded while the participant sat with the eye-closed on a comfortable chair in a 
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quiet and dimly lit room. EEG data were acquired from the 19 standard locations prescribed by the 10-20 

International System (Jasper, 1958: FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, 

O2) using linked ear reference and enabling a 60 Hz notch filter to suppress power line contamination. The 

impedance of all electrodes was kept below 5K Ohms. Data of the NTE database were acquired using the 12-bit 

A/D NeuroSearch-24 acquisition system (Lexicor Medical technology, Inc., Boulder, CO) and sampled at 128 

Hz, whereas data of the BRL database were acquired using the 12-bit A/D BSA acquisition system 

(Neurometrics, Inc., New York, NY) and sampled at 100 Hz. For consistency, we subsequently up-sampled the 

BRL database to 128 Hz using a natural cubic spline interpolation routine (Congedo et al. 2002). In order to 

minimize inter-subject variability we removed from all data any biological, instrumental and environmental 

artifacts, paying particular attention to biological artifacts generated by the eyes, the hearth and the muscles of 

the neck, face and jaw. The recordings of the two databases had been carefully screened by one EEG technician 

and one experienced EEG researcher. Additionally, author MC reviewed all recordings. All recordings included 

in this study feature high overall signal-to-noise ratio. The mean length and standard deviation of artifact-free 

data in the BRL (N=57) and NTE (N=84) database were 102.9 (27.5) and 92.5 (29.79) seconds, respectively. 

 

Frequency Domain Statistics 

All statistics used in this study are summarized in the complex Hermitian Fourier cross-spectral matrices 

E E
f

⋅∈ℂS , where f is the discrete frequency index and E the number of electrodes (Bloomfield, 2000; 

Brillinger, 1975). We can write 

f f fi= +S C Q ,    (1) 

 

where i= 1− . Real symmetric E E
f

⋅∈ℜC , referred to as the cospectral matrix, holds in the main diagonal the 

power spectra and in the off-diagonal elements the in-phase (or with a half cycle phase shift, i.e., opposite sign) 

dependency structure. Imaginary antisymmetric E E
fi ⋅∈ ℑQ , referred to as the quadrature spectral matrix, 

holds in the off-diagonal elements the out-of-phase (a quarter cycle in either direction) dependency structure. 

The cospectral matrix is equivalent to the covariance matrix of the data band-pass filtered for its discrete 
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frequency: by Parseval’s theorem the sum of all co-spectral matrices is equivalent to the data covariance matrix. 

We estimate individual cross-spectral matrices as the average obtained by Fast Fourier Transform (FFT) on 50% 

sliding overlapping 2-seconds windows tapered using the function introduced by Welch (1967). With k: 1,…,K 

indicating the kth subject in the normative database, let us denote abs
kfC  the estimated cospectral matrix for 

subject k at discrete frequency f. Here “abs” reminds that in the literature such statistics are referred to as 

“absolute power”. We will also make use of “relative power” estimations, given by  

( )rel abs abs

1

/
F

kf kf kf
f

tr
=

= ∑C C C ,   (2) 

where “tr” indicates the trace of the argument. Those are the cospectral matrices normalized by the total power 

in the whole frequency range of interest. Finally, we will use “normal power” cospectra defined such as 

( )nor abs abs/kf kf kftr=C C C ,    (3) 

that is, the set where all cospectra are normalized by the total power in that discrete frequency. Absolute and 

relative power estimations are a long-standing standards in quantitative EEG analysis. Here we introduce also 

normal power estimations, which usefulness will appear in the sequel. The diagonal elements of normal power 

cospectra indicate for each frequency the proportion of power expressed by each channel with respect to all of 

them. 

 

Group Independent Component Analysis 

In both fMRI and EEG ICA has become a major processing tool, although the subjacent data-generative 

model and consequent interpretation of results is substantial different in the two cases. In the case of EEG the 

use of ICA has a clear and solid physiological interpretation within the context of the volume conduction theory; 

dipolar fields produced by collinear pyramidal cell columns in extended neocortical region results in mixed 

(superimposed) potential at each scalp electrode. The current diffusion is instantaneous and linear with good 

approximation (for a review see Congedo et al. 2008). In essence, we use the recorded time-series of scalp 

potentials to estimate the underlying dipolar fields. For E scalp sensors and M≤E EEG dipolar fields to be 

estimated, the linear model employed describes the superposition principle, i.e., we state 

( ) ( )t t=v As ,     (4) 
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where ( ) Et ∈ℝv is the sensor measurement vector, E M⋅∈ℝA is a time-invariant non-singular mixing matrix 

and ( ) Mt ∈ℝs holds the time-course of the source components. Note that model (4) describes the instantaneous 

(in-phase) diffusion of current source over measurement sites, in fact describing the effect of primary current 

and volume conduction (Congedo et al. 2008). Our source estimation is given by 

ˆ( ) ( )t t=s Bv ,     (5)  

where M E⋅∈ℝB is called the demixing or separating matrix. The mth row of B  is a spatial filter holding 

coefficients for each electrode recovering the mth source component, the time-series of the dipolar field 

estimated by an inverse process. The mth column of +=A B , with superscript + indicating the Moore-Penrose 

pseudo-inverse, is the estimation of the scalp spatial pattern associated with the mth source.  

 

 A wide array of ICA methods exist. In this work we use a method based on the approximate joint 

diagonalization (AJD) of Fourier cospectral matrices, which is a robust and computationally fast approach 

(Congedo et al. 2008). We diagonalize cospectral matrices in the frequency range 0.5-30 Hz only, which is the 

range with highest signal-to-noise ratio subsequently analyzed. As reported by Makeig et al. (2004), BSS of 

EEG appears to give satisfactory results within this frequency band-pass region. This results in F=60 

frequencies with 0.5 Hz resolution (0.5, 1, 1.5, …, 30 Hz). We perform ICA as the AJD of the grand-average 

Fourier cospectral matrices, which is an approach to group ICA analogous to the averaging group ICA approach 

described for fMRI by Schmithorst and Holland (2004).  

 

In order to estimate M<E source components the matrix B  is found with a classical two-stage process, 

which allows the estimation of the M most energetic components while reducing the noise. First the size of all 

input cospectra is reduced by transformation  

nor norM M T
f f

⋅∈ =ℝD FC F , for all f: 1,…,F,  (6) 

where  

nor 1

1

K
nor

f kfK
k =

= ∑C C     (7) 
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is the grand-average of the individual normal cospectral matrices (3)1. Matrix 

E M⋅∈ℝF =

1
2

nor

1

F

f
f

−

=

 
 
 
∑C    (8) 

is often referred to as the “whitening” or “sphering” matrix, since definition (8) implies 

nor

1

F
T M M

f
f

⋅

=

= ∈∑ ℝF C F I , 

where I is the identity matrix. In (7) and (8) we sum across frequencies in the diagonalization range, that is, 0.5-

30 Hz. In this high signal-to-noise range the multidimensional variance structure of the data in the two databases 

is very similar. We analyzed the eigenvalues of the grand-average cospectral matrix summed across analyzed 

frequencies. Figure 1 shows the mean square representation error (MSRE), the complement of the cumulative 

normalized sum of the eigenvalues, and the Akaike Information criterion (Wax and Kailath, 1985). Both 

functions have very similar shapes in the two databases. The mimimum AIC is reached in four orthogonal 

dimensions for both databases.  

 

Insert Fig 1 Approximately Here 

 

Once obtained cospectral matrix nor
fD in the reduced M-dimensional space the approximate joint 

diagonalization (AJD) of the transformed set is performed. AJD is a powerful algebraic method seeking a matrix 

M M⋅∈ℝR  such that products nor T
fR D R  are as diagonal as possible for all f. Since the off-diagonal elements of 

the cospectra hold statistics describing the all pair-wise in-phase dependency between electrodes, the sought 

demixing matrix holds in rows spatial filters maximizing the in-phase independence of the sources computed as 

per (5). Finally, we obtain the solution to the ICA problem as  

M E⋅= ∈ℝB RF .     (9) 

 

                                                 
1 Because of the individual global scaling factor seen in EEG (Hernández et al. 1994; Goncalves et al. 2006) we 
average individual normal cospectral matrices and not their absolute counterpart so that all individuals 
contribute fairly to the average. 
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To solve the AJD problem, hence the ICA problem, we use an iterative algorithm previously developed 

(Congedo and Pham, 2009; Pham and Congedo, 2009). Such algorithm allows specifying weights for each input 

matrix. Following Congedo et al. (2008) we use a weighting function encouraging the diagonalization effort 

proportionally to the non-diagonality of the input matrices. 

 

 Note that we are using only second order statistics, thus we are not assuming complete zero-lag 

independence of the source processes, but only their uncorrelatedness. While we can relax the assumption of 

independence, an additional assumption on the sources is necessary for achieving their separation. Using AJD of 

a set of cospectral matrices, such additional condition is that the source components have non-proportional 

spectral profile (Pham, 2001). We feel that such an assumption is appropriate for this study since it is 

physiologically unlikely that different components operate with exactly the same frequencies along the whole 

frequency spectrum of interest. To better fulfill the assumption, however, we have used normal cospectral 

matrices (7) as input to the AJD algorithm. As we will show the normal power spectral profile are less 

proportional than the absolute and relative counterparts. For more details on the implementation of this ICA 

approach and for a review of the physical and statistical background of its use in the context of EEG the reader 

is referred to the review by Congedo et al. (2008). 

 

Distributed source localization 

 The previous sub-section showed how we obtained the spatial filtersB . The estimated mixing matrix of 

model (4) is +=A B , which using (8) and (9) is  

 

( )
1

2

nor 1

1

F

f
f

+ −

=

 
= =  

 
∑A RF C R .  (10) 

 

The mth column of the estimated mixing matrix is the scalp spatial pattern (voltage) associated to the mth source 

component and can enter an inverse solution method for estimating its cortical location, just as EEG samples. 

For this purpose we use the popular standardized low resolution electromagnetic tomography (sLORETA) 
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method (Pascual-Marqui, 2002), which has received theoretical support (Greenblatt et al. 2005; Pascual-Marqui, 

2007) and has been validated independently in several laboratories (Congedo, 2006; Terakawa et al. 2008; van 

der Loo et al. 2009; Wagner et al. 2004). sLORETA is a smooth model-driven distributed inverse solution, 

implying that no a-priori knowledge of the number of active dipoles for each component is required. The only 

user-adjustable parameter of the model-driven sLORETA method is the amount of Tikhonov regularization. 

Since the number of electrode is low, the mixing matrix is estimated on a large sample and the ICA spatial 

patterns we extract have higher signal-to-noise ratio as compared to raw EEG samples, we do not need 

regularization (Congedo, 2006). For computing sLORETA current density and plotting the results we used the 

freeware sLORETA-key software2.  

 

Feature extraction. 

 Once obtained the demixing matrix B  for the normative sample we can estimate the distribution of the 

spectral power for each source at each discrete frequency. Taking the expectation of the variance (spectral 

power) of (5) the component absolute power for the kth subject, mth source and fth discrete frequency is given by 

quadratic form 

abs absT
kmf m kf mη = b C b .    (11) 

Similarly, the relative power is given by 

rel relT
kmf m kf mη = b C b     (12) 

and the normal power by 

nor norT
kmf m kf mη = b C b .    (13) 

On the other hand, the corresponding features for the traditional scalp norms are the spectral power of the signal 

recorded at the measurement sites, i.e., the diagonal elements of abs
kfC , rel

kfC  and nor
kfC . In this case M=E, that is, 

                                                 
2 This software implements revisited realistic electrode coordinates (Jurcak et al. 2007) and the lead field 
produced by Fuchs et al. (2002) applying the boundary element method on the MNI-152 (Montreal neurological 
institute, Canada) template of Mazziotta et al. (2001). The sLORETA-key anatomical template divides and label 
the neocortical (including hippocampus and anterior cingulated cortex) MNI-152 volume in 6239 voxels of 
dimension 5 mm3, based on probabilities returned by the Demon Atlas (Lancaster et al. 2000). The co-
registration makes use of the correct translation from the MNI-152 space into the Talaiach and Tournoux (1988) 
space (Brett et al. 2002). LORETA-Key is freely available at URL http://www.uzh.ch/keyinst/loreta.htm. 
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there are as many “spatial filters” as electrodes. Equivalently, such features can be obtained using mi instead of 

mb  in (11-13), where mi  is the mth column of the identity matrix. This manipulation shows the essential 

difference between scalp EEG norms and NICA; the former focuses on EEG power at the electrode sites while 

the latter seeks linear combinations of such measures (with coefficient given by the mb  vectors). It follows that 

NICA uses the electrode sites altogether for deriving each feature, thus allowing the full spatial characterization 

of all features. Since our NICA method is specifically designed to minimize the volume conduction, the features 

we obtain are as little correlated as possible.  

 

Deriving norms and assessing normality of patients. 

 Using equations (11-13) above we obtain features kmfη  for each individual in the database, for absolute, 

relative and normal power. Norms are the central tendency and confidence intervals of their distribution. The 

lower and upper limits are chosen so as to include (1-α)% of the distribution around the central tendency, where 

α is the type I error tolerated (false positive rate). For a given patient to be tested against the database, hereafter 

denoted by subscript q, we compute the corresponding features as abs absT
qmf m qf mχ = b C b , rel relT

qmf m qf mχ = b C b  and 

nor norT
qmf m qf mχ = b C b  for absolute, relative and normal power, respectively. Values of qmfχ  falling on the left of the 

lower limit flag a deficit of energy, whereas values falling on the right of the upper limit flag an excess of 

energy. Since the distribution of power measurements in not Gaussian, one may log-transform them in order to 

approximate Gaussianity and then obtain the limits as the mean value ± (ζ⋅ standard deviation), where ζ is a real 

number depending on α, e.g., 1.96 for α=0.05 (John et al. 1987). In Congedo and Lubar (2003) it was shown 

that the accuracy of such method critically depends on the approximation to Gaussianity achieved by the 

transformation and that using this method the rate of false positive and false negative is not uniform across 

features. We use instead the non-parametric method proposed in Congedo and Lubar (2003), which yield 

uniform errors. Let us sort in ascending order the K values for each feature. Then let ω=int(K⋅α/2), where “int” 

returns the integer part of the argument; the lower limit is defined as the ωth sorted feature value and the upper 

limit as the (K-ω)th sorted feature value. As before, values of qmfχ  falling on the left of the lower limit flag a 
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deficit of energy, whereas values falling on the right of the upper limit flag an excess of energy. In both cases 

they flag possible abnormal brain functioning. 

 

RESULTS 

Group normative ICA components 

The group ICA was independently applied on the NTE and BRL normative database starting with fixing 

the M, the number of estimated components, to four, the number suggested by the Akaike’s information-

theoretic criterion (Figure 1) and increasing M until the spectral and frequency distribution of the components 

found on the two databases do not match anymore. Proceeding this way seven replicable ICA components were 

identified. Reducing the space to seven dimension by pre-whitening (M=7, see eq. (6) and (8)) explains 92.1% 

and 92.8% of the total grand-average variance in the 0.5-30 Hz for the BRL and NTE database, respectively.   

 

The estimated current source spatial distribution (sLORETA) and associated spectral profile (absolute, 

relative and normal power) are shown in Figure 2. The seven components have nearly identical spatial 

distribution and spectral profile in the two databases. The first six components (C1-C6) have maximal current 

density in the medial portion of the brain. On the other hand, C7 has bilateral maximal current density. All 

components have nearly symmetric current distribution, with the exception of C3, which extend more on the 

right hemisphere according to both databases. Table 1 reports for each component the anatomical regions 

displaying high-power local maxima.  

 

The seven components for each database in Fig. 2 have been sorted according to the amount of residual 

grand-average EEG variance explained in the 0.5-40 Hz range (Congedo et al. 2008). Figure 3 shows the 

variance explained by each component as obtained on the two databases. Note that not only the output 

components are sorted identically for the two databases (Figure 2)3, but also that each component individually 

contributes a similar increase of explained variance in the two databases. Note also that C7, which spatial 

                                                 
3 This is due to the fact that the cospectral structure along frequencies is very similar in the two databases (Fig. 
1) and also to the fact that the whitening matrix (8), which by definition sort the components by explained 
variance, achieves joint diagonalization in fair approximation, which is refined by the ensuing AJD algorithm 
without changing the order of the components. 
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distribution in the two database matches only roughly, explains less then 5% of the variance. This suggests that 

increasing M over seven would require the estimation of components with disadvantageous signal-to-noise ratio. 

In fact, the spatial localization of C7 is already pretty incongruent in the two databases, although their frequency 

profile is very similar4.  

 

Insert Fig 2 and 3 Approximately Here 

ICA Components 

The spectral and spatial distribution of the seven ICA components are described below: 

 

Component 1 (C1):   C1 is characterized by a prominent normal theta activity and low normal alpha activity 

(Fig. 2). In the source space normal power quantifies the proportion of power generated by each component as 

compared to all the others, that is to say, the theta peak displayed by C1 indicates that C1 generates much of the 

total theta power generated all over the brain. C1 forms a network consisting of the subgenual and dorsal 

anterior cingulate (BA 23/24/32/33/25), insula (BA 13), middle/superior frontal gyrus and paracentral lobule 

(BA 4/5/6), and parahippocampal gurus (BA 28/34/35/36) (Table 1). 

 

Component 6 (C6):  C6 is characterized by low normal alpha power and high delta and beta normal power. 

Spatially it forms a network consisting of the medial frontal/rectal gyrus/anterior cingulate (BA 11, 25), middle 

frontal gyrus (BA 11), inferior frontal gyrus (BA 47), parahippocampal gyrus (BA 28/34), and insula (BA 13) 

(Table 1) 

 

Component 5 (C5):  The frequency spectrum of component 5 is similar to C6 (Fig. 2). Spatially, C5 forms a 

network consisting of the anterior cingulate (BA 24/25/32), medial frontal gyrus (BA 32/9/10/11), rectal/orbital 

gyrus (BA 11/47), inferior frontal gyrus (BA 47), and parahippocampal gyrus (BA 28/34) (Table 1). 

                                                 
4 This is due to the fact that we are estimating directly the demixing matrix B, which a-posteriori inversion 
provides us with the estimation of the mixing matrix A, and not vice-versa as done by some other ICA 
algorithms (Hyvärinen, Karhunen and Oja, 2001). Error in the estimation of B will therefore be amplified in the 
estimation of A (Tichavsky and Yeredor, 2009). Now, the former provides estimation of the spectral profile, 
which is similar for all components in both databases (thus we believe that it is the same component), while the 
latter provides the input for source localization methods. 
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Component 3 (C3):  C3 is characterized by a clear alpha peak in both absolute and normal power. Among all 

components the normal power alpha peak of C3 is the most pronounced (Fig. 2). C3 forms a network consisting 

of the cuneus/precuneus/ (BA 30/31/7), right superior parietal lobule (BA 7), Posterior Cingulate (BA 30), 

lingual/parahippocampal gyrus (BA 18/19/30), right fusiform gyrus (BA 19), sparing the primary visual cortex 

(Fig. 2 and Table 1).  

 

Component 2 (C2):  C2 consists of cuneus/precuneus/ (BA 7/31/18/19/), post-central gyrus (BA 3/4/5), 

superior parietal and paracentral lobule (BA 5/7), posterior cingulate gyrus (BA 23/31) (Table 1). It 

predominantly oscillates at alpha processing speed, similarly to C3, to which partially overlaps also spatially, 

without the extension to the fusiform and parahippocampal area, but extending instead into BA 5 and 7. 

 

Component 4 (C4):  C4 has an alpha spectral peak and occipital localization which is typically noted in  eyes 

closed EEG. In contrast to C2 and C3, the normal spectrum of C4 does not peak at 10Hz, instead is equally high 

in between about 10Hz and 22Hz. C4 extends to the PCC, reaching the precuneus.  

 

Component 7 (C7):  C7 forms a predominant right lateralized network consisting of the post-central gyrus (BA 

1/2/3), supramarginal gyrus/inferior parietal lobule (BA 40), precentral gyrus (BA 6), cuneus/ precuneus (BA 

17/18/19/31), middle occipital gyrus (BA 18), superior and middle temporal gyrus (BA 21/22/39/41), insula 

(BA 13), angular gyrus (BA 39).   

 

DISCUSSION 

 

It has been found that the frontal midline theta rhythm is generated in the dACC (dorsal anterior 

cingulate cortex: Onton, Delorme and Makeig, 2005), possibly alternating with the VMPFC (ventromedial 

prefrontal cortex: Asada et al. 1999), at the same anatomical region as sLORETA localizes C1. It has been 

established that frontal midline theta oscillations are involved in attentional processes (Inanaga 1998). 

Accordingly, the component best matching the mid-frontal scalp topography associated with the frontal theta 
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rhythm was negatively correlated to the default mode network activity (Scheeringa et al. 2008), whereas in a 

mental arithmetic induced workload combined EEG-fMRI experiment, theta power increase was associated with 

activation of the ACC (Sammer et al. 2007). Part of the resting state C1 and the salience network described by 

fMRI overlap anatomically, i.e., the dorsal ACC extending into the anterior insulae (Seeley et al. 2007). The 

salience network extends to the dorsomedial thalamus and hypothalamus, sublenticular extended amygdala and 

ventral tegmental area. This salience network unites conflict monitoring, interoceptive-autonomic, and reward-

processing centers (Seeley et al. 2007). Furthermore the right dACC-insula salience network has been described 

as a switch between the central executive frontoparietal network and the default mode (Sridharan et al. 2008). 

Whenever new information is presented, activity levels of the dACC reflect the salience of the new information 

for predicting future outcomes (Critchley 2005; Behrens et al. 2007), guiding optimal decision making in an 

uncertain world (Kennerley et al. 2006). The dorsal ACC is anatomically (Ghashghaei et al. 2007) and 

functionally heavily connected to the subgenual ACC (Margulies et al. 2007; Stein et al. 2007) as well as to the 

thalamus and brainstem (Mottaghy et al. 2006). The subgenual ACC (BA25) is functionally also connected to 

the parahippocampal gyrus (Kahn et al. 2008). Based on these evidences, C1 described by NICA EEG seems to 

relate to the salience of internal and external stimuli, by combining networks involved in arousal and intrinsic 

alertness, interoceptive awareness and motivation. C1 could therefore be considered an attentional network 

focusing on salient information. A combined EEG-fMRI study could verify that C1 is inversely related to the 

DMN. 

 

Functional connectivity fMRI studies suggest that the pattern seen in C6 is similar to a connectivity 

pattern with BA 25 as seed (Margulies et al. 2007), whereas C1 connects functionally more to the dACC (BA 

24) (Margulies et al. 2007). Anatomical studies show that the sequence of information transmission between the 

subgenual and dACC might be direct and indirect via the amygdala (Ghashghaei et al. 2007), with the output of 

BA 25 going to the amygdala and from there to the dACC. fMRI connectivity studies on the other hand 

demonstrate information transmission from the amygdala to BA 25 and from there to the dACC area in BA 24 

(Stein et al. 2007). The subgenual ACC extending into the posterior orbitofrontal cortex (OFC) is associated 

with positive reward (Elliott et al. 2000; Rogers et al. 2004; Drevets et al. 2008). In animals, this region 

participates in an extended "visceromotor network" of structures that modulates autonomic/neuroendocrine 
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responses and neurotransmitter transmission during the neural processing of reward, fear, and stress (Drevets et 

al. 2008). The C6 component could therefore be considered a reward driven autonomic arousal system.  

 

The pregenual cingulate and parts of the OFC seen in C5 are implicated in the continuous representation 

of affective hedonic value (Rogers et al. 2004; Keedwell et al. 2005; Grabenhorst et al. 2008; Walter et al. 

2009). Thus C5 can be considered an emotion/hedonic extension of C6, a reward driven autonomic and 

emotional arousal system. 

 

The alpha oscillations reflected in C3 are most likely those generated in the thalamus independently of 

sensory afferences (Schreckenberger et al. 2004). Closing the eyes at rest engenders EEG alpha power increase 

at PCC (Posterior Cingulate Cortex)/anterior precuneus and occipital regions (Barry et al. 2007), in agreement 

with the spatial localization of these components.   

 

The anterior precuneus involvement seen in C2 may represent that involved in self-centered mental 

imagery, during both personal past and personal future thinking (Abraham et al. 2008). Dissociations between 

the areas involved in personal past versus personal future thinking are located more along the medial parietal 

wall (Abraham et al. 2008). The posterior precuneus subserves successful episodic visual memory retrieval 

(Cavanna and Trimble 2006). The parietal-parahippocampal network is related to topographic (static) and 

topokinetic (dynamic) spatial self-related memory (Berthoz 1997). The medial parietal part of the secondary 

somatosensory cortex processes and constantly updates proprioceptive input (Richer et al. 1993; Pellijeff et al. 

2006). Thus C2 and C3 could be considered networks related to self-centered temporal and spatial memory 

based on proprioceptive and vestibular input (C3)(eyes closed) with associated visual memory retrieval (C2). 

  

The distribution of C4 is suggestive of the extended visual cortex activity found in the resting state 

(Wang et al. 2008), and this resting state visual activity can be modulated by top down effects, such as thoughts 

(Johnson et al. 2007). It has been suggested that this resting state activity in the visual areas is related to visual 

imagery (Wang et al. 2008), which is known to activate visual areas (Farah 1989; Svoboda et al. 2006) and is 

expected in a eyes closed condition. C4 could therefore be considered a resting state visual imagery network. 
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Although in absolute term an alpha peak is observed, in C7 normal power steadily increases with 

frequency. The right sided supramarginal gyrus in humans is involved in the processing of vestibular 

information for head and body orientation in space (Stephan et al. 2005). Electrical  stimulation on the right 

angular gyrus induces vestibular and complex somatosensory responses (Blanke et al. 2002), suggesting that the 

angular/supramarinal junction might be involved in vestibular somatosensory integration of body orientation in 

space. Electrical burst stimulation of the posterior part of the superior temporal gyrus has induced out of body 

experiences in a controlled way associated with metabolic alterations at the junction of the right angular and 

supramarginal gyrus (De Ridder et al. 2007), demonstrating its role in embodiment. C7 could therefore be 

related to multisensory integration of body experience in space. 

 

In an attempt to link our findings with existing literature on RSN we suggest that NICA C1 describes an 

attentional network focusing on salient information, C2 and C3 could be considered networks related to self-

centered temporal and spatial memory based on proprioceptive and vestibular input (C3)(eyes closed) with 

associated visual memory retrieval (C2). C4 could be considered a resting state visual imagery network. The C6 

could be considered a reward driven autonomic arousal system and the C5 can be considered an 

emotion/hedonic extension of C6, a reward driven autonomic and emotional arousal system. C7 could be related 

to multisensory integration of body orientation in space. Thus when we close our eyes we can hypothesize, 

based on the current literature and present findings, that C1, C5 and C6 keep our homeostatic, interoceptive and 

reward based autonomic and emotional arousal system online, C2 and C3 relate to our self-perceived orientation 

in space and time based on proprioception and vestibular input, C7 to the bodily representation of the self, while 

C4 is related to memory based visual imagery, which starts on the moment we close our eyes. These hypotheses 

are highly speculative at this time. Future research should substantiate them by experiments aiming at eliciting 

the mentioned functional systems, to which changes in the power of the corresponding NICA components 

should be observed. 

 

As any other source separation method NICA decomposes the whole EEG in a number of elementary 

components, each one characterised by its time course (here analyzed in the frequency domain as power spectra) 
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and spatial pattern, here used as input to source localization by sLORETA. The degree of confidence toward 

those two aspects is not the same; the time course is extracted directly from the data after source separation (Eq. 

5), whereas source localization introduces a bias due to the ensuing inverse solution. The latter is subjected to 

two types of error: the approximation of the head model needed to derive the forward solution and the possible 

reconstruction error of the inverse solution itself. In this study we have relied on the average realistic head 

model of Fuchs et al. (2002), which has been applied for all subjects. A more accurate procedure would be to 

compute the individual realistic head model, project the individual current density maps to a standard average 

brain and then average the results. Unfortunately this was not possible in this study as the MRI of the subjects 

involved in the normative databases was not available. Nonetheless, the anatomical localization errors 

introduced by the use of an average head model should average out in a large-sample group analysis. As per the 

source localization error introduced by the inverse solution, we know that sLORETA is capable of 

reconstructing simple dipole configurations (Congedo, 2006; Pascual-Marqui, 2002; Wagner et at. 2004). The 

decomposition operated by the source separation effectively distributes the number of active dipoles across 

components; that’s why an inverse solution after source separation is more trustworthy as compared to the same 

inverse solution performed on raw EEG data. The normative databases we have employed were recorded with 

19 electrodes. While this is a rather low number, in Congedo (2006) we have shown by point spread function 

simulations that using an approximate head model sLORETA is capable of exact localization of single dipoles 

with as few as six electrodes. Increasing the number of electrodes it increases the spatial resolution, that is, the 

ability to resolve two closely-spaced dipoles, not the localization ability (given the spatial sampling of the scalp 

is appropriate). In this study we have found seven replicable resting-state components. One should keep in mind 

that this number is by no means an absolute reference; it would likely increase with the number of individuals in 

the database, the number of electrodes used to record EEG and the overall signal-to-noise ratio. Also, our results 

are not easily comparable with single-subject BSS studies, especially those performed with high-density 

recording, in which typically BSS disentangle dipolar fields in a higher number of components. In conclusion, 

we feel that the spatial localization of the seven NICA components can be regarded as a fairly good 

approximation. Keeping in mind the limitation of the method, further studies confirming and expanding the 

present results are warranted. 
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The RSNs described by fMRI are not the same as the patterns found by ICA of resting state EEG 

activity. There might be multiple reasons for that. So far no clear relationship has been established between very 

slow frequency BOLD oscillations (<0.1) and EEG oscillations. Available data is scattered and inconsistent: 

using simultaneous EEG and fMRI it was found that BOLD signal in the DMN correlates positively with EEG 

power in the beta band (17-23 Hz: Laufs et al. 2003), but negatively with EEG frontal midline theta power (3-8 

Hz) (Scheeringa et al. 2008). Mantini et al. (2007) concluded that the DMN fMRI BOLD fluctuations positively 

correlate with both Alpha and Beta EEG power (8-30 Hz), but also with gamma power (30-50 Hz). The BOLD 

signal is correlated to evoked gamma oscillations in both the visual and auditory cortex (Foucher et al. 2003; 

Mukamel et al. 2005; Lachaux et al. 2007; Nir et al. 2007), and anticorrelated to theta, alpha and beta local field 

potentials in the auditory cortex (Mukamel et al. 2005), suggesting that the BOLD signal in general seems to be 

correlated best to gamma band activity. It appears that one EEG feature can correlate with different fMRI 

activation maps and a single resting state network may also be associated with a variety of EEG patterns (Laufs 

2008). Furthermore the fMRI resting state analyzes brain activity only indirectly via changes in blood 

oxygenation in contrast to EEG. Also the fMRI resting state evaluates neural activity at very different time 

dimensions, in the scale of 10-15 seconds. Synchronized low-frequency BOLD fluctuations likely arise from a 

combination of vascular low-pass filtering and low-frequency amplitude modulation of neural activity. This 

very complicated interaction between low-frequency BOLD fluctuations and brain physiology has resulted in 

criticism doubting that « this ‘intrinsic’ activity, although interesting, has any special significance » (Morcom 

and Fletcher 2007). The authors also state that « there may be some consistency in the network of regions active 

in the resting task, but without a theoretical synthesis that also identifies this as a qualitatively and quantitatively 

important baseline state, the idea of a default mode has little utility » (Morcom and Fletcher 2007). 

The group ICA of resting state EEG appears to delineate small independent networks of anatomically 

contingent areas. How these independent small functional components interact to form larger networks, 

potentially similar to the ones described by fMRI functional connectivity, can be studied by out-of-phase 

coherence of the extracted components. Using the same two databases analyzed in the present study we have 

shown the organization of the seven components in two networks, where within each network components 

oscillate coherently with multiple-frequency dynamics (Congedo et al. 2010).  
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Understanding the physiological role of the NICA independent components will allow a better 

understanding of pathologies by comparing ICA of pathological resting states to the described normative 

databases. Results in this direction obtained in a study on obsessive-compulsive disorder will be published 

elsewhere (Koprivova et al., submitted; De Ridder et al. in preparation). Our current and future research efforts 

aim at establishing the clinical utility and validity of NICA. For this purpose we have developed an executable 

application for performing NICA analysis. The application and the code are available to peers under request to 

the corresponding author. 

  

CONCLUSION 

 

The study of the brain at rest has a long-lasting tradition and has recently gained a renewed impulse 

thanks to the advent of modern neuroimaging modalities such as PET and fMRI. EEG normative databases built 

on large-samples have proven to be a useful adjunct in the diagnosis and assessment of several neurological and 

psychiatric disorders. Still today EEG is a suitable modality for this purpose due to technical factors and to 

electrophysiological characteristics. Using group ICA on EEG eyes-closed resting-state in two independent 

databases we have found seven replicable independent components (IC) describing about 92.5% of the total 

EEG variance. The seven components can be grouped into two separate networks (Congedo et al. 2010). The 

fact that the component spectral profile and spatial localization closely agree in two independent large-sample 

databases support the notion that they represent true “ground-states” of the resting brain.  

 

The aim of this paper was to describe such resting state pattern and to detail the NICA methodology. This work 

has included all necessary technical details enabling replication and further use by peers. As compared to scalp 

EEG normative databases the advantages of NICA are 1) the suppression of feature co-linearity due to the 

suppression of volume conduction (engendered by ICA) and 2) feature compression. The critical question is 

whether those advances provide better sensitivity and specificity. It should be stressed that whereas EEG norms 

are a tool for aiding diagnosis and assessment, they are subjected to false positive and false negatives as per any 
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statistical diagnostic tools. Nonetheless, developing on first attempts working in the sensor space, the accuracy 

can be increased thanks to modern signal processing methods, which was the motivation animating this study.  
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Figures 

 

Figure 1 : The eigenstructure of the grand-agverage covariance matrix in the 0.5-30 Hz range is very similar in 

the two databases (BRL and NTE), as seen by the mean square representation error (MSRE) and Akaike 

information criterion (AIC) associated to the 19 eigenvalues. The MSRE curves are normalized so to sum up to 

unity. The AIC is shown in arbitrary units. 
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Figure 2. sLORETA cortical current density images and associated frequency spectrum of the seven 

independent components for the BRL (top) and NTE (bottom) database. From left to right: 

- the sLORETA cortical image medial and lateral views of the left and right hemisphere. The current density is 

thresholded at half the maximum. The anatomical image is based on the CARET software (van Essen, 2005). 

- the mean (solid line) and 95% confidence interval (dotted line) of the grand-average frequency spectrum in the 

range 0.5-40 Hz for absolute and normal power. The vertical axis is adjusted individually in each plot.  

Cortical images have been produced by the sLORETA-Key software. 
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Figure 3: Cumulative proportion of the grand-average variance explained by the seven group ICA components 

found independently on the NTE and BRL databases. 
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Table 1: Anatomical structures and Brodmann areas (BAs) where high-power (more then 50% of the maximum) current 
source is located for the seven ICA components in the two databases (leftmost column). BA of top 10% current density power 
are highlighted in bold. When the side is not specified labels and corresponding BAs apply bilaterally. 
 

 Anatomical Structures and Brodmann Areas 
1 Anterior Cingulate (BA 23/24/32/33/25), Insula (BA 13), Middle/Superior Frontal Gyrus and Paracentral Lobule (BA 

4/5/6), Parahippocampal/Subcallosal Gyrus (BA 28/34/35/36)  
2 Cuneus/Precuneus/ (BA 7/31/18/19/), Post-central gyrus (BA 3/4/5), Superior Parietal and Paracentral Lobule (BA 5/7), 

Posterior Cingulate Gyrus (BA 23/31) 
3 Cuneus/Precuneus/ (BA 30/31/7), Right superior parietal lobule (BA 7), Posterior Cingulate (BA 30), 

Lingual/Parahippocampal Gyrus (BA 18/19/30), Right Fusiform Gyrus (BA 19) 
4 Cuneus/Precuneus/Posterior Cingulate (BA 23/30/31), Lingual Gyrus/Fusiform Gyrus/Middle and Inferior Occipital 

Gyrus (Occipital Pole) (BA 17/18/19) 
5 Anterior Cingulate (BA 24/25/32), Medial Frontal Gyrus (BA 32/9/10/11), Rectal/Orbital Gyrus (BA 11/47), Inferior 

Frontal Gyrus (BA 47), Parahippocampal Gyrus (BA 28/34) 
6 Medial Frontal/Rectal Gyrus/Anterior Cingulate (BA 11, 25), Middle Frontal Gyrus (BA 11), Inferior Frontal Gyrus 

(BA 47), Parahippocampal Gyrus (BA 28/34), Insula (BA 13) 
7 Post-central Gyrus (BA 1/2/3), Supramarginal Gyrus/Inferior Parietal Lobule (BA 40), Precentral Gyrus (BA 6), 

Cuneus/ Precuneus (BA 17/18/19/31), Middle Occipital Gyrus (BA 18), Superior and Middle temporal Gyrus (BA 
21/22/39/41), Insula (BA 13), Angular Gyrus (BA 39) 

 
 


