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ABSTRACT

EEG (Electroencephalography) resting state werdiesduby means of group blind source separation 8BS
employing a test-retest strategy in two large-semmrmative databases (N=57 and N=84). Using a BSS
method in the complex Fourier domain and a modekdrdistributed inverse solution we closely regiecboth

the spatial distribution and spectral pattern ekegesource components. Norms were then constriictatieir
spectral power so as to allow testing patientsregahe norms. As compared to existing normativialzeses
based on scalp spectral measures, the resultihgléfioes a smaller number of features with vetyeliinter-
correlation. Furthermore, these features are plogittal meaningful as they relate the activity efiaral brain
regions, forming a total of seven patterns, eat¢h @ipeculiar spatial distribution and spectrafifgoThis new
tool, that we name normative independent compoaaatysis (NICA), may serve as an adjunct to diaignos

and assessment of abnormal brain functioning ahéhaesearch on normal resting-state networks.
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INTRODUCTION

Over two decades ago it was demonstrated thateteng state of the brain in normal individuals is
characterized by spectral features that could babig described by a series of mathematical equatias a
function of age across the human life span (6-3¥s)e Patients with psychiatric and neurologicaiditions
show significant deviations from such spectralgrat, (Ahn et al. 1980; John et al. 1977, 198080191987,
1988). These norms have been shown to be cultiredfid replicable, with high sensitivity and spiegy to
neuropsychiatric disorders (Kondacs and Szabo, ;1R8éhep, 2005; Hughes & John, 1999; Coburn 20106).
has been theorized that this baseline or “grouate’sof the brain results from a complex homeostayistem
regulated by neurotransmitters and exists as aepmopf the resonant systems of the brain (JohnRaiahep,
2009).

For several reasons EEG is a suitable tool fordmgl and using large-sample normative databases.
First, modern EEG equipment is small, light andnecoical; EEG can be safely recorded on individadlany
age (including premature newborns), in any condieven if extremely disabling such as profoundestaf
unconsciousness), and virtually anywhere (e.ghebed of an intensive care unit, in the incuhatortop of a
mountain, etc.). Second, given enough data areagedr EEG spectral measures of the same indivihaal
highly reliable over months and even years (Feial.€1984; Kondacs and Szabo, 1999). EEG speetstilifes
stabilize after a few handfuls of seconds, withfes as one minute of artifact-free EEG yieldingiakele
spectral measures (Nunez and Srinivasan, 2006; @keérChiappa, 1988). Such reliability is betterifient in
EEG continuously recorded during a resting staté Wie eyes closed and for relative power meagums et
al. 1987). Such stability is now also reported WBT (although norms still do not exist), but nathwfMRI
(Raichle and Snyder, 2007). Third, consistent EB@Gns have been found across cultures and ethsicae
verified comparing independent studies from a rtudg of countries (Hughes and John, 1999; Priclo@d) It
is accepted that the independence of the EEG spedtiom cultural and ethnic factors reflects thenomon
genetic heritage of the mankind. For example, dystn a large sample of 16-year-old twins found tha
variance of EEG power is mostly (76% to 89% depegain the frequency band) explained by heritab{lign

Beijsterveldt et al. 1996). In summary, intra-sgbjeeliability, inter-subject consistence and theses of
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recording procedures can be considered the fundahmaoperties of EEG enabling quantitative assessrof

brain integrity in persons of any age, origin ockground through comparison to normative values.

The interest for brain function in resting stases hrecently re-gained considerable interest with th
advent of PET (positron emission tomography) an®fNfunctional magnetic resonance imaging). We now
know that on average the human brain extracts atfoft of available oxygen in the blood and dispaassut
20% of the energy for the whole body. Still, it amts to only 2% of the total body weight. A consatde
amount of this energy is consumed when the brad isst. On the other hand, it is has been esiinaiat the
local task-related increase of energy consumptéative to the baseline is less then 5% (Fox anidhRy
2007; Raichle and Mintum, 2006). It is still unaleehy the brain requires such an important supplgreergy
in the absence of targeted goals, but these oligmrsahave prompted a new wave of investigationttan
“baseline” (ground level) brain functions. The ftional organization of the brain at rest is curkgnbnceived
in terms of resting state networks (RSN), clustéisrain regions, mostly cortical, inter-connectathtomically
and functionally. The study of RSNs has shifted fibeus in neuroimaging from the exact localizatmn
specialized brain functions (looking for “thingsarplace”) to the understanding of the interplayvafespread
brain structures (identifying networks). A consigténding is that regions in the brain with simifanctionality
tend to be correlated in their spontaneous actifigx and Raichle, 2007). Several of such RSN« lmeen
identified by PET and fMRI, relating to the motayditory and visual system, language, memory, tianmsa
ventral attention and the default mode (Auer, 2@&;kmann et al. 2005; Damoiseaux et al. 2006; .
2005, 2006; Fox and Raichle, 2007; Fransson, 2Matini et al. 2007; van den Heuvel et al. 200)eT
default mode network (DMN), appears the most ad®&N at rest (for a review see Auer, 2008; Broydlet
2008; Buckner et al. 2008; Fox and Raichle, 20@M)s it is putatively the most energy-demandingrbra
function of all. As for EEG spectral measures, BN appears to have a counterpart in primatesi(igilet al.
2007; Vincent et al. 2007) and to develop with égjehm et al. 2008; Fair et al. 2007), while clalistudies
accumulate evidence on the alteration of the DMN tiention Deficit Disorder (Castellanos et al. 80Qddin
et al. 2008), Alzheimer’'s disease (Greicius et24l04; Rombouts et al. 2005; Sorg et al. 2007),sauti
(Kennedy et al. 2006), chronic pain (Baliki et2008), epilepsy (Laufs et al. 2007) and schizoplaré@arrity

et al. 2007). That is to say, as for EEG specwains discussed above, the DMN is not a mere epighenon,
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but an essential ingredient of the healthy braincfioning, peculiar to the phylogenetic and ontagien

evolution of the mankind.

Two main data analysis approaches have been usstlidg functional connectivity in resting state
networks by fMRI (Buckner et al. 2008. For a conmam see Bluhm et al. 2008): a seed-based coniigctiv
analysis and independent component analysis (IGAg latter is currently enjoying increasing popitjar
thanks to its complete data-driven nature (Beckmanal. 2005; Bluhm et al. 2008; Greicius et al0£20
Eichele et al. 2008; Mantini et al. 2007; Scheaingt al. 2008). Regarding EEG, biophysical and
neurophysiological studies suggest that each gestate pattern may exhibit complex dynamics umiglever
time with multiple frequencies (Jann et al. 200%¥ni et al. 2007). The mass of recent literaguggests that
checking univariate power measurements (at eactrefle separately) may not be the best methoddimgy
studying the resting brain, (see concerns exprasgdann et al. 2009). Studying the distributiorscdlp EEG
power at rest, as in the aforementioned studieEB@ normative database or more recently in Cheal.et
(2008), does not allow the study of baseline pastdrecause scalp voltage is a mixing of underlgiogrce
activity (volume conduction: see Nunez and Srirewgs2006) and because scalp power is an appropriate
measure of local neuronal synchronization, not afeapread coherent synchronization. Instead, we aim
extracting spatial maps of widespread synchromiratiover the cortex, which can be treated as desing
phenomenon and can be tested altogether (the wbblart) along the frequency dimension. Besidesaétio
the study of co-activation of several brain arsash approach allows the standardization of theadxtent of
the activations across individuals and also a snallmber of features (data compression) with lowwtsr-
correlation (reduction of volume conduction effgctdvith fMRI such investigation in large samples of
individuals has been performed by group ICA (Cathai al. 2001; Schmithorst and Holland, 2004), an
approach that we introduce here in the contextE®GEThis approach is essentially different from teed-
based approach in that we do not need to definkcélpmeasures of synchronization between différkrain
areas. This is particularly advantageous in thaestrof EEG, since many of such measures are infeg by

the effect of volume conduction (Nunez and Srinawg2006).
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In this paper we describe the Normative Indepen@amhponent Analysis (NICA). Using this method
we describe the extraction of eyes-closed restiB@s Epatterns using group ICA and the norming of the
components thus extracted. ICA extracts scalgapatps and associated EEG time-courses, refevgedher
to as components (Makeig et al. 2004). Since tligreao way to establish a-priori how many of such
components should be extracted nor if they arabldj we employ a test-retest strategy using twlependent
large sample normative databases (N=57 and N=8&}yetain only replicable components; such strateay
been previously employed by Damoiseaux et al. (RdA6an fMRI study. Once robust ICA normative
components are extracted, we characterize thecabsdiructures involved in each component usingcsou
localization, SLORETA (Pascual-Marqui, 2002), a mledriven distributed inverse solution of the comenots
spatial maps (Greenblatt et al. 2005; Lopes daaSi04) and their associated spectral profilethin two
databases, we describe seven replicable compométitsnearly identical spatial distribution and sfakt
profile. These components are then normed and rpatitested against the normative values for each

component.

METHOD AND RESULTS

Subjectsand EEG recording procedures

In order to avoid age effects we consider in thiglg only adult individuals between 17 and 30 yexrs
age. Two independent normative databases previagsjyired were used for this study. One is a sulifsiie
normative database of the Brain Research LaboréBRy ), New York University School of Medicine (N¥5
age range 17-30) and the other the normative dsgataNova Tech EEG (NTE), Inc., Mesa, AZ (N=84¢ ag
range 18-30). Exclusion criteria for the BRL datdaere known psychiatric or neurological ilindsstory of
drug/alcohol abuse, current psychotropic/CNS activedications, history of head injury (with loss of
consciousness) or seizure disorder. Exclusionriaifer the NTE database were a psychiatric historgny
relative and participant of drug/alcohol abuse,dhiegury (at any age, even very mild), headachgsigal
disability and epilepsy.

Recording procedures and settings were very sirfolathe two databases. In both cases 3-20 minutes

of EEG data was continuously recorded while théigipant sat with the eye-closed on a comfortabiaircin a
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quiet and dimly lit room. EEG data were acquirednfrthe 19 standard locations prescribed by the(QL0-2
International System (Jasper, 1958: FP1, FP2, B/FE, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P&, 01,
02) using linked ear reference and enabling a 6Mbteh filter to suppress power line contaminatidhe
impedance of all electrodes was kept below 5K Ohlbasa of the NTE database were acquired using2Hait1
A/D NeuroSearch-24 acquisition system (Lexicor Madlitechnology, Inc., Boulder, CO) and sampled2i 1
Hz, whereas data of the BRL database were acquistdg the 12-bit A/D BSA acquisition system
(Neurometrics, Inc., New York, NY) and sampled @0 Hz. For consistency, we subsequently up-santpked
BRL database to 128 Hz using a natural cubic sphiterpolation routine (Congedo et al. 2002). Ideasrto
minimize inter-subject variability we removed froafl data any biological, instrumental and environiaé
artifacts, paying particular attention to biolodiestifacts generated by the eyes, the hearth lamanuscles of
the neck, face and jaw. The recordings of the tatalthses had been carefully screened by one EBGiden
and one experienced EEG researcher. Additionalihax MC reviewed all recordings. All recordingslided

in this study feature high overall signal-to-noiatio. The mean length and standard deviation tifaat-free

data in the BRL (N=57) and NTE (N=84) database vi&29 (27.5) and 92.5 (29.79) seconds, respegtivel

Frequency Domain Statistics

All statistics used in this study are summarizethencomplex Hermitian Fourier cross-spectral ra#i
S OC®®, wheref is the discrete frequency index aldthe number of electrodes (Bloomfield, 2000;
Brillinger, 1975). We can write

S; =C; +iQy, 1)

wherei=v/-1. Real symmetricC, U O | referred to as theospectral matrix, holds in the main diagonal the
power spectra and in the off-diagonal elementsritghase (or with a half cycle phase shift, i.@pasite sign)
dependency structure. Imaginary antisymmeiQ, OO, referred to as theuadrature spectral matrix,

holds in the off-diagonal elements the out-of-ph@sejuarter cycle in either direction) dependericycture.

The cospectral matrix is equivalent to the covamamatrix of the data band-pass filtered for itscrite
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frequency: by Parseval’s theorem the sum of abeetral matrices is equivalent to the data comaeanatrix.
We estimate individual cross-spectral matricehasaverage obtained by Fast Fourier Transform (l6RT50%

sliding overlapping 2-seconds windows tapered uffiegfunction introduced by Welch (1967). Wihil,... K
indicating thek™ subject in the normative database, let us delﬁb‘jf? the estimated cospectral matrix for

subjectk at discrete frequencl Here “abs” reminds that in the literature suchtistics are referred to as

“absolute power”. We will also make use of “relatipower” estimations, given by
F

Ce'=C*I Y (C, )
f=1

where “tr” indicates the trace of the argument. Séhare the cospectral matrices normalized by tia¢ power

in the whole frequency range of interest. Finalg, will use “normal power” cospectra defined sush a
Cyr =C™/tr (CM. (3)

that is, the set where all cospectra are normaligethe total power in that discrete frequency. dlbse and
relative power estimations are a long-standingdateds in quantitative EEG analysis. Here we intoedalso
normal power estimations, which usefulness willegppn the sequel. The diagonal elements of nopoaier
cospectra indicate for each frequency pheportion of power expressed by each channel with respeait tuf

them.

Group Independent Component Analysis

In both fMRI and EEG ICA has become a major proiogswol, although the subjacent data-generative
model and consequent interpretation of resultsiistantial different in the two cases. In the cafsEEG the
use of ICA has a clear and solid physiologicalriptetation within the context of the volume conductheory;
dipolar fields produced by collinear pyramidal cetllumns in extended neocortical region resultsnired
(superimposed) potential at each scalp electrotle. current diffusion is instantaneous and linegh wgood
approximation (for a review see Congedo et al. 2008 essence, we use the recorded time-seriesadp s
potentials to estimate the underlying dipolar feléforE scalp sensors and<E EEG dipolar fields to be
estimated, the linear model employed describesuperposition principle, i.e., we state

v(t) = As(t), (4)
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where v(t) ORF is the sensor measurement vec ADR®™ is a time-invariant non-singulanixing matrix

and s(t) OR" holds the time-course of the source components Nt model (4) describes the instantaneous

(in-phase) diffusion of current source over measwr@ sites, in fact describing the effect of priynaurrent

and volume conduction (Congedo et al. 2008). Ourcsestimation is given by
S(t) =Bv(t), (5)

where BORM®is calledthe demixing or separating matrix. Thé" row of B is a spatial filter holding

coefficients for each electrode recovering 8 source component, the time-series of the dipaid f

estimated by an inverse process. Tiifecolumn of A=B", with superscript + indicating the Moore-Penrose

pseudo-inverse, is the estimation of the scalgalgattern associated with the" source.

A wide array of ICA methods exist. In this work wiee a method based on the approximate joint
diagonalization (AJD) of Fourier cospectral matsicevhich is a robust and computationally fast appino
(Congedo et al. 2008). We diagonalize cospectratices in the frequency range 0.5-30 Hz only, whgkhe
range with highest signal-to-noise ratio subsedueamalyzed. As reported by Makeig et al. (20043Bof
EEG appears to give satisfactory results withirs thiequency band-pass region. This resultsF#60
frequencies with 0.5 Hz resolution (0.5, 1, 1.5, 30,Hz). We perform ICA as the AJD of the grandrage
Fourier cospectral matrices, which is an approadajroup ICA analogous to the averaging group ICAraach

described for fMRI by Schmithorst and Holland (2004

In order to estimat®<E source components the mat B is found with a classical two-stage process,
which allows the estimation of td most energetic components while reducing the néisst the size of all

input cospectra is reduced by transformation
DIORM™ =FCF" ,forallf:1,..F, (6)

where

_ K
C?or :%ch?for (7)
k=1
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is the grand-average of the individual normal cospématrices (3) Matrix
F o _}/2
FOR®™=| > C} (8)
f=1
is often referred to as the “whitening” or “sphgfimnatrix, since definition (8) implies
F [
FY CIFT =1 0R"™,
f=1
wherel is the identity matrix. In (7) and (8) we sum agdrequencies in the diagonalization range, $dl.b-
30 Hz. In this high signal-to-noise range the ndittiensional variance structure of the data in Wedatabases
is very similar. We analyzed the eigenvalues ofghend-average cospectral matrix summed acrosyzauhl
frequencies. Figure 1 shows the mean square repatiem error (MSRE), the complement of the cuniwuéat
normalized sum of the eigenvalues, and the AkaiKeriation criterion (Wax and Kailath, 1985). Both
functions have very similar shapes in the two dagab. The mimimum AIC is reached in four orthogonal

dimensions for both databases.

Insert Fig 1 Approximately Here

Once obtained cospectral matr 5?°rin the reducedM-dimensional space the approximate joint
diagonalization (AJD) of the transformed set iSq@rened. AJD is a powerful algebraic method seelkimgatrix
RORM™ such that produc R 5?‘“ R" are as diagonal as possible forfasince the off-diagonal elements of

the cospectra hold statistics describing the al-wise in-phase dependency between electrodessdahght
demixing matrix holds in rows spatial filters maxamng the in-phase independence of the sources stEd@s

per (5). Finally, we obtain the solution to the I@foblem as

B = RF ORME. 9)

! Because of the individual global scaling factersen EEG (Hernandez et al. 1994; Goncalves &046) we
average individual normal cospectral matrices astdheir absolute counterpart so that all individua
contribute fairly to the average.

10
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To solve the AJD problem, hence the ICA problem,use an iterative algorithm previously developed
(Congedo and Pham, 2009; Pham and Congedo, 2008).aforithm allows specifying weights for eacpunh
matrix. Following Congedo et al. (2008) we use agiing function encouraging the diagonalizatiofoef

proportionally to the non-diagonality of the inpuatrices.

Note that we are using only second order statistiobus we are not assuming complete zero-lag
independence of the source processes, but only uheorrelatedness. While we can relax the assomutf
independence, an additional assumption on the esismecessary for achieving their separatiomdJAiD of
a set of cospectral matrices, such additional d¢mmdis that the source components have non-prapait
spectral profile (Pham, 2001). We feel that suchagsumption is appropriate for this study sincesit
physiologically unlikely that different componerdperate with exactly the same frequencies alongiiae
frequency spectrum of interest. To better fulfiletassumption, however, we have used normal caapect
matrices (7) as input to the AJD algorithm. As wél whow the normal power spectral profile are less
proportional than the absolute and relative coates. For more details on the implementation o t&A
approach and for a review of the physical andsitesil background of its use in the context of BEE& reader

is referred to the review by Congedo et al. (2008).

Distributed sourcelocalization

The previous sub-section showed how we obtainedphatial filter B . The estimated mixing matrix of

model (4) isA=B", which using (8) and (9) is

‘ %
A=(RF) = [Z C?‘”J R (10)

f=1

Them™ column of the estimated mixing matrix is the scspatial pattern (voltage) associated tortffesource
component and can enter an inverse solution methroestimating its cortical location, just as EE@mples.

For this purpose we use the popular standardizedrésolution electromagnetic tomography (SLORETA)

11
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method (Pascual-Marqui, 2002), which has receifiedretical support (Greenblatt et al. 2005; Pasklzatui,
2007) and has been validated independently in akladyoratories (Congedo, 2006; Terakawa et al8208n

der Loo et al. 2009; Wagner et al. 2004). sLORE$Aaismooth model-driven distributed inverse sofytio
implying that no a-priori knowledge of the numbéragtive dipoles for each component is requirede dhly
user-adjustable parameter of the model-driven sLOREethod is the amount of Tikhonov regularization.
Since the number of electrode is low, the mixingrirads estimated on a large sample and the ICAiaba
patterns we extract have higher signal-to-noise® ras compared to raw EEG samples, we do not neec
regularization (Congedo, 2006). For computing sSLOREurrent density and plotting the results we used

freeware SLORETA-key softwéfre

Feature extraction.

Once obtained the demixing mat B for the normative sample we can estimate theilbigton of the
spectral power for each source at each discretpidrecy. Taking the expectation of the variance dispk
power) of (5) the component absolute power forktheubjectm™ source and" discrete frequency is given by

guadratic form

Mt = DrCis"Dy, (11)

Similarly, the relative power is given by

Mias =brCigb, (12)

and the normal power by

Mt =0nCig"0,. (13)

On the other hand, the corresponding featureshotraditional scalp norms are the spectral powénesignal

recorded at the measurement sites, i.e., the digtements oflebe, Clif' andC;” . In this caseM=E, that is,

% This software implements revisited realistic alede coordinates (Jurcak et al. 2007) and thefielti
produced by Fuchs et al. (2002) applying the bogndeement method on the MNI-152 (Montreal neuraat
institute, Canada) template of Mazziotta et alO@®0The sSLORETA-key anatomical template divided kel
the neocortical (including hippocampus and anteriogulated cortex) MNI-152 volume in 6239 voxefs o
dimension 5 mr) based on probabilities returned by the DemonsAtlancaster et al. 2000). The co-
registration makes use of the correct translatiomfthe MNI-152 space into the Talaiach and Touxn@d988)
space (Brett et al. 2002). LORETA-Key is freelyidadsle at URL http://www.uzh.ch/keyinst/loreta.htm.

12
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there are as many “spatial filters” as electro@@giivalently, such features can be obtained ui,,igstead of

b, in (11-13), wherei , is the m" column of the identity matrix. This manipulatiohasvs the essential
difference between scalp EEG norms and NICA, tlmérs focuses on EEG power at the electrode sitéle wh
the latter seeks linear combinations of such measfwith coefficient given by thb, vectors). It follows that
NICA uses the electrode sites altogether for deg\each feature, thus allowing the full spatialrelbterization

of all features. Since our NICA method is speclficdesigned to minimize the volume conduction, ibatures

we obtain are as little correlated as possible.

Deriving norms and assessing normality of patients.

Using equations (11-13) above we obtain featuggs for each individual in the database, for absolute,

relative and normal power. Norms are the centradleacy and confidence intervals of their distribnti The
lower and upper limits are chosen so as to inc{te®)% of the distribution around the central tendendyere

a is the type | error tolerated (false positive yakor a given patient to be tested against thalbdase, hereafter

denoted by subscripg, we compute the corresponding features o =byC¢*b,, Xy =01 Cib,, and

Xeni = b;Cq’}"'bm for absolute, relative and normal power, respegfiwalues ofx,, falling on the left of the

lower limit flag a deficit of energy, whereas vaduialling on the right of the upper limit flag ancess of
energy. Since the distribution of power measuremanhot Gaussian, one may log-transform them deioto
approximate Gaussianity and then obtain the liastshe mean value (([5tandard deviation), whetes a real
number depending om, e.g., 1.96 fon=0.05 (John et al. 1987). In Congedo and Lubar $@0was shown
that the accuracy of such method critically depeadsthe approximation to Gaussianity achieved k& th
transformation and that using this method the dditéalse positive and false negative is not unifcxomoss
features. We use instead the non-parametric mepinoposed in Congedo and Lubar (2003), which yield
uniform errors. Let us sort in ascending orderKhealues for each feature. Then tetint(Kld/2), where “int”

returns the integer part of the argument; the ldineit is defined as the" sorted feature value and the upper

limit as the K-a)™ sorted feature value. As before, valuesygf; falling on the left of the lower limit flag a

13



EEG RSN by Group ICA — Congedo et al. 2010

deficit of energy, whereas values falling on thghtiof the upper limit flag an excess of energybdith cases

they flag possible abnormal brain functioning.

RESULTS
Group normative |CA components

The group ICA was independently applied on the Nl BRL normative database starting with fixing
the M, the number of estimated components, to four, thmber suggested by the Akaike’s information-
theoretic criterion (Figure 1) and increasiMguntil the spectral and frequency distribution loé tomponents
found on the two databases do not match anymooeeBding this way seven replicable ICA componermew
identified. Reducing the space to seven dimensjoprb-whitening (M=7, see eq. (6) and (8)) expl#2sl%

and 92.8% of the total grand-average variancedroth-30 Hz for the BRL and NTE database, respalgtiv

The estimated current source spatial distributstORETA) and associated spectral profile (absolute,
relative and normal power) are shown in Figure Be Tseven components have nearly identical spatial
distribution and spectral profile in the two datsé® The first six components (C1-C6) have maxicoalent
density in the medial portion of the brain. On titker hand, C7 has bilateral maximal current dgngitl
components have nearly symmetric current distrdmjtivith the exception of C3, which extend moretioa
right hemisphere according to both databases. Thhleports for each component the anatomical region

displaying high-power local maxima.

The seven components for each database in Figvelieen sorted according to the amount of residual
grand-average EEG variance explained in the 0.540ange (Congedo et al. 2008). Figure 3 shows the
variance explained by each component as obtainethentwo databases. Note that not only the output
components are sorted identically for the two dasab (Figure 2)but also that each component individually

contributes a similar increase of explained vamairc the two databases. Note also that C7, whicttiadp

® This is due to the fact that the cospectral stmecalong frequencies is very similar in the twtatiases (Fig.
1) and also to the fact that the whitening mat8i) (vhich by definition sort the components by expéd
variance, achieves joint diagonalization in faipagximation, which is refined by the ensuing AJgalithm
without changing the order of the components.
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distribution in the two database matches only roygéxplains less then 5% of the variance. Thiggests that
increasingM over seven would require the estimation of comptwith disadvantageous signal-to-noise ratio.
In fact, the spatial localization of C7 is alreguhetty incongruent in the two databases, althotglr frequency

profile is very similaf.

Insert Fig 2 and 3 Approximately Here
ICA Components

The spectral and spatial distribution of the se@h components are described below:

Component 1 (C1): C1 is characterized by a prominent normal tlaetévity and low normal alpha activity
(Fig. 2). In the source space normal power quastifheproportion of power generated by each component as
compared to all the others, that is to say, theatheak displayed by C1 indicates that C1 genemtesh of the
total theta power generated all over the brain.f@ins a network consisting of the subgenual andalor
anterior cingulate (BA 23/24/32/33/25), insula (B&), middle/superior frontal gyrus and paraceniwllule

(BA 4/5/6), and parahippocampal gurus (BA 28/3438%(Table 1).

Component 6 (C6): C6 is characterized by low normal alpha power higth delta and beta normal power.
Spatially it forms a network consisting of the nadiontal/rectal gyrus/anterior cingulate (BA 2B), middle
frontal gyrus (BA 11), inferior frontal gyrus (BA74, parahippocampal gyrus (BA 28/34), and insula (B3)

(Table 1)

Component 5 (C5): The frequency spectrum of component 5 is simdaC6 (Fig. 2). Spatially, C5 forms a
network consisting of the anterior cingulate (BAZ5132), medial frontal gyrus (BA 32/9/10/11), @tbrbital

gyrus (BA 11/47), inferior frontal gyrus (BA 47)p@d parahippocampal gyrus (BA 28/34) (Table 1).

* This is due to the fact that we are estimatingally the demixing matri8, which a-posteriori inversion
provides us with the estimation of the mixing mati and not vice-versa as done by some other ICA
algorithms (Hyvarinen, Karhunen and Oja, 2001)oEm the estimation d8 will therefore be amplified in the
estimation ofA (Tichavsky and Yeredor, 2009). Now, the former jleg estimation of the spectral profile,
which is similar for all components in both dataméhus we believe that it is the same component)e the
latter provides the input for source localizatioathods.
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Component 3 (C3): C3 is characterized by a clear alpha peak in bb#olute and normal power. Among all
components the normal power alpha peak of C3 isnib&t pronounced (Fig. 2). C3 forms a network csiimgj
of the cuneus/precuneus/ (BA 30/31/7), right supeparietal lobule (BA 7), Posterior Cingulate (E39),
lingual/parahippocampal gyrus (BA 18/19/30), rifitiform gyrus (BA 19), sparing the primary viswuairtex

(Fig. 2 and Table 1).

Component 2 (C2): C2 consists of cuneus/precuneus/ (BA 7/31/18/18dst-central gyrus (BA 3/4/5),
superior parietal and paracentral lobule (BA 5/@psterior cingulate gyrus (BA 23/31) (Table 1). It
predominantly oscillates at alpha processing spsiedlarly to C3, to which partially overlaps alspatially,

without the extension to the fusiform and parahggmopal area, but extending instead into BA5 and 7.

Component 4 (C4): C4 has an alpha spectral peak and occipitalilatadn which is typically noted in eyes
closed EEG. In contrast to C2 and C3, the normattspm of C4 does not peak at 10Hz, instead isligcjigh

in between about 10Hz and 22Hz. C4 extends to @@, Peaching the precuneus.

Component 7 (C7): C7 forms a predominant right lateralized netwawksisting of the post-central gyrus (BA
1/2/3), supramarginal gyrus/inferior parietal lab@BA 40), precentral gyrus (BA 6), cuneus/ precisnéBA
17/18/19/31), middle occipital gyrus (BA 18), superand middle temporal gyrus (BA 21/22/39/41),ulas

(BA 13), angular gyrus (BA 39).

DISCUSSION

It has been found that the frontal midline thetgthim is generated in the dACC (dorsal anterior
cingulate cortex: Onton, Delorme and Makeig, 20Q&)ssibly alternating with the VMPFC (ventromedial
prefrontal cortex: Asada et al. 1999), at the sam&tomical region as sLORETA localizes C1. It hasrb
established that frontal midline theta oscillatioase involved in attentional processes (Inanaga8)99

Accordingly, the component best matching the mafal scalp topography associated with the frotitata
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rhythm was negatively correlated to the default enodtwork activity (Scheeringa et al. 2008), wherigaa
mental arithmetic induced workload combined EEG-IMRperiment, theta power increase was associated w
activation of the ACC (Sammer et al. 2007). Parthef resting state C1 and the salience networkritbeschy
fMRI overlap anatomically, i.e., the dorsal ACC emtling into the anterior insulae (Seeley et al.7200he
salience network extends to the dorsomedial thadaamal hypothalamus, sublenticular extended amygdala
ventral tegmental area. This salience network argtnflict monitoring, interoceptive-autonomic, amavard-
processing centers (Seeley et al. 2007). Furthertha right dACC-insula salience network has bessticbed
as a switch between the central executive frontefgmetwork and the default mode (Sridharan e2@08).
Whenever new information is presented, activityelswof the dACC reflect the salience of the newtinfation
for predicting future outcomes (Critchley 2005; Bais et al. 2007), guiding optimal decision makimgn
uncertain world (Kennerley et al. 2006). The dord&C is anatomically (Ghashghaei et al. 2007) and
functionally heavily connected to the subgenual A®argulies et al. 2007; Stein et al. 2007) as aslto the
thalamus and brainstem (Mottaghy et al. 2006). Jutegenual ACC (BA25) is functionally also connected
the parahippocampal gyrus (Kahn et al. 2008). Basetthese evidences, C1 described by NICA EEG séems
relate to the salience of internal and externahuii by combining networks involved in arousal anttinsic
alertness, interoceptive awareness and motivatidncould therefore be considered an attentionakarét
focusing on salient information. A combined EEG-fMtudy could verify that C1 is inversely relatedthe

DMN.

Functional connectivity fMRI studies suggest thHa pattern seen in C6 is similar to a connectivity
pattern with BA 25 as seed (Margulies et al. 20@iereas C1 connects functionally more to the dAB&
24) (Margulies et al. 2007). Anatomical studiesvshioat the sequence of information transmissiomweenh the
subgenual and dACC might be direct and indirecthiaamygdala (Ghashghaei et al. 2007), with thputiof
BA 25 going to the amygdala and from there to tW&@. fMRI connectivity studies on the other hand
demonstrate information transmission from the amajado BA 25 and from there to the dACC area in BA
(Stein et al. 2007). The subgenual ACC extendirig the posterior orbitofrontal cortex (OFC) is agated
with positive reward (Elliott et al. 2000; Rogers &. 2004; Drevets et al. 2008). In animals, ttegion

participates in an extended "visceromotor netwark'structures that modulates autonomic/neuroendecri
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responses and neurotransmitter transmission dthismgeural processing of reward, fear, and sti@ssvéts et

al. 2008). The C6 component could therefore beidensd a reward driven autonomic arousal system.

The pregenual cingulate and parts of the OFC ge@&biare implicated in the continuous represematio
of affective hedonic value (Rogers et al. 2004; d¢eedl et al. 2005; Grabenhorst et al. 2008; Wadteal.
2009). Thus C5 can be considered an emotion/hedextiension of C6, a reward driven autonomic and

emotional arousal system.

The alpha oscillations reflected in C3 are mosl\ikhose generated in the thalamus independehtly o
sensory afferences (Schreckenberger et al. 200d3inQ the eyes at rest engenders EEG alpha powerase
at PCC (Posterior Cingulate Cortex)/anterior pretasnand occipital regions (Barry et al. 2007), gneeament

with the spatial localization of these components.

The anterior precuneus involvement seen in C2 regyesent that involved in self-centered mental
imagery, during both personal past and personatduthinking (Abraham et al. 2008). Dissociatiomsween
the areas involved in personal past versus perdonak thinking are located more along the megeietal
wall (Abraham et al. 2008). The posterior precunsulsserves successful episodic visual memory vetrie
(Cavanna and Trimble 2006). The parietal-parahippgmal network is related to topographic (staticil an
topokinetic (dynamic) spatial self-related memoBeithoz 1997). The medial parietal part of the sdeoy
somatosensory cortex processes and constantlyagopedprioceptive input (Richer et al. 1993; Pefiligt al.
2006). Thus C2 and C3 could be considered netwalated to self-centered temporal and spatial mgmor

based on proprioceptive and vestibular input (G&geclosed) with associated visual memory retri¢@a).

The distribution of C4 is suggestive of the extehdesual cortex activity found in the resting state
(Wang et al. 2008), and this resting state visatiVidy can be modulated by top down effects, sastihoughts
(Johnson et al. 2007). It has been suggestedHisatetsting state activity in the visual areasiated to visual
imagery (Wang et al. 2008), which is known to aatievvisual areas (Farah 1989; Svoboda et al. 200b)s

expected in a eyes closed condition. C4 could foerde considered a resting state visual imagetyark.
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Although in absolute term an alpha peak is obseruedC7 normal power steadily increases with
frequency. The right sided supramarginal gyrus umans is involved in the processing of vestibular
information for head and body orientation in spéstephan et al. 2005). Electrical stimulation ba tight
angular gyrus induces vestibular and complex soseatnry responses (Blanke et al. 2002), suggdsiadghe
angular/supramarinal junction might be involveds@stibular somatosensory integration of body oaton in
space. Electrical burst stimulation of the postepart of the superior temporal gyrus has induceidod body
experiences in a controlled way associated withalbraic alterations at the junction of the right alag and
supramarginal gyrus (De Ridder et al. 2007), denmatisg its role in embodiment. C7 could thereftye

related to multisensory integration of body expsein space.

In an attempt to link our findings with existingeliature on RSN we suggest that NICA C1 describes a
attentional network focusing on salient informati@®? and C3 could be considered networks relatesklio
centered temporal and spatial memory based on ipogmtive and vestibular input (C3)(eyes closedhwi
associated visual memory retrieval (C2). C4 coddbnsidered a resting state visual imagery netvidrk C6
could be considered a reward driven autonomic atosystem and the C5 can be considered an
emotion/hedonic extension of C6, a reward driveilor@amic and emotional arousal system. C7 coulcelzead
to multisensory integration of body orientationspace. Thus when we close our eyes we can hyppghesi
based on the current literature and present firslitigat C1, C5 and C6 keep our homeostatic, inégtoece and
reward based autonomic and emotional arousal systdime, C2 and C3 relate to our self-perceivedrdation
in space and time based on proprioception andbdatiinput, C7 to the bodily representation of sieé, while
C4 is related to memory based visual imagery, whtalts on the moment we close our eyes. Theselisges
are highly speculative at this time. Future redeatwould substantiate them by experiments aimirgjiciting
the mentioned functional systems, to which charigethe power of the corresponding NICA components

should be observed.

As any other source separation method NICA decoegpdse whole EEG in a number of elementary

components, each one characterised by its timesedhere analyzed in the frequency domain as pspestra)
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and spatial pattern, here used as input to sooadization by SLORETA. The degree of confidenceaal
those two aspects is not the same; the time casiesdracted directly from the data after sourqeasation (Eq.

5), whereas source localization introduces a bigstd the ensuing inverse solution. The latteulgected to
two types of error: the approximation of the heamtlel needed to derive the forward solution andpibesible
reconstruction error of the inverse solution itsétf this study we have relied on the average stalhead
model of Fuchs et al. (2002), which has been aggbe all subjects. A more accurate procedure wdnddo
compute the individual realistic head model, projee individual current density maps to a standarerage
brain and then average the results. Unfortunatét/was not possible in this study as the MRI &f shibjects
involved in the normative databases was not availablonetheless, the anatomical localization errors
introduced by the use of an average head modeldshwarage out in a large-sample group analysigpekghe
source localization error introduced by the invesmution, we know that sLORETA is capable of
reconstructing simple dipole configurations (Corme2006; Pascual-Marqui, 2002; Wagner et at. 2004
decomposition operated by the source separatiattafély distributes the number of active dipolesoas
components; that's why an inverse solution afters® separation is more trustworthy as compard¢kdesame
inverse solution performed on raw EEG data. Thenative databases we have employed were recordéd wit
19 electrodes. While this is a rather low nhumberCongedo (2006) we have shown by point spreadifunc
simulations that using an approximate head mod@IRETA is capable of exact localization of singlpales
with as few as six electrodes. Increasing the nurabelectrodes it increases the spatial resolutiloat is, the
ability to resolve two closely-spaced dipoles, that localization ability (given the spatial sampliof the scalp

is appropriate). In this study we have found seegficable resting-state components. One should keeind
that this number is by no means an absolute referénwould likely increase with the number ofividuals in

the database, the number of electrodes used todr&&> and the overall signal-to-noise ratio. Alsor, results
are not easily comparable with single-subject B8fliss, especially those performed with high-densit
recording, in which typically BSS disentangle dgmolields in a higher number of components. In dasion,

we feel that the spatial localization of the seWICA components can be regarded as a fairly good
approximation. Keeping in mind the limitation ofettmethod, further studies confirming and expandhrey

present results are warranted.
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The RSNs described by fMRI are not the same agéterns found by ICA of resting state EEG
activity. There might be multiple reasons for tt#a.far no clear relationship has been establiskédeen very
slow frequency BOLD oscillations (<0.1) and EEG ilstions. Available data is scattered and incaesis
using simultaneous EEG and fMRI it was found th@l B signal in the DMN correlates positively with 6E
power in the beta band (17-23 Hz: Laufs et al. 2003t negatively with EEG frontal midline thetavwer (3-8
Hz) (Scheeringa et al. 2008). Mantini et al. (20€d)cluded that the DMN fMRI BOLD fluctuations ptggly
correlate with both Alpha and Beta EEG power (8), but also with gamma power (30-50 Hz). The BOLD
signal is correlated to evoked gamma oscillationbath the visual and auditory cortex (FoucherleR@03;
Mukamel et al. 2005; Lachaux et al. 2007; Nir e28l07), and anticorrelated to theta, alpha and loeal field
potentials in the auditory cortex (Mukamel et &103), suggesting that the BOLD signal in generahseto be
correlated best to gamma band activity. It appéaas one EEG feature can correlate with differéviRf
activation maps and a single resting state netwak also be associated with a variety of EEG pagt@raufs
2008). Furthermore the fMRI resting state analybesin activity only indirectly via changes in blood
oxygenation in contrast to EEG. Also the fMRI regtistate evaluates neural activity at very differitme
dimensions, in the scale of 10-15 seconds. Syndedrow-frequency BOLD fluctuations likely ariseoin a
combination of vascular low-pass filtering and léneguency amplitude modulation of neural activitihis
very complicated interaction between low-frequeB&LD fluctuations and brain physiology has resulted
criticism doubting that « this ‘intrinsic’ activifyalthough interesting, has any special signifieasidMorcom
and Fletcher 2007). The authors also state thatre tmay be some consistency in the network obnsgactive
in the resting task, but without a theoretical bgsis that also identifies this as a qualitatiaig quantitatively

important baseline state, the idea of a defaultertas little utility » (Morcom and Fletcher 2007).

The group ICA of resting state EEG appears to datim small independent networks of anatomically
contingent areas. How these independent small iimadt components interact to form larger networks,
potentially similar to the ones described by fMRIhétional connectivity, can be studied by out-oaph
coherence of the extracted components. Using time $&0 databases analyzed in the present studyawe h
shown the organization of the seven componentsvin rietworks, where within each network components

oscillate coherently with multiple-frequency dynam{Congedo et al. 2010).
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Understanding the physiological role of the NICAdépendent components will allow a better
understanding of pathologies by comparing ICA othpkogical resting states to the described norreativ
databases. Results in this direction obtained study on obsessive-compulsive disorder will be ishield
elsewhere (Koprivova et al., submitted; De Riddegilein preparation). Our current and future resie@fforts
aim at establishing the clinical utility and vatydiof NICA. For this purpose we have developed xecatable
application for performing NICA analysis. The agglion and the code are available to peers undeiest to

the corresponding author.

CONCLUSION

The study of the brain at rest has a long-lastiadition and has recently gained a renewed impulse
thanks to the advent of modern neuroimaging madalguch as PET and fMRI. EEG normative databagidts b
on large-samples have proven to be a useful adjnrthe diagnosis and assessment of several ngicaland
psychiatric disorders. Still today EEG is a sukabiodality for this purpose due to technical faxtand to
electrophysiological characteristics. Using gro@Alon EEG eyes-closed resting-state in two indepehd
databases we have found seven replicable independerponents (IC) describing about 92.5% of thaltot
EEG variance. The seven components can be grompedwo separate networks (Congedo et al. 20103. Th
fact that the component spectral profile and sphdcalization closely agree in two independengésample

databases support the notion that they representground-states” of the resting brain.

The aim of this paper was to describe such restiaig pattern and to detail the NICA methodolodyiswork
has included all necessary technical details emgléplication and further use by peers. As compésescalp
EEG normative databases the advantages of NICALuthe suppression of feature co-linearity dueht t
suppression of volume conduction (engendered by) l&@#l 2) feature compression. The critical quesison
whether those advances provide better sensitivityspecificity. It should be stressed that wheia& norms

are a tool for aiding diagnosis and assessment dteesubjected to false positive and false negatas per any
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statistical diagnostic tools. Nonetheless, develgmin first attempts working in the sensor spaue,accuracy

can be increased thanks to modern signal processetigods, which was the motivation animating thislg.

23



EEG RSN by Group ICA — Congedo et al. 2010

Acknowledgements:

This Research has been partially supported by rdwech National Research Agency (ANR) within theiblzdl
Network for Software Technologies (RNTL), projeqiéd-ViBE (“Open Platform for Virtual Brain
Environments”), grant # ANROSRNTLO01601. The adultming studies at BRL were supported in part by
grants from National Institute of Aging NIA #MH32%and the National Science Foundation #NS15638. The

NTE database was kindly provided by Nova Tech EBG, Mesa (AZ).

24



EEG RSN by Group ICA — Congedo et al. 2010

REFERENCES

Abraham, A., Schubotz, R.ivon Cramon, D.Y 2008. Thinking about the future versus the pagiersonal
and non-personal contexts. Brain Res 1233, 106-19.

Ahn, H., Prichep, L.S., John, E.R., Baird, H., Ta@p, M., Kaye, H., 1980. Developmental equatioeftect
brain dysfunctions. Science 210, 1259-1262.

Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi,Tdnoike,. M. 1999. Frontal midline theta rhythmfiaet
alternative activation of prefrontal cortex andeaiwtr cingulate cortex in humans. Neurosci Lett, 2432,

Auer, D.P., 2008. Spontaneous low-frequency bloxgbenation level-dependent fluctuations and fumetio
connectivity analysis of the ‘resting’ brain. MaBeson Imaging, 26, 1055-1064.

Baliki, M.N., Geha, P.Y., Apkarian, A.V., Chialv@®.R. 2008. Beyond Feeling: Chronic pain hurts tharh
Disrupting the default-mode network dynamics. Jiigsai 28(6), 1398-1403.

Barry, R.J., Clarke, A.R., Johnstone, S.J., Ma@ged,, Rushby, J.A. 2007. EEG differences betweessey
closed and eyes-open resting conditions. Clin Nawsiol, 118, 2765-2773.

Beckmann, C.F., DeLuca, M., Devlin, J.T., SmithMS2005. Investigations into resting-state conrvsti
using independent component analysis. Phil TraBsd&B 360, 1001-1013.

Behrens, T.E., Woolrich, M.W., Walton, M.E., Rushitp M.F. 2007. Learning the value of informationan
uncertain world. Nat Neurosci 10, 1214-1221.

Berthoz, A. 1997. Parietal and hippocampal contidlouto topokinetic and topographic memory. Philoans
R Soc Lond B Biol Sci 352(1360), 1437-48.

Blanke, O.S., Ortigue S., Landis T., Seeck, M. 2@knulating illusory own-body perceptions. Nature
419(6904), 269-70.

Bloomfield, P. 2000. Fourier analysis of time seridgohn Wiley & Sons, New York.

Bluhm, R.L., Osuch, E.A., Lanius, R.A., Boksman, Keufeld, R.W.J., Théberge, J. et al. 2008. Défaaide
network connectivity: effects of age, sex, and wi@bpproach. Neuroreport 19(8), 887-891.

Brett, M., Johnsrude, I.S., Owen, A.M. 2002. Thebem of functional localization in the human braiat
Rev Neurosci 3(3), 243-249.

Brillinger, D.R. 1975. Time series: Data analysisl sheory. Holt, Rinehart, and Winston, New York.

25



EEG RSN by Group ICA — Congedo et al. 2010

Broyd, S.J., Demanuele, C., Debener, S., Helps, Sdfnes, C.J., Sonuga-Barke, E.J. 2008. Defauderbaain
dysfunction in mental disorders: A systematic reviBleurosci Biobehav Rev 33(3), 279-96.

Buckner, R.L., Andrews-Hanna, J.R., Schacter, 2Q08. The brain's default network:, anatomy, fuorgtiand
relevance to disease. Ann N Y Acad Sci 1124, 1-38.

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekad. 2001. A method for making group inferences from
functional MRI data using independent componentyaig|a Hum Brain Mapp 14, 140-151.

Castellanos, F.X., Margulies, D.S., Kelly, C., UddL.Q., Ghaffari, M., Kirsch, A. et al. 2008. Curgte-
precuneus interactions: a new locus of dysfunciioradult attention-deficit/hyperactivity disordeBiol
Psychiatry 63, 332-337.

Cavanna, A.E., Trimble, M.R. 2006. The precuneaseview of its functional anatomy and behavioural
correlates. Brain 129(Pt 3), 564-83.

Chen, A.C., Feng, W., Zhao, H., Yin, Y., Wang, P02 EEG default mode network in the human brain:
spectral regional field powers. Neuroimage 41, 584-

Coburn, K.A., Lauterbach, E.L, Boutros, N., Kevih, Black, M.D., David, B. et al 2006. The value of
Quantitative electroencephalography in ClinicaldPégtry.J Neuropsychiatry Clin Neurost8: 460-500.

Congedo, M., Gouy-Pailler, C., Jutten, C. 2008.tnblind source separation of human electroendegianm
by approximate joint diagonalization of second omtatistics. Clin Neurophysiol 119, 2677-2686.

Congedo, M. 2006. Subspace Projection Filters fealRime Brain Electromagnetic Imaging, IEEE Trans
Biomed Eng 53(8), 1624-1634.

Congedo, M., John, R.E., De Ridder, D., Prichep]denhart, B. 2010. On the “dependence” of “inaejsant”
group EEG sources; an EEG study on two large ds¢égb®rain Topography, 23(2), 134.

Congedo, M., Lubar, J.F. 2003. Paramatric and rasametric normative database comparisons in
electroenephalography, J Neurother 7(3/4), 1-29.

Congedo, M., Ozen, C., Sherlin, L. 2002. Notes &GHEResampling by Natural Cubic Spline Interpolatidn
Neurother 6(4), 73-80.

Congedo, M., Pham, D.-T. 2009. Least-Squares Joiagonalization of a matrix set by a congruence

transformation, SinFra'09 (Singaporean-French IB&mposium), Fusionopolis, Singapore, Feb 18-20.

26



EEG RSN by Group ICA — Congedo et al. 2010

Critchley, H.D., 2005. Neural mechanisms of autoiopraffective, and cognitive integration. J Compuk#
493, 154-166.

Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof,S€heltens, P., Stam, C.J., Smith, S.M. 2006. Cmgis
resting-state networks across healthy subjects. Ratl Acad Sci U S A 103(37), 13848-13853.

De Ridder, D.K., Van Laere, K., Dupont, P., Mengusk., Van de Heyning, P. 2007. Visualizing outbafdy
experience in the brain. N Engl J Med 357(18), 1829

Drevets, W.C., Savitz, J., Trimble, M. 2008. Thegenual anterior cingulate cortex in mood disordéf¢S
Spectr 13(8), 663-81.

Duffy, F.H., Albert, M.S., McAnulty, G.B. 1993. Theattern of age-related differences in electropbiggical
activity of healthy subjects. Neurobiol Aging 18-74.

Eichele, T., Debener, S., Calhoun, V.D., Specht,Bfigel, A.K., Hugdahl, et al. 2008. Predictionhafman
errors by maladaptive changes in event-relatech br@tiworks. Proc Natl Acad Sci U S A. 105(16), 6873

Elliott, R., Friston, K.J., Dolan, R.J., 2000. Disg@ble neural responses in human reward systeNsurbsci
20(16), 6159-65.

Fair, D.A., Cohen, A.L., Desenback, N.U.F., Chuii., Miezin, F.M., Barch, D.M. et al. 2007. Despinent
of distinct control networks through segregatiom amegration, Proc Natl Acad Sci U S A 105(10)280
4032.

Farah, M. J. 1989. The neural basis of mental imadeends Neurosci 12(10), 395-9.

Fein, G., Galin, D., Yingling, C.D., Johnstone,Nelson, M.A. 1984. EEG spectra in 9-13 year olgisbare
stable over 1-3 years. Electroencepgalogr Ciln djgugsiol 58, 517-518.

Foucher, J.R., Otzenberger, H., Gounot, D. 200 BBLD response and the gamma oscillations respond
differently than evoked potentials: an interleattl5-fMRI study. BMC Neurosci 4(1), 22.

Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, .J.IRaichle, M.E. 2006. Spontaneous neuronal agtivit
distinguishes human dorsal and ventral attentistesys. Proc Natl Acad Sci U S A 103(26), 10046-51.

Fox, M.D., Raichle, M.E. 2007. Spontaneous flugaret in brain activity observed with functional magic

resonance imaging. Nat Rev Neurosci 8(9), 700-711.

27



EEG RSN by Group ICA — Congedo et al. 2010

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta,,Man Essen, D.C., Raichle, M.E. 2005. The hunrainbs
intrinsically organized into dynamic, anticorreldtiinctional networks. Proc Natl Acad Sci U S A (1),
9673-8.

Fransson, P. 2005. Spontaneous low-frequency BOgakfluctuations: an fMRI investigation of thestimg-
state default mode of brain function hypothesisyHgrain Mapp 26(1), 15-29.

Fuchs, M., Kastner, J., Wagner, M., Hawes, S., &iter J.S. 2002. A standardized boundary elemetitiade
volume conductor model. Clin Neurophysiol 113(%)2-12.

Garrity, A.G., Pearlsin, G.D., McKiernan, K., Lloy®., Kiehl, K.A., Calhoun, V.D. 2007. Aberrant ‘afelt
mode’ functional connectivity in schizophrenia. AnPsychiatry 164, 450-457.

Ghashghaei, H.T., Hilgetag. C.C., Barbas, H. 2@&¢uence of information processing for emotiondas
the anatomic dialogue between prefrontal cortexanggdala. Neuroimage 34, 905-923.

Goncalves, S.1., de Munck, J.C., Pouwels, P.J.\6hp8nhoven, R., Kujer, J.P.A., Maurits, N.M., et2006.
Correlating the alpha rhythm to BOLD using simuttans EEG/fMRI: inter-subject variability. Neuroingag
30, 203-213.

Grabenhorst, F., Rolls, E.T., Parris, B.A. (200B)om affective value to decision-making in the poefal
cortex. Eur J Neurosci 28(9), 1930-9.

Greenblatt, R.E., Ossadtchi, A., Pflieger, M.E. 20Qocal Linear Estimators for the Bioelectromagmet
Inverse Problem. IEEE Trans Sig Process 53(9), -3402.

Greicius, M.D., Srivastava, G., Reiss, A.L., Menah, 2004. Default more network activity distinguesh
Alzheimer’'s disease from healthy aging: Evidenaemfrfunctional fMRI, Proc Natl Acad Sci U S A 101,
4637-4642.

Hernandez, J.L., Valdés, P., Biscay, R., Virues,Skava, S., Bosch, J., et al. 1994. A global stadeor in
brain. Int J Neorosci 76, 267-278.

Hughes, J.R., John, E.R. 1999. Conventional andntdative electroencephalography in psychiatry. J
Neuropsychiatry Clin Neurosci 11, 190-208.

Hyvarinen, A., Karhunen, J., Oja, E. 2001. IndepandComponent Analysis. John Wiley & Sons, New York

Jann, K., Dierks, T., Boesch, C., Kottlow, M., 8triW., Koenig, T. 2009. BOLD correlates of EEG aph

phase-locking and the fMRI default mode networkutdémage 45(3), 903-916.

28



EEG RSN by Group ICA — Congedo et al. 2010

Jasper, H.H. 1958. The ten-twenty electrode systénthe International Federation. ElectroencephnCli
Neurophysiol. 10, 371-375.

John, E.R., Ahn, H., Prichep, L.S., Trepetin, MioBn, D., Kaye, H. 1980a. Developmental equatiangtie
electroencephalogram. Science 210. 1255-1258.

John, E.R., Karmel, B., Corning, W., Easton, Povar, D., Ahn, H., et al. 1977. Neurometrics: Nuroafi
taxonomy identifies different profiles of brain fttions within groups of behaviorally similar peop&cience
196, 1393-1410.

John, E.R., Karmel, B.Z., Corning, W.C., Easton,Brown, D., Ahn, H., et al. 1980b. Neurometricsie¢dce
196, 1393-1409.

John, E.R., Prichep, L.S. 2009. Principles andieaipbns of quantitative electroencephalogram iycpgtry.
In BJ Sadock, VA Sadock, & P Ruiz (Eds.), Kaplan &adock's Comprehensive Textboook of Psychiatry
(9th ed., pp. 1013-1032), Lippincott Williams & \Kiihs, Philadelphia.

John, E.R., Prichep, L.S., Easton, P. 1987. Noxeatata banks and neurometrics, Basic conceptsoeheind
results of norm constructions. In AS Gevins & A Rem (Eds.), Method of analysis of brain electriaat
magnetic signals: Vol. 1. EEG handbook (revisedesgr Elsevier Science Publishers B.V. (Biomedical
Division), New York.

John, E.R., Prichep, L.S., Fridman, J., Easton1#88. Neurometrics: Computer assisted differewli@jnosis
of brain dysfunctions. Science 239. 162-169.

Johnson, M.R., Mitchell, K.J., Raye, C.L., D'EsposM., Johnson, M.K. 2007. A brief thought can miade
activity in extrastriate visual areas: Top-dowreet§ of refreshing just-seen visual stimuli Neuaga 37(1),
290-9.

Jurcak, V., Tsuzuki, D., Dan, I. 2007. 10/20, 10/a06d 10/5 systems revisited: their validity astieé head-
surface-based positioning systems. Neuroimage 38600-1611.

Inanaga, K. 1998. Frontal midline theta rhythm arehtal activity. Psychiatry Clin Neurosci 52, 5585

Kahn, 1., Andrews-Hanna, J.R., Vincent, J.L., SmydeZ., Buckner, R.L. 2008. Distinct cortical aoaty
linked to subregions of the medial temporal lobgeaded by intrinsic functional connectivity, J Nephysiol

100(1), 129-39.

29



EEG RSN by Group ICA — Congedo et al. 2010

Keedwell, P.A., Andrew, C., Williams, S.C., Bramméf.J., Phillips, M.L. 2005. The neural correlaigfs
anhedonia in major depressive disorder. Biol Patchb8(11), 843-53.

Kennedy, D.P., Redcay, E., Courchesne, E. 2008in§aio deactivate, resting functional abnormatitie
autism. Proc Natl Acad Sci U S A 103, 8275-8280.

Kennerley, S.W., Walton, M.E., Behrens, T.E., BegkIM.J., Rushworth, M.F. 2006. Optimal decisiorkmg
and the anterior cingulate cortex. Nat Neurosc),%40-7.

Kondacs, A., Szabo, M. 1999. Long-term inta-indiatl variability of thebackground EEG in NormalsirCl
Neurophysiol 100, 1708-1716.

Koprivova, J., Congedo, M., Prasko, J., Raszka, M.nBveky, M., TiSlerova, B., Hot&k, J., 2009. Medial
frontal EEG low-frequency excess in obsessive-cdsiel disorder determined by sLORETA and ICA,
submitted.

Lachaux, J.P., Fonlupt, P., Kahane, P., Minotti, Hoffmann, D., Bertrand, O., Baciu, MN007.
Relationship between task-related gamma oscillateomd BOLD signal: New insights from combined fMRI
and intracranial EEG. Hum Brain Mag28(12), 1368-75.

Lancaster, J.L., Woldorff, M.G., Parsons, L.M., ttioM., Freitas, C.S., Rainey, L., et al. 2000.t&mated
talairach atlas labels for functional brain mappidgman Brain Map 10, 120-131.

Laufs, H. (2008). Endogenous brain oscillations @ldted networks detected by surface EEG-combiviéd.
Hum Brain Mapp 29(7), 762-9.

Laufs, H., Hammandi, K., Salek-Haddadi, A., Kleimstdt, A.K., Duncan, J.S., Lemieux, L. 2007. Tenglor
lobe interictal epileptic discharges affect cerébrivity in ‘defaul mode’ brain regions. Hum BnaMapp 28,
1023-1032.

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Bé#yerA., Salek-Haddadi, A., et al. 2003.
Electroencephalographic signatures of attentiondl @gnitive default modes in spontaneous braiivigct
fluctuations at rest. Proc Natl Acad Sci U S A 100053-11058.

Lopes da Silva, F. 2004. Functional LocalizationBrain Sources using EEG and/or MEG data: Volume

Conductor and Source Models. Magn Res Img 22, 1538-

30



EEG RSN by Group ICA — Congedo et al. 2010

Makeig, S., Debener, S., Onton, J., Delorme, A.42Bning event-related brain dynamics. Trends C8gn
8(5), 204-10.

Mantini, D., Perrucci, M.G., Del Gratta, C., Roma@iL., Corbetta, M. 2007. Electrophysiologicalrstures
of resting state networks in the human brain. Raitt Acad Sci U S A 104(32), 13170-13175.

Margulies, D.S., Kelly, A.M., Uddin, L.Q., BiswaB.B., Castellanos, F.X., Milham, M.P. 2007. Mappihg
functional connectivity of anterior cingulate cort®euroimage 37, 579-588.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Laimas]., Zilles, K., et al 2001. A probabilisticlest and
reference system for the human brain: Internati@wisortium for Brain Mapping (ICBM). Philos TraRs
Soc Lond B Biol Sci 356(1412), 1293-1322.

Mottaghy, F.M., Willmes, K., Horwitz, B., Muller, MV., Krause, B.J., Sturm, W. 2006. Systems level
modeling of a neuronal network subserving intrirsd@rtness. Neuroimage 29, 225-233.

Morcom, A.M., Fletcher, P.C. 2007. Does the braaveh a baseline? Why we should be resisting a rest.
Neuroimage 37(4), 1073-82.

Mukamel, R., Gelbard, H., Arieli, A., Hasson, Uridd, I., Malach, R. 2005. Coupling between neukdinag,
field potentials, and FMRI in human auditory cort€gience 309(5736), 951-4.

Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, Hrieli, A., Fried, 1., Malach, R. 2007. Couplingtween
neuronal firing rate, gamma LFP, and BOLD fMRI éated to interneuronal correlations. Curr Biol 1)(
1275-85.

Nunez, P.L., Srinivasan, R. 2006. Electric Fidithe Brain, 2nd ed., Oxford Univ Press, New York.

Nuwer, M.R., 1988. Quantitative EEG: Il. Frequemalysis and topographic mapping in clinical sginJ of
Clin Neurophysiology 5, 45-85.

Onton, J., Delorme, A., Makeig, S. 2005. Frontadlme EEG dynamics during working memory. Neuroimag
27, 341-356.

Oken, B.S., Chiappa, K.H. 1988. Short-term varigbinh EEG frequency analysis. Electroencephalofin C
Neurophysiology 69, 191-198.

Pascual-Marqui, R.D. 2002. Standardized Low Rermiubrain electromagnetic Tomography (SLORETA):

technical details. Methods Find Exp Clin Pharméaetb, 5-12.

31



EEG RSN by Group ICA — Congedo et al. 2010

Pascual-Marqui, R.D. 2007. Discrete, 3D distributagbar imaging methods of electric neuronal agtivPart
1: exact, zero error localization, arXiv, 0710.3341

Pham, D.-T. 2001. Blind separation of instantanemigure of sources via the Gaussian mutual inféiona
criterion. Signal Process 81, 855-70.

Pham, D.-T., Congedo, M. 2009. Least square joiagahalization of matrices under an intrinsic scale
constraint, ICA 2009 (8 International Conference on Independent Compon&malysis and Signal
Separation, March 15-18, Paraty, Brasil, 298-305.

Pellijeff, A., Bonilha, L., Morgan, P.S., McKenzil,, Jackson, S.R. 2006. Parietal updating of Ipobture: an
event-related fMRI study. Neuropsychologia 44(2885-90.

Prichep, L.S. 2005. Use of normative databasesssaistical methods in demonstrating clinical tilof
QEEG: Importance and cautions . Clinical EEG 36782

Raichle, M.E., Mintum, M.A. 2006. Brain work andaior imaging. Annu Rev Neurosci 29, 449-476.

Raichle, M.E., Snyder, A.Z. 2007. A default modehw&in function: A brief history of an evolving iae
Neuroimage 37, 1083-1090.

Richer, F., Martinez, M., Robert, M., Bouvier, GSaint-Hilaire, J.M. 1993. Stimulation of human
somatosensory cortex: tactile and body displacememeptions in medial regions. Exp Brain Res 93(13-

6.

Rilling, J.K., Barks, S.K., Parr, L.A., Preuss, T,Mracy, L.F., Pagnoni, G., et al. 2007. A comgami of
resting state brain activity in humans and chimpaszProc Natl Acad Sci U S A 104(43), 17146-17151.

Rogers, R.D., Ramnani, N., Mackay, C., Wilson, ,JJJezzard, P., Carter, C.S., Smith, S.M. 2004.imaitst
portions of anterior cingulate cortex and mediadffumtal cortex are activated by reward processing
separable phases of decision-making cognition. Bsyichiatry 55(6), 594-602.

Rombouts, S.A., Barkhof, F., Goekoop, R., Stam,,Gdheltens, P. 2005. Altered resting state nddsvor
mild cognitive impairment and mild Alzheimer’s dase: an fMRI study. Hum Brain Mapp 26, 231-239.

Sammer, G., Blecker, C., Gebhardt, H., Bischoff, Btark, R., Morgen, K., Vaitl, D. 2007. Relatioigsh
between regional hemodynamic activity and simulbaisey recorded EEG-theta associated with mental

arithmetic-induced workload. Hum Brain Mapp 28(8)3-803.

32



EEG RSN by Group ICA — Congedo et al. 2010

Scheeringa, R., Bastiaansen, M.C.M., Petersson, kOistenveld, R., Norris, D.G., Hagoort, P. 208&ntal
theta EEG activity correlates negatively with tlegadilt mode network in resting state. Int J Psytlysmpl 67,
242-251.

Schmithorst, V.J., Holland, S.K. 2004. Comparisbithoee methods for generating group statisticidrances
from independent component analysis of functionagnetic resonance imaging data. Magn Reson Imaging
19(3), 365-368.

Schreckenberger, M., Lange-Asschenfeldt, C., Loechm#., Mann, K., Siessmeier, T., Buchholz, H.G.ale
2004. The thalamus as the generator and modulaeEG alpha rhythm: a combined PET/EEG study with
lorazepam challenge in humans. Neuroimage 22, 837-6

Seeley, W.W., Menon, V., Schatzberg, A.F., Kellér, Glover, G.H., Kenna, H., et al. 2007. Disso&ab
intrinsic connectivity networks for salience progieg and executive control. J Neurosci 27, 2349%235

Sorg, C., Riedl, V., Miuhlau, M., Calhoun, V.D., B&e, T., Laer, L., et al. 2007. Selective charge®sting-
state networks in individuals at risk for Alzheirsalisease. Proc Natl Acad Sci U S A. 104(47), 0876

Sridharan, D., Levitin, D.J., Menon, V. 2008. Atical role for the right fronto-insular cortex imwiching
between central-executive and default-mode netwéhac Natl Acad Sci U S A 105(34), 12569-74.

Stein J.L., Wiedholz L.M., Bassett D.S., Weinber@eR., Zink C.F., Mattay V.S. et al. 2007. A valied
network of effective amygdala connectivity. Neurage 36(3), 736-45.

Stephan, T., Deutschlander, A., Nolte, A., Schreide, Wiesmann, M., Brandt, T., Dieterich, M. 2005
Functional MRI of galvanic vestibular stimulationitv alternating currents at different frequencies.
Neuroimage 26(3), 721-32.

Svoboda, E., McKinnon, M.C., Levine, B. 2006. Thedtional neuroanatomy of autobiographical memary:
meta-analysis, Neuropsychologia 44(12), 2189-208.

Talairach, J., Tournoux, P., 1988. Co-planar steséo atlas of the human brain. Thieme Medical Rihigks,
New York.

Terakawa, Y., Tsuyuguchi, N., Tanaka, H., Shigihata Sakamoto, S., Takami, T., et al. 2008. Quatinie
analysis of MEG using modified sSLORETA for clinicgbplication. Clin Neurophysiol 119 (8), 1917-1922.

Tichavsky, P. Yeredor, A. 2009. Fast ApproximatmtlBiagonalization Incorporating Weight MatricéBEE

Trans Sig Process 57(3), 878-891.

33



EEG RSN by Group ICA — Congedo et al. 2010

Uddin, L.Q., Kelly, A.M., Biswal, B.B., MarguliesD.S., Shehzad, Z., Shaw, D., et al. 2008. Network
homogeneity reveals decreased integrity of defaoltle network in ADHD. J Neurosci Methods 169(19-24
54.

van Beijsterveldt, C.E.M., Molenaar, P.C.M., de §at.J.C., Boosma, D.l. 1996. Heritability of hunaain
functioning as assessed by electroencephalogrdwhyl Hum Genet 58, 562-573.

van den Heuvel, M., Mandl, R., Hulshoff Pol, H. 800ormalized cut group clustering of resting-stiekéRlI
data. PLoS ONE 3(4), e2001.

van der Loo, E., Gais, S., Congedo, M., VannestePlzier, M., Menovsky, T., Van de Heyning, Pg D
Ridder, D. 2009. Tinnitus intensity dependent ganuseillations of the contralateral auditory cort®LoS
One. 2009 Oct 9;4(10),e7396.

van Essen, D.C. 2005. A Population-Average, Lan#émand Surface-based (PALS) atlas of human cerebral
cortex. Neuroimage 28(3), 635-62.

Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Baker, J.T. 2007. Intrinsic functional architaetin the
anesthesized monkey brain. Nature 447, 83-86.

Wagner, M., Fuchs, M., Kastner, J. 2004. EvaluabbrsLORETA in the presence of noise and multiple
sources. Brain Topogr 16(4), 277-280.

Wang, K., Jiang, T., Yu, C., Tian, L., Li, J., Li¥,, Zhou, Y., Xu, L., Song, M., Li, K. 2008. Spameous
activity associated with primary visual cortexeating-state FMRI study, Cereb Cortex 18(3), 69%-70

Wax, M., Kailath, T. 1985. Detection of Signals loyjormation Theoretic Criteria. IEEE Trans AcoB8{(2),
387-392.

Welch, P.D. 1967. The Use of Fast Fourier Transffinthe Estimaton of Power Spectra: A Method Based

Time Averaging Over Short, Modified PeriodograntSEE Trans Audio Electroacoustics 15(2), 70-74.

34



EEG RSN by Group ICA — Congedo et al. 2010

Figures
07
—__MSREBRL
\ — AICBRL
\ — __MSRENTE

06 ‘\\ — — AIC NTE
\
05 \

U \ \N= ==

0.2

0.1 S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 1: The eigenstructure of the grand-agverage covagiamatrix in the 0.5-30 Hz range is very similar in
the two databases (BRL and NTE), as seen by then regaare representation error (MSRE) and Akaike
information criterion (AIC) associated to the 1§emvalues. The MSRE curves are normalized so tougutn

unity. The AIC is shown in arbitrary units.
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Figure 2. sLORETA cortical current density images and asged frequency spectrum of the seven
independent components for the BRL (top) and NTdt¢on) database. From left to right:

- the sSLORETA cortical image medial and lateramigeof the left and right hemisphere. The curremisity is
thresholded at half the maximum. The anatomicabiria based on the CARET software (van Essen, 2005)

- the mean (solid line) and 95% confidence intefdalted line) of the grand-average frequency spectin the
range 0.5-40 Hz for absolute and normal power.Vitical axis is adjusted individually in each plot

Cortical images have been produced by the SLORE&p40ftware.
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Figure 3: Cumulative proportion of the grand-average variagqaained by the seven group ICA components

found independentlgn the NTE and BRL databases.
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Table 1: Anatomical structures and Brodmann areas (BAsy&higgh-power (more then 50% of the maximum) curren
source is located for the seven ICA componentléarntwo databases (leftmost column). BA of top 1Q¥6ent density power
are highlighted in bold. When the side is not sfietilabels and corresponding BAs apply bilaterally

Anatomical Structures and Brodmann Areas

Anterior Cingulate (BA 234/32/33L25), Insula (BA 13), Middle/Superior Frontal GyrusdaRaracentral Lol
4/5/6), Parahippocampal/Subcallosal Gyrus (BA 283/86)

Cuneus/Precuneus/ (BA31/18/19/), Postentral gyrus (BA 3/4/5), Superior Parietal andaeantral Lobule
Posterior Cingulate Gyrus (BA 23/31)

Cuneus/Precuneus/ (B30/31/7), Right superior parietal lobule (BA 7), Poster@ingulate (BA 30),
Lingual/Parahippocampal Gyrus (BA 18/19/30), Rigbsiform Gyrus (BA 19)
Cuneus/Precuneus/Posterior Cingulate @#/30/31), Lingual Gyrus/Fusiform Gyrus/Middle and Inferircc
Gyrus (Occipital Pole) (BA 17/18/19)

Anterior Cingulate (BA24/25/32), Medial Frontal Gyrus (BA 32/9/10/11), Redtabital Gyrus (BA 11/47),
Frontal Gyrus (BA 47), Parahippocampal Gyrus (BA323

Medial Frontal/Rectal Gyrus/Anterior Cingulate (BA, 25), Middle Frontal Gyrus (BA 11), Inferior Front@
(BA 47), Parahippocampal Gyrus (BA 28/34), Insu& (13)

Post-central Gyrus (BA/2/3), Supramarginal Gyrus/Inferior Parietal Lobule (B@), Precentral Gyrus (BA|
Cuneus/ Precuneus (BA 17/18/19/31), Middle Ocdiitgzrus (BA 18), Superiorrad Middle temporal Gyrus
21/22/39/41), Insula (BA 13), Angular Gyrus (BA 39)
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