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AN EXPLICIT STABLE NUMERICAL SCHEME

FOR THE 1D TRANSPORT EQUATION

YOHAN PENEL∗

Abstract. We derive in this paper a numerical scheme in order to calculate solutions of 1D
transport equations. This 2nd-order scheme is based on the method of characteristics and consists of
two steps: The first step is about the approximation of the foot of the characteristic curve whereas
the second one deals with the computation of the solution at this point. The main idea in our scheme
is to combine two 2nd-order interpolation schemes so as to preserve the maximum principle. The
resulting method is unconditionaly stable and designed for classical solutions but turns out to remain
valid when shocks occur.
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1. Introduction The method of characteristics has been used for 40 years
as a theoretical tool to prove existence of smooth solutions to the linear transport
equation. No matter what simple, this equation arises in several physical application
as soon as the convection operator

∂t +U ·∇

is involved, whether the velocity field U be a datum or an unknown. For instance,
it appears when diagonalising hyperbolic conservation laws [11] or writing fluid me-
chanics equations under a nonconservative form [4], or else when tracking level sets
of a smooth function [13].

Above all, this method provides an implicit solution to the initial value problem
(IVP) in the bounded domain Ω⊂R

d, d∈{1,2,3}:






∂tY(t,x)+U(t,x) ·∇Y(t,x)=f(t,x),

Y(0,x)=Y0(x),
(1.1)

for smooth enough velocity field U (with null normal component on the boundary)
and for bounded source term f and initial datum Y0 [1]. The solution is said to be
implicit because it requires to solve an ordinary differential equation (instead of a
partial differential equation) to which there exists a unique solution:







dX

dτ
=U

(
τ,X (τ)

)
,

X (s)=x0.

(1.2)

More precisely, considering the initial condition x0 of ODE (1.2) as a parameter, one
defines characteristic curves as the orbits of the solutions. Then the evolution of the
corresponding solution of (1.1) along the characteristic curve is known:

Y(t,x)=Y0
(
X (0;t,x)

)
+

∫ t

0

f
(
τ,X (τ ;t,x)

)
dτ. (1.3)
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2 An explicit stable numerical scheme for the 1D transport equation

In the framework of fluid mechanics, the field X (t;s,x0) represents the position at
time t of a particule which was located in x0 at time s in a fluid driven at velocity U .
That is why the characteristic curves can be considered as trajectories of particles.

The method of characteristics1 also turns out to be of great interest from a nu-
merical point of view. Indeed, as the solution is known through (1.3), it suffices to
locally approximate the characteristic curves to calculate the solution to the IVP in
a time neighbourhood: given the semi-group property satisfied by X

X
(
t1;t2,X (t2;t3,x0)

)
=X (t1;t3,x0), (1.4)

we have the identity

Y(t+∆t,x)=Y
(
t,X (t;t+∆t,x)

)
+

∫ t+∆t

t

f
(
τ,X (τ ;t+∆t,x)

)
dτ. (1.3’)

There exist two main strategies depending of the overall problem.
① If the sole transport equation (1.1) is concerned, it is possible to work with

(1.3) or (1.3’) formulations. However, the (1.3)-based method induces the
propagation of numerical diffusion since one has to go back upstream to the
origin of time t=0 while in (1.3’), there is only a local calculation between t+
∆t and t. Then, the integral is computed by means of a numerical integration
formula (Euler, Gauss). The method consists in two steps: the construction

of the characteristic to provide the foot X (t;t+∆t,x) of the curve passing
through x at time t+∆t (as well as other values required by the integration
formula) and the evaluation of the computed solution at time t and
position X (t;t+∆t,x). We remark that this algorithm only requires values
of the solution of ODE (1.2) with s= t+∆t over the interval [t,t+∆t]. See
for instance [10] or the method we shall describe in § 2.

② If the convection operator is part of a more complex system (advection-
diffusion, Euler, Navier-Stokes):

∂tY+U ·∇Y+F(Y)=f,

where F is a differential operator w.r.t. Y, then the equation is rewritten as:

dY

dt
+F(Y)=f.

The directional derivative along the characteristic
dY

dt
corresponds to:

[
∂

∂τ

(

Y
(
τ,X (τ ;t,x)

))
]

τ=t

.

This term is generally discretized in time as:

Y(t,x)−Y
(
t−∆t,X (t−∆t;t,x)

)

∆t
.

Then, the semi-discrete equation may be solved via a Finite Element method
[1, 6, 7, 8, 16]. This combination is sometimes called Lagrange-Galerkin

1In a numerical framework, methods of characteristics are denoted by MOC.



Y. Penel 3

method. In particular, an algorithm is designed in [1, 16] when the veloc-
ity field is approximated by a piecewise constant function. The foot of the
characteristics X (t−∆t;t,x) is generally computed with a first order scheme
[6]:

X (t−∆t;t,x)=x−U(t−∆t,x)∆t,

then corrected in [7] to preserve the mass conservation, or with a second order
scheme [8].

Our method was first outlined in [15] in the framework of the modelling of bubbles,
where the velocity field satisfies the elliptic equation:

∇·U(t,x)∝Y(t,x)−
1

|Ω|

∫

Ω

Y(t,x′)dx
′.

We thus pay attention to the availability of values of U due to the fact that it depends
on the solution Y.

We shall describe in the sequel the derivation of our scheme (named MOC2), as
well as qualitative properties (stability, consistancy, . . . ). We shall also present nu-
merical results for the linear transport equation and the Burgers equation. This model
is designed for dimension 1 and for smooth solutions to the transport equation. It is
based on properties of the characteristic flow that we use in the approximation of the
foot of the characteristic curve (2nd-order scheme) and on geometric considerations
in the interpolation step so as to ensure the maximum principle.

2. Derivation of the scheme

2.1. Notations For sake of simplicity, we consider from now on the linear 1D
advection equation (1.1) without source term (i.e. with f =0) over the domain [0,1]
and the time interval [0,T ].

Then under smoothness assumptions on the velocity field, the solution is:

Y(t,x)=Y 0
(
X (0;t,x)

)

according to (1.3) and satisfies the identity:

Y(t+∆t,x)=Y
(
t,X (t;t+∆t,x)

)
. (2.1)

In order to derive the numerical method, we introduce the discretization parameters
Nt ∈Z+ and Nx ∈Z+. Let ∆t and ∆x be the time step and the mesh given by:

∆t=
T

nt
and ∆x=

1

nx
.

We then define the uniform mesh:2

tn =n∆t and xi =(i−1)∆x,

n∈{0,. ..,Nt} and i∈{1,. ..,Nx}, so that the unknowns are:

Yn
i =Y(tn,xi).

2The method can be extended to variables meshes.



4 An explicit stable numerical scheme for the 1D transport equation

By virtue of (2.1), we compute:

Yn+1
i =Y

(
tn,X (tn;tn+1,xi)

)
.

As we stated earlier, there are two main stages in MOCs, which correspond to
the two next subsections:

❶ the computation of ξn
i :=X (tn;tn+1,xi) which is the foot of the characteristic

curve going through xi at time tn+1 (called the upstream point of xi) – see
Fig. 2.1. Remind that X is a solution to the nonlinear ODE (1.2);

❷ the calculation of Y(tn,ξn
i ) while we only know values of the numerical solu-

tion already computed, i.e. at nodes (xj). But ξn
i is generally not a mesh

node.
Theoretically, the first step can be interprated as a time procedure (it uses ∆t as a
parameter) while the second one mainly involves the mesh width ∆x. This accounts
for the unconditional stability of MOCs as a numerical scheme because ∆t and ∆x are
used independantly from each other, even numerical approximations of the velocity
make the analysis less straightforward.

2.2. Computation of the upstream point In the majority of MOCs, a
1st-order approach is used to build the characteristic curve which then reduces to a
straight line – see ξ̄n

i Fig. 2.1. When the velocity is constant,3 this procedure is exact.
But for variable velocity fields, it induces numerical errors. That is why we improve
the accuracy with a second-order calculation for the upstream point.

We first recall some properties of the characteristic flow. Its derivatives (w.r.t. τ ,
s and x0) satisfy the following equalities:

∂τX (τ ;s,x0)=U
(
τ,X (τ ;s,x0)

)
, (2.2a)

∂sX (τ ;s,x0)=−∇x0
X (τ ;s,x0)U(s,x0), (2.2b)

det∇x0
X (τ ;s,x0)=exp

∫ τ

s

∇·U
(
σ,X (σ;s,x0)

)
dσ. (2.2c)

See for instance [2] for (2.2b) and [9, 12] for (2.2c).
As values at time tn+1 are not currently known, we use a Taylor expansion at

(tn,xi):

ξn
i =X (tn;tn+1,xi)

=X (tn;tn,xi)+∆t
∂X

∂s
(tn;tn,xi)+

∆t2

2

∂2X

∂s2
(tn;tn,xi)+O

(
∆t3

)
.

This formula requires to derive explicit expressions of derivatives of X w.r.t. s. Taking
τ =s in (2.2b) and given that ∂x0

X (s;s,x0)= Id, we have:

∂sX (s;s,x0)=−U(s,x0).

This deals with the ∆t-term. For the ∆t2-term, we differentiate the last relation w.r.t.
s so that we obtain:

∂2
ssX (s;s,x0)=−∂tU(s,x0)−∂2

τsX (s;s,x0).

3The constant case is useful insofar as the solution is explicitly known.
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tn−1

tn

tn+1

xixj =xi−1

ξ̄n
i

ξ̂n
iξn

i

Fig. 2.1. 1st-order and 2nd-order upstream points

As we suppose enough regularity to apply the Schwarz lemma, the derivative ∂2
τsX is

equal to ∂2
sτX and can be computed by differentiate (2.2a) w.r.t. s, which reads:

∂2
τsX (τ ;s,x0)=∂xU

(
τ,X (τ ;s,x0)

)
∂sX (τ ;s,x0).

This leads to the semi-discrete formulation:

ξn
i =xi−U(tn,xi)∆t+

∆t2

2

[
U(tn,xi)∂xU(tn,xi)−∂tU(tn,xi)

]
+O

(
∆t3

)
. (2.3)

Note that this relation holds in higher dimensions:

ξn
i =xi−U(tn,xi)∆t+

∆t2

2
[(U ·∇)U(tn,xi)−∂tU(tn,xi)]+O(∆t3).

In the sequel, ξ̂n
i , Y n

i and Un
i denote the numerical approximations of ξn

i , Y(tn,xi)
and U(tn,xi).

Eq. (2.3) raises the issue of computing spatial derivatives of U . Indeed, if U is
a given function independent from Y, then such derivatives can be approximated by
finite-difference (FD) formulae (for instance 2nd-order centered FD in space, 1st-order
upwind FD in time):4

ξn
i ≈xi−

∆t

2

[
3Un

i −Un−1
i

]
+

∆t2

2

[
Un

i

Un
i+1−Un

i−1

2∆x

]
.

However, if U is a solution to another PDE, this equation can be used to deal with
differential terms appearing in (2.3). For instance, if U is a solution to the Burgers
equation [3], the second order term can be rewritten:

∆t2U(tn,xi)∂xU(tn,xi).

We could also reformulate as −∆t2∂tU(tn,xi) but this would require to store two time
levels of the unknown. That is why we prefer keeping only spatial derivatives.

4The term U∂xU can also be considered as the exact derivative ∂x(U2/2).



6 An explicit stable numerical scheme for the 1D transport equation

2.3. Interpolation step Once the upstream point computed, we find out the
interval [xj ,xj+1) from which the characteristic curve issues at time tn. Let θn

ij be

the position of ξ̂n
i in this interval, i.e.:

θn
ij =

xj+1− ξ̂n
i

∆x
.

By definition, θn
ij ∈ (0,1] and θn

ij =1 for ξ̂n
i =xj .

As ξ̂n
i ∈ [xj ,xj+1], a natural choice to compute Y n+1

i ≈Y(tn,ξn
i ) is to use a linear

interpolation involving Y n
j and Y n

j+1. But as we remark a progressive loss of accuracy,
we get interested in second-order interpolation schemes.

One may either take (xj−1,xj ,xj+1) or (xj ,xj+1,xj+2) into account. The La-
grange interpolation polynomials associated to these two sets of points, when ex-
pressed in the θ variable, read:

Yl(θ)=−
θ(1−θ)

2
Y n

j−1 +θ(2−θ)Y n
j +

(1−θ)(2−θ)

2
Y n

j+1 (2.4a)

=
θ2

2

(
Y n

j−1−2Y n
j +Y n

j+1

)
−

θ

2

(
Y n

j−1−4Y n
j +3Y n

j+1

)
+Y n

j+1. (2.4b)

and

Yr(θ)=
θ(1+θ)

2
Y n

j +
(
1−θ2

)
Y n

j+1−
θ(1−θ)

2
Y n

j+2 (2.5a)

=
θ2

2

(
Y n

j+2−2Y n
j+1 +Y n

j

)
−

θ

2

(
Y n

j+2−Y n
j

)
+Y n

j+1. (2.5b)

We have noticed that formulae (2.4a) and (2.5a) induce round-off errors. Although
useful in the theoretical study, we do not use them numerically. We rather use (2.4b)
and (2.5b).

These two possibilities thus differ from the stencil and the sign of the weights: In
both cases (2.4a) and (2.5a), Y n

j and Y n
j+1 have positive coefficients unlike the third

value (Y n
j−1 or Y n

j+2) which has a negative weight. This proves that each scheme (of
2nd-order) is not monotonicity-preserving (as stated by Godunov [11, Th. 16.1]). We
see on Fig. 2.2(a) that the linear combination in Yr may provide a negative value.
Likewise, the other scheme Yl may not suit in other configurations (Fig. 2.2(b)).

These considerations can be easily interprated from a geometrical point of view. In
the (x,Y ) plane, we set Xk =(xk,Y n

k ), k∈{j−1,j,j +1,j +2} and Xθ
p =

(
ξ̂n
i ,Yp(θ

n
ij)

)
,

p∈{l,r}. Hence:

Xθ
l =−

θn
ij(1−θn

ij)

2
Xj−1 +θn

ij(2−θn
ij)Xj +

(1−θn
ij)(2−θn

ij)

2
Xj+1,

Xθ
r =

θn
ij(1+θn

ij)

2
Xj +

(
1−θn

ij

)(
1+θn

ij

)
Xj+1−

θn
ij(1−θn

ij)

2
Xj+2.

Notice that even in the degenerate case where the three points are aligned, these
formulae have a sense and enable to compute a relevant value.

This also proves that the relation satisfied by y-coordinates (values of Y n
i ) is also

satisfied by x-coordinates. Thus, Xθ
l is a barycenter of the points Xj−1, Xj and

Xj+1. We represent on Fig. 2.3 the areas in which Xθ
l and Xθ

r may be located. More
precisely, Xθ

l lies outside the triangle Xj−1XjXj+1 (in the half-plane with boundary
(XjXj+1) which does not contain Xj−1).
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The idea is thus to combine these two formulae depending on the failure of the
maximum principle in one case or another. In order to ensure a global maximum
principle, we would like to impose it locally:

Yl(θ
n
ij), Yr(θ

n
ij)∈ [min(Y n

j ,Y n
j+1),max(Y n

j ,Y n
j+1)]. (2.6)

These two criteria cannot be satisfied everywhere for both schemes as explained before
and they even fail together at the same time. The point is that one at least is
admissible in the critical cases, namely close to the areas where Y n

i =maxj Y n
j and

where Y n
i =minj Y n

j .
One way to check that Yl(θ

n
ij) satisfies (2.6) consists in determining the position of

the extremum of the 2nd-order polynomial function Yl: If Yl reaches its extremum in
θl with θl ∈ (0,1) (which corresponds to (Y n

j ,Y n
j+1) in x-variable), then the maximum

principle may fail. We calculate:

θl =
Y n

j−1−4Y n
j +3Y n

j+1

2(Y n
j−1−2Y n

j +Y n
j+1)

=
1

2
+

Y n
j+1−Y n

j

Y n
j−1−2Y n

j +Y n
j+1

=ϑl(Y
n
j−1).

Given Y n
j and Y n

j+1, the admissible values for Y n
j−1 so that ϑl(Y

n
j−1) 6∈ (0,1) are such

that Y n
j+1−Y n

j , Y n
j+1−Y n

j−1 and Y n
j−1−4Y n

j +3Y n
j+1 have the same sign (due to the

variations of ϑl), which reduces to:
(
Y n

j+1−Y n
j−1

)(
Y n

j−1−4Y n
j +3Y n

j+1

)
≥0. (2.7a)

We similarly get the following constraint for the right scheme Yr:
(
Y n

j+2−Y n
j

)(
−3Y n

j +4Y n
j+1−Y n

j+2

)
≥0. (2.7b)

We shall make a few comments about these strong sufficient conditions. First of
all, they are independent from θn

ij , which decouples the two steps of the procedure.
Secondly, they define an admissible domain for Y n

j−1 and Y n
j+2 (see Fig. 2.4). However,

if Y n
j =Y n

j+1, we expect to have either Y n
j−1 =Y n

j or Y n
j+2 =Y n

j+1 so as to prevent
irrelevant values. But we remark that dividing Eqs. (2.7) by 4∆x, they are equivalent
in the limit as ∆x→0 to (∂xY )2≥0, which is trivially true. This shows that when
refining the mesh width, the two conditions tend to be satisfied (for smooth solutions).

Nevertheless, situations may occur where Yp(θ
n
ij)∈ [Y n

j ,Y n
j+1] although θp ∈ (0,1).

Indeed, the Fig. 2.5 shows that the dashed blue part of the parabola provides values
in the good interval. That is why (2.7) seem to be too restrictive. To go further, we
are lead to introduce the equations:

Yp(θ)=Y n
k , p∈{l,r}, k∈{j,j +1}.

There are trivial solutions for k = j (which is θ =1) and k = j +1 (θ =0). In the non-
degenerate case, the other solutions are:

κl,j =
2(Y n

j+1−Y n
j )

Y n
j−1−2Y n

j +Y n
j+1

, κr,j =
2(Y n

j+1−Y n
j )

Y n
j −2Y n

j+1 +Y n
j+2

,

κl,j+1 =
Y n

j−1−4Y n
j +3Y n

j+1

Y n
j−1−2Y n

j +Y n
j+1

, κr,j+1 =
Y n

j+2−Y n
j

Y n
j −2Y n

j+1 +Y n
j+2

.

We have the relation κp,j+1−κp,j =1, p∈{l,r}. We also recover Eqs. (2.7) through
the equivalence:

θp 6∈ (0,1)⇐⇒κp,j 6∈ (0,1) and κp,j+1 6∈ (0,1).



8 An explicit stable numerical scheme for the 1D transport equation

x

Yr

Yl

xj−1 xj xj+1 xj+2

Y n
j−1

=Y n
j

Y n
j+1

Y n
j+2

(a) Convex monotone-increasing case

x

Yr

Yl

xj−1 xj xj+1 xj+2

Y n
j+1

=Y n
j+2

Y n
j

Y n
j−1

(b) Nonconvex monotone-increasing case

Fig. 2.2. Configurations of nodes and location of the 2nd-order interpolated points

But according to Fig. 2.5, Yl(θ
n
ij)∈ [Yj ,Yj+1] if θn

ij ≤κl,j . More generally, Yp is
admissible iff:

θn
ij ≤κp,j or θn

ij ≥κp,j+1. (2.8)

The point is now to choose one scheme or the other when (2.8) is satisfied for
both p= l and p= r. Naturally, when only one of the two schemes is admissible at
one node, it has to be applied for the interpolation step. If both are admissible, there
are several possible strategies:

❶ Similarly to the spirit of the antidiffusive scheme designed by Després and
Lagoutière [5], we can use downwind data (Yr if Un

j >0, Yl if Un
j <0) as

soon as it is possible, and upwind ones otherwise.
❷ We can also take into account the configurations that lead us to combine

two schemes (see Fig. 2.2 and [14]). If the solution at time tn is convex and
monotone-increasing or nonconvex and monotone-decreasing, we would like
to use Yl.

Strategy ❶ depends on the sign of the local velocity while ❷ is based on the local
properties of the solution itself. However, it requires to define discrete monotonicty
and convexity concepts.

3. Numerical analysis We present in this part the numerical analysis of
our scheme. We first start paying attention to the coupling between the 2nd-order
upstream point construction and the left scheme Yl (we leave aside the second scheme
for now). For sake of simplicity, the analysis is done under the hypothesis that U is
constant in time and space (we shall note u its value), which enables to compare with
conservative methods since the equation now reads:

∂tY+∂x(uY)=0. (3.1)

Then ξn
i = ξ̂n

i =xi−u∆t∈ [xj ,xj+1) for j such that:

j = i+

⌊
−u∆t

∆x

⌋

= i+⌊−λ⌋, (3.2)
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Xj−1

Xj

Xj+1

Xj+2

Xθ
l

Xθ
r

Fig. 2.3. Location of barycenters
`

ξ,Yp(θ)
´

, p∈{l,r}

Y

x
xj xj+1 xj+2

Y n
j

Y n
j+1

Y n
j−1

Y n
j+2

4Y n
j −3Y n

j+1

xj−1

4Y n
j+1

−3Y n
j

Fig. 2.4. Authorized values for Y n
j−1

and Y n
j+2

with the usual Courant number notation λ=u∆t/∆x. Then:

θn
ij =θ = j− i+1+λ=1+λ+⌊−λ⌋.

In particular, for u>0 such that λ<1, our scheme is equivalent to the Beam-Warming
scheme. Likewise, for u<0 and |λ|<1, it corresponds to the Lax-Wendroff scheme.

No matter what λ, as previously stated, this scheme is conservative but not
monotonicity-preserving when (2.8) is not satisfied for p= l, which induces oscillations
in numerical simulations. The method is stable without restriction on λ because even
when ∆x→0, θ is bounded5. We now show the consistency of the scheme. Most

MOCs are proved to be of order O

(

∆t+∆x+
∆x2

∆t

)

[16], which is a conditionnal

consistency. But we show that our scheme is consistent whatever ∆x and ∆t.

5It can be shown with a Von Neumann analysis.
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Xj−1

Xj

Xj+1

Yl

θ 2 1 0κl,j+1 κl,j

Fig. 2.5. Admissibility of the interpolation scheme Yl

For Y solution to (3.1), we set:

En
i (∆t,∆x) :=

1

∆t

[

Y(tn+1,xi)−
θ2

2

[
Y(tn,xj−1)−2Y(tn,xj)+Y(tn,xj+1)

]

+
θ

2

[
Y(tn,xj−1)−4Y(tn,xj)+3Y(tn,xj+1)

]
−Y(tn,xj+1)

]

.

We apply the integral Taylor expansion formula around (tn,xi):

Y(tn,xk)=Y(tn,xi)+(k− i)∆x∂xY(tn,xi)+
(k− i)2∆x2

2
∂2

xxY(tn,xi)

+

∫ xk

xi

(xk−z)2

2
Y(3)(tn,z)dz,

which leads to :

∆tEn
i (∆t,∆x)=∆tRn

i +∆t∂tY(tn,xi)+
∆t2

2
∂2

ttY(tn,xi)+O(∆t3)

+∂xY(tn,xi)∆x

[
−θ2

2

(
(j− i−1)−2(j− i)+(j− i+1)

)

+
θ

2

(
(j− i−1)−4(j− i)+3(j− i+1)

)
−(j− i+1)

]

+∂2
xxY(tn,xi)

∆x2

2

[
−θ2

2

(
(j− i−1)2−2(j− i)2 +(j− i+1)2

)

+
θ

2

(
(j− i−1)2−4(j− i)2 +3(j− i+1)2

)
−(j− i+1)2

]

,

where :

Rn
i =−

(1−θ)(2−θ)

2∆t
R̄n

i,j+1−
θ(2−θ)

∆t
R̄n

i,j +
θ(1−θ)

2∆t
R̄n

i,j−1,
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and:

R̄n
i,k =

∫ xk

xi

(xk−z)2

2
Y(3)(tn,z)dz.

Thus:

En
i (∆t,∆x)=

[

∂tY+u∂xY
︸ ︷︷ ︸

=0

]

(tn,xi)+
∆t

2

[

∂2
ttY−u2∂2

xxY
︸ ︷︷ ︸

=0

]

(tn,xi)+Rn
i +O(∆t2).

Indeed, since Y is a solution to (3.1) with constant velocity, Y also satisfies the 1D
wave equation ∂2

ttY−u2∂2
xxY =0.

Given the equality xk−xi =(k− i)∆x, we derive a bound for each integral term,
assuming Y (3) bounded:

∣
∣R̄n

i,k

∣
∣≤

∥
∥
∥Y(3)

∥
∥
∥
∞

(k− i)2∆x2

2
.

Then, taking (3.2) into account, this leads to:

|Rn
i |≤

∆x3

12∆t

∥
∥
∥Y(3)

∥
∥
∥
∞

[

2(1−θ)
∣
∣⌊−λ⌋+1

∣
∣
3
+4θ

∣
∣⌊−λ⌋

∣
∣
3
+θ(1−θ)

∣
∣⌊−λ⌋−1

∣
∣
3
]

, (3.3)

with θ =1+λ+⌊−λ⌋. We have decided to bound 2−θ (by 4) and to keep the terms
θ and 1−θ due to their asymptotic behaviour:

θ ∼
λ→0+

λ→0 and 1−θ ∼
λ→0

−

−λ→0.

To show the consistency, we have to prove that the right hand side in (3.3) considered
as a function of λ tends to 0 as ∆x and ∆t tend to 0.

Assume first that the two parameters satisfy ∆t=∆xα for some α>0. We dis-
tinguish three cases:

① 0<α<1: as λ=u∆xα−1→∞, we bound θ and 1−θ by 1. Then, each term
in (3.3) is equivalent (up to a multiplicative constant) to:

∆x3

∆t

∣
∣⌊−λ⌋

∣
∣
3
=∆x3−α

∣
∣⌊−u∆xα−1⌋

∣
∣
3
∼|u|3∆x2α →0.

② α=1: λ=u is a constant, which implies that the whole term between brackets
is a constant. The factor ∆x2 ensures the convergence.

③ α>1: for λ=u∆xα−1 small enough, each term in the right hand side of (3.3)
is either 0 (⌊−λ⌋+1=0 for u>0, ⌊−λ⌋=0 for u<0) or bounded by θ∆x3−α

(u>0) or (1−θ)∆x3−α (u<0). As:

θ

∆xα−3
∼

λ→0+

u∆x2 and
1−θ

∆xα−3
∼

λ→0
−

|u|∆x2,

we deduce that the right hand side tends to 0 in all cases when ∆t depends
on ∆x.

Hence, the global order is:
• En

i (∆t,∆t1/α)=O(∆t2), α<1;
• En

i (∆xα,∆x)=O(∆x2), α≥1.
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Fig. 4.1. MOC using only Yl interpolation scheme

For the general case ∆t,∆x→0, the same arguments hold, depending on whether ∆t
or ∆x tends first to 0. For instance, we rewrite the first term in (3.3) either:

∆t2(1−θ)

∣
∣
∣
∣

⌊−λ⌋+1

λ

∣
∣
∣
∣

3

=O(∆t2),

in the limit as ∆x→0 (λ→∞), or:

∆x2(1−θ)

∣
∣⌊−λ⌋+1

∣
∣
3

|λ|
=O(∆x2),

in the limit as ∆t→0 (λ→0).

We have thus constructed an explicit linear stable and consistent scheme but
which turns out to be dissipative (see Fig. 4.1). By combining the two interpolation
schemes (Yl and Yr), the maximum principle is now ensured (by construction) even
if we loose linearity (through the choice between the two schemes at each node) and
conservativity. Its major property is that it is unconditionaly stable, which enables
to choose ∆t and ∆x independently from each other.

We should underline that it has been designed for smooth functions modelling
bubbles (i.e. equal to 1 or to 0 on large intervals with smooth transitions between 1
and 0). That is why we do not present any discontinuous simulation in the next part.

4. Simulations

In order to highlight the numerical properties of the MOC2 scheme, we present
in this section some numerical simulations. The first case shows the advantage of
combining two 2nd-order schemes for the linear transport equation with constant
velocity (u=0.5). We consider the initial condition over the domain [−2,2]:

Y0
1 (x)=

{

1 if x∈ [−0.4,0.4],

0 if x∈ [−2,−0.7]∪ [0.7,2],
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Fig. 4.2. MOC2 scheme for a bubble-kind solution

Fig. 4.3. Convergence of the MOC2 scheme

with a polynomial regularization (of 5th degree). We impose periodic boundary con-
ditions so that we must recover the initial condition at time T =8. In this case,
∆t=8/300 and ∆x=4/250 (∆t is chosen sufficiently small so that the upwind scheme
is stable and can be used for comparisons). We see on Fig. 4.1 that when interpolating
exclusively by means of Yl, numerical dissipation occurs whereas the combination of
Yl and Yr enforces the maximum principle: Indeed, the solution provided by MOC2
matches with the exact solution (Fig. 4.2). Under the CFL condition, the upwind
scheme converges too but is much more diffusive.
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(a) ∆t=0.08,∆x= 4

3
×10−2,λ=3

(b) ∆t=0.08,∆x=0.016,λ=2.5

Fig. 4.4. Error plot for different λ

We emphasize the order 2 of the method on Fig. 4.3 for ∆t∝∆x by representing
the numerical error ‖YMOC2−Y‖/‖Y‖ with respect to ∆x. The underlying initial
condition is still Func. Y0

1 described above.

As for the discretization parameters, we know that the MOC2 scheme allows to
choose ∆t and ∆x independently from each other. For λ∈Z, the scheme is exact in
this constant case, unlike when λ 6∈Z. It can be infered from the comparison between
Fig. 4.4(b) (where λ=2.5 and the error is of order 10−3) and Fig. 4.4(a) (where λ=3
and the error is about 10−14). The initial condition associated to this test is the C∞
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Fig. 4.5. Solution of the Burgers equation at time 0 and 0.4

function with compact support:

Y0
2 (x)=exp

−x2

1−x2
1(−1,1)(x).

We end the numerical section with a nonlinear application, namely the 1D Burgers
equation:

∂tU +U∂xU =0.

As explained in § 2.2, the upstream point is localized by means of a 2nd-order projec-
tion formula involving the term U∂xU(tn,xi) instead of −∂tU(tn,xi) whose discretiza-
tion would require two time levels of data. We endow the equation with the initial
condition Y0

2 . It is proven that there exists a finite time when characteristics cross
and a shock forms [11]. We see on Fig. 4.5 the initial condition together with the nu-
merical solution given by MOC2 after the shock formation. Not only do these results
prove that our scheme is able to cope with nonlinear problems, but they also go to
show that it may capture shocks, although it has been designed for smooth contexts.

5. Conclusion We have designed in this paper a new numerical method of
characteristics which is 2nd-order accurate so as to simulate smooth solutions to
convection problems such as the linear transport equation or the Burgers equation.
The main point is the combination of two 2nd-order interpolation formulae to ensure
the maximum principle by construction. This procedure results in a nonlinear stable
scheme which has proven to give expected results relative to the order of accuracy in
various cases and without CFL-kind condition. Moreover, numerical resultats tend to
show that the scheme is able to capture shocks.

However, the strategy of choosing one interpolation formula or the other has to
be refined. In addition, this scheme may be extended to nonhomogeneous meshes in
1D before being adapted to higher dimensions. We thus have to pay attention to the
two steps composing our method. On 2D and 3D cartesian meshes, both seem to be
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applicable. For general meshes, several procedures of construction of characteristic
curves had been published [8, 16]. In our case, we have to bear in mind that it
is necessary to discretize derivatives of the velocity field. As for the interpolation
step, the same idea may adapt, based on geometrical arguments, as soon as there
exists a structure of neighbouring elements. For instance, on conformal triangular or
quadrangular meshes, we can think of a 6-point interpolation formula involving the 3
or 4 neighbours.
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