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Abstract—We propose an algorithm for parallel state space
construction based on an original concurrent data structure,
called a localization table, that aims at better space and
temporal balance. Our proposal is close in spirit to algorithms
based on distributed hash tables, with the distinction that states
are dynamically assigned to processors; i.e. we do not rely on
an a-priori static partition of the state space.

In our solution, every process keeps a share of the global
state space. Data distribution and coordination between pro-
cesses is made through the localization table, that is a lockless,
thread-safe data structure that approximates the set of states
being processed. The localization table is used to dynamically
assign newly discovered states and can be queried to return the
identity of the processor that own a given state. With this ap-
proach, we are able to consolidate a network of local hash tables
into an (abstract) distributed one without sacrificing memory
affinity – data that are “logically connected” and physically
close to each others – and without incurring performance costs
associated to the use of locks to ensure data consistency.

We evaluate the performance of our algorithm on different
benchmarks and compare these results with other solutions
proposed in the literature and with existing verification tools.
At a more general level, the usefulness of localization tables
goes beyond the domain of formal verification, since it provides
an efficient substitute for concurrent hash maps. For instance,
our experiments show that our solution performed very well
against an industrial strength, lockless hash table (taken from
the Intel-TBB).

I. INTRODUCTION

Model-checking is a very demanding activity in terms
of computational resources. As a result, the extensive need
for memory and computation power has resulted in the
design of model checking algorithms that target parallel and
distributed machines. Variations between these algorithms
are often explained by differences between the targeted
architectures – shared-memory versus distributed memory,
clusters, ... – or differences on the criteria to optimize –
achieving better spatial balance between processes, lowering
synchronization costs, ...

We propose an algorithm for parallel state space construc-
tion intended for shared memory, multiprocessor machines.
(We focus here on the exhaustive generation of the state
space of finite-state transition systems, often a preliminary
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step for model-checking.) The basic idea behind a state space
construction algorithm is pretty simple: take a state that has
not been explored (a fresh state); compute its successors
and check if they have already been found before; iterate.
Hence, a key point for performance is to use an efficient
data structure for storing the set of generated states and for
testing membership in this set.

In our approach, the goal is to build the state space of
a system concurrently in such a way that: (1) the share
of state space build by each processor be as uniform as
possible; and (2) the processor occupancy is maximal. Our
algorithm builds on previous work [23] and is based on the
same simple design: the global state space is stored in a set
of local containers (e.g. hash tables), each controlled by a
different processor, while only a small part of the shared-
memory is used for coordinating the state space exploration.
This is close in spirit to algorithms based on distributed hash
tables, with the distinction that we choose to dynamically
assign states to processors, that is, we do not rely on an
a-priory static partition of the state space.

Data distribution and coordination between processes is
made through a localization table (LT), that is a lockless,
thread-safe data structure that approximates the set of states
being processed. The localization table is used to dynam-
ically assign newly discovered states and behaves as an
associative array that returns the identity of the processor
that own a given state. With this approach, we are able to
consolidate a network of local hash tables into an (abstract)
distributed one without sacrificing memory affinity – data
that are ”logically connected” and physically close to each
others – and without incurring performance costs associated
to the use of locks to ensure data integrity.

The paper is organized as follows. In Section II we
review the related work. Section III details our algorithm
and defines the data structure for localization tables. Before
concluding, we report on experimental results obtained on a
set of typical benchmarks and compare our approach with
solutions already proposed in the literature.

II. RELATED WORK

Model Checking [8] is an automated verification method
used to check whether the model of a system meets a given



specification. This technique relies on the exploration of
the state space of the model. State space construction can
be classified as an irregular parallel problem because state
graphs may be highly irregular, see [9] for a discussion
on this topic. As a consequence, when parallelizing this
problem, special attention should be taken to ensure a good
load balancing among processors.

Several approaches have been proposed, since the early
1990s, for parallel and distributed state space exploration.
These solutions adopt, in their vast majority, a common
paradigm that could be labeled as “homogeneous” paral-
lelism – a Single Program Multiple Data (SPMD) program-
ming style – such that each processor performs the same
steps concurrently. Most of these solutions, to mention a
few [1, 7, 10, 18, 20, 24], were intended for distributed
computers and rely on slicing functions – that is functions
that statically assign a state to a processor – and basically
only differ by the nature of these functions. The choice of
slicing functions has a major influence on the load balance
and data locality of the algorithms.

A smaller number of solutions target shared memory
machines [11, 12, 13, 15, 1]. Like in our case, some of
these solutions are based on the use of hash tables to store
the states. An example is the version of DiVinE [2] for
multicore machines, that is based on a static partitioning
scheme and where each process owns a private hash table.
Another example is the parallel version of Spin [12, 11]
which uses the stack-slicing strategy to share work in com-
bination with a shared hash table protected by a fine-grained
locking scheme. This work has been recently extended with
a lockless shared hash table based on atomic primitives [15]
(CAS – Compare & Swap). Additionally, we can mention the
work of Inggs et al. [13], which proposes a parallel algorithm
based on a work stealing scheduling paradigm to provide
dynamic load balancing. In their case, the data structure used
to store the states is an “unsafe” shared hash table.

In the context of this work, we propose an extension of
an algorithm that we defined in [23], which is based on
two data structures: a lock-free, shared Bloom filter [5] to
coordinate the data distribution; and local data containers
to explicitly store the data (for instance, our initial
implementation was based on AVL trees). The Bloom
filter is used to represent, in a very compact way, the set
of states that have already been found and to efficiently
test whether a given state has already been found. Due to
the probabilistic nature of the Bloom Filter, the algorithm
is based on multiple iterations in order to perform an
exhaustive exploration. In a first phase, the algorithm is
guided by the Bloom filter until no new states can be found.
During this phase, states found by a processor are stored
locally in two dictionaries: one for states that, according to
the Bloom filter, have also been found by another processor;
the other for fresh states. Since the Bloom filter may, at
times, falsely report that a state has already been visited,

we need to handle these collision states in a second phase
of the algorithm. The computation stops when there are no
more states to explore and no more collisions.

Our Contributions: The algorithm proposed in this paper
improves on our previous design and replaces the Bloom
Filter by a dedicated data structure, the localization table.
Unlike Bloom Filters, this data structure can be used to find
the processor that owns a given data item – a state in our
case – and not only if the object was already found. This
simple addition significantly enhance the performance of our
previous algorithm and also simplifies its logic. Indeed, it is
now possible to solve possible collisions on-the-fly and to
get rid of the collision resolution phase.

Our contributions are twofold. First, in the formal ver-
ification domain, we define a new algorithm for parallel
state space construction. Our algorithm is able to exploit
parallelism in all possible cases and, unlike algorithms based
on slicing functions or heuristic rules, is compatible with
dynamic load-balancing techniques. Second, in the parallel
computing domain, the combination of local hash tables with
a localization table provides an interesting implementation
for concurrent hash maps that may be useful in other
situations.

Our preliminary results are very promising. We observe
performances close to those obtained using an algorithm
based on lockless hash tables (that may be unsafe) and
that outperforms an implementation based on the concurrent,
unordered map provided in the Intel Threading Building
Blocks [21], an industrial strength lockless hash table.

III. DESCRIPTION OF THE ALGORITHM

Our algorithm follows a “homogeneous” parallelization
approach, where every processors execute the same program
simultaneously and each processor handles its own local
view of the state space. Coordination between the processors
is based on a Localization Table (LT for short), that is used
to allocate newly discovered states to processors.

The LT is used to test whether a state has already been
found and, if so, to keep track of the location – the processor
id – where the state is held. The work performed by each
processor is pretty simple: generate a state using the model
of the system, say s, and check in the LT where it could
have potentially been assigned. If s is a newly discovered
state, it will be assigned to the processor who generated it.
Otherwise, the LT will return the location where the state s
is assigned, say LT(s). This approach has the advantage to
isolate the local hash tables; each processor has exclusive
write access to its local table, whereas concurrent read
access are unrestricted. As a result, we consolidate a network
of distributed hash tables into a single, concurrent data
structure. Another advantage is that we can easily resize
local hash tables, as needed, without blocking the entire
exploration.



We describe more precisely how the LT is implemented
in Section III-A. An advantage of our design is to be
thread-safe: operations on a LT are simple and can be
implemented using atomic actions. Another advantage is the
small footprint of the LT . To summarize, our goal is to
combine the advantages of distributed and shared hash tables
for parallel state space construction in a single algorithm.

In the remainder of the text, we use N to denote the num-
ber of processors and 1..N for the natural interval between
1 and N . We define the localization table in Sect. III-A. The
work-sharing techniques used in our algorithm is discussed
in Sect. III-B while Sect. III-C gives some pseudo-code and
further explanations about the algorithm.

A. Localization Table

Storing the relation (s, LT(s)) – associating each state, s,
with the processor that owns it – in a single table would
require a very large amount of memory. Actually, it would
defeat the need to store the state themselves. Instead, the
idea is to use a notion of key associated to a state and to
store the association between keys and processors. In our
implementation, keys are computed using hash-functions and
we will use a scheme based on multiple keys.

A localization table is essentially a “table” that associates
a processor id – a value in 1..N – to every key in the table.
A straightforward implementation is to use an integer vector
for the underlying table. We can implement the table using
a vector V of size n and, for computing the key of a state,
an independent hash function, h, with image in 1..n. In this
case, we can check if a state s has already been found by
looking into the local table of processor V [h(s)]. While this
implementation is simple, its disadvantage is that it is not
possible to ensure a fine dynamic distribution of the states
if h is not uniform. Indeed, if processor id1 finds a new
state, s, such that V [h(s)] = id2, then we need to transfer s
between the two processors. A solution is to increase the size
of the vector – but this has a direct impact on the memory
consumption – or to use better hashing functions – but this
has an impact on the performances.

We propose another implementation of the localization
table that improves upon the choice of a vector. Inspired
from our previous experience with Bloom Filter (BF), the
idea is to use a finite family of hashing functions h1, . . . , hk.
To test if a state s is in the LT , we search if the key h1(s)
is in LT. If it is not, we know that the state is fresh. If
LT(h1(s)) = id1 then we check if s is in the local table
of processor id1. If s is not owned by id1, we continue
searching with the key h2(s) and so forth.

This is only a rough description of how the LT works.
Next, we define more formally the operation of our data
structure. In particular, we explain how to deal with states
that are not in the processors LT(h1(s)), . . . , LT(hk(s)), that
we call collision states. By convention, our algorithm will

route a collision state to the last processor found, that is
LT(hk(s)).

A Localization Table, L, is defined by two parameters:
its size n; and a family of k independant hashing functions
h1, . . . , hk with image in 1..m (where we choose m such
that n � m). In our implementation, we typically choose
64 bytes hash-functions, that is m = 264, while we choose
for n an over-approximation of the state space size (see the
discussion on ratio in Sect. IV). Given the performances of
our test machine, we generally work with a billion states,
that is n ≈ 230.

A localization table L of size n is an array of size n
containing pairs of the form (p, d), where p is a processor
id (p ∈ 1..N ) and d is a key (d ∈ 1..m). To look for values
inside of L, we use a fixed surjective function map, from
1..m to 1..n. Hence, to check the value associated to the
key hi(s), we look in the array L at index map(hi(s)).

Initially, an empty LT is an array initialized with the value
(0, 0). Assume that the processor id attempts to insert a state
s into L. We define this operation in Fig. 1 using pseudo-
code. The function takes as input a state and a processor
id and returns a pair made of: a status, to determine if the
element is new (or old); and the identifier of the processor
who owns the state. The insertion operation is performed by
looking successively at the elements with index map(hi(s))
in L for all i ∈ 1..k. There is three possible cases at each
step:

• if L[map(hi(s))] = (0, 0) then we know for sure that
the state is fresh (it has never been added before). We
can stop our iteration and write the pair (id , hi(s)) in
L. This can be done using an atomic compare and swap
operation;

• if L[map(hi(s))] = (id ′, d) and d 6= hi(s) then we
cannot decide if the state s has been found and we
continue to the next iteration, with the key function
hi+1;

• if L[map(hi(s))] = (id ′, hi(s)) then we answer that
s is in the local table of processor id ′ with high
confidence. With this approach, states with the same
hash value are not handled at the LT level. In our
algorithm, these collisions will be spotted when the
processor tries to recover the state from the local table
of id ′. In order to keep the consistency of the LT and
to prevent states from being stored more than once,
we choose to assign s to the processor id ′ and this is
handled like a collision state.

Finally, in the case where we cannot decide after checking
the values of L[map(hi(s))] for i ∈ 1..k, we also say that s
is a collision state and we choose to assign s to the processor
id ′ such that L[map(hk(s))] = (id ′, d).

The operation for checking whether a state s is already
in the LT is very similar to the insertion function. We
test successively if there is an index i ∈ 1..k such that



f u n c t i o n t e s t o r i n s e r t ( s : s t a t e , i d : 1 . . N) : ( s t a t u s , i d )
( p , d ) ← ( 0 , 0 ) ;
f o r i in 1 . . k do

( p , d ) ← LT [ map (hi ( s ) ) ] ;
i f p = 0 / / the slot is empty means that s is fresh
then LT [ map (hi ( s ) ) ]← ( id , hi ( s ) ) ;

re turn ( new , i d ) ;
e l s i f d = hi ( s ) / / the state s may already be in processor p
then return ( old , p ) ;
e n d i f

endfor
/ / state s is a collision – assign it to processor d;
re turn ( old , d ) ;

Listing 1. Insertion in the Localization Table

L[map(hi(s))] = (id i, hi(s)), stopping if one of the po-
sition in L is empty. If this is the case, we know that s is
not in the LT . If we find no match after k attempts, then we
consider that s is a collision state that belongs to idk.

Figure 1. Insertion in a Localization Table.

In Figure 1 we illustrate the insertion and test operation
for three data items: x, y, and z; performed in this order
by the processors P1, P2 and P3. The figure display a LT
of size n = 4 with two independent hash functions h1

and h2. We assume that k = 2 and that m = 31. The
insertion of x requires only one operation since the slot at
position map(h1(x)) is initially empty. As a result the slot is
associated to processor P1 for elements with key 17. Element
y is inserted at the second attempt, since the slot in position
map(h1(y)) is already filled and that h1(y) 6= d1. Finally,
element z cannot be properly inserted – it is a collision –
and it is assigned to processor P2.

B. Work-Sharing Techniques

Our algorithm relies on two different work-sharing tech-
niques to balance the working load between processors.
We use these mechanisms alternately during the exploration
phase depending on the processor occupancy. First, we
use an active technique very similar to the work-stealing
paradigm of [13]. This mechanism uses two stacks: a private
stack that holds all states that should be worked upon;
and a shared stack for states that can be borrowed by

idle processors. This shared stack is protected by a lock
to take care of concurrent access. The second technique
can be described as passive and has the benefit to avoid
useless synchronization and contention caused by the active
technique. In the passive mode, an idle processor waits for a
wake-up signal from another processor willing to give away
some work instead of polling other shared stacks. The shift
between the passive and active modes is governed by two
parameters:
• the private minimum workload, which defines the min-

imal charge of work that should be kept private. The
processor will share work only if the charge in its
private stack is larger than this value;

• the share workload, which defines the ratio of work
that should be added in the shared stack if the load
in the private stack is larger than the private minimum
workload.

Our implementation of the work-stealing paradigm is
interesting in its own right since it differs from [13] by its
use of unbounded shared stacks and the use of a “share
workload” parameter. The description of this extension is
also interesting since it shows that common optimizations
and load-balancing techniques are not precluded by our
algorithm, which is not the case with algorithms based on
static slicing functions.

C. Algorithm

To conclude this section, we give a high-level view of
our algorithm that can be described by the pseudo-code of
Listing 2. The diagram of Fig. 2 describes the shared and
local data structures used in the algorithm. Each processor
manages a “private work” stack of unexplored states and
a local hash table to store the states assigned to him. The
shared values are: the Localization Table; one bitvector of
size N to store the state of the processors (idle or busy), used
to detect termination; N stacks – one for each processor –
for the work sharing technique described in Sect. III-B; and
finally N collision stacks used to route collisions states to
their correct processors.

Figure 2. Shared and Private Data.

The state space exploration proceeds until no new states
can be added to the LT and all stacks are empty. Given
a state s, a processor, say my id, will check the LT to



whi le ( one p r o c e s s s t i l l busy )
whi le ( Proc [ my id ] . p r i v a t e s t a c k n o t empty )

do s ← remove s t a t e from Proc [ my id ] . p r i v a t e s t a c k ;
i f s n o t t a g g e d as c o l l i s i o n
then ( s t a t u s , i d ) ← LT . t e s t o r i n s e r t ( s , my id ) ;
e l s e ( s t a t u s , i d ) ← ( new , my id ) ; / / Collision state
e n d i f
i f s t a t u s = o l d
then i f s n o t in Proc [ i d ] . l o c a l t a b l e

then t a g s as c o l l i s i o n ;
add s to Proc [ i d ] . c o l l i s i o n s t a c k ;

e n d i f
e l s e

add s to Proc [ my id ] . l o c a l t a b l e ;
g e n e r a t e t h e s u c c e s s o r s from s
and p u t some in Proc [ my id ] . s h a r e d w o r k s t a c k ;
. . .

e n d i f
endwhi le
t r a n s f e r work from Proc [ my id ] . c o l l i s i o n s t a c k

and Proc [ my id ] . s h a r e d w o r k s t a c k
to Proc [ my id ] . p r i v a t e s t a c k ;

. . .
endwhi le

Listing 2. Algorithm pseudo-code

test whether s is new and, otherwise, what is the owner
of s. This information is returned by a call to the function
test or insert(s, my id) that is defined in Listing 1. During
the exploration, states that are labeled as new by the LT are
stored in the local table of the processor. On the opposite,
if the LT returns an owner id, then the process performs
a look-up operation over the local table of processor id to
check if the state is really there. If the state is not found,
we can tag it as a collision state and add it to the collision
stack of processor id. Collision states are specifically tagged
since they bypass the LT membership test and are directly
inserted in a local table. When the private work stack is
empty, work is transfered from shared work and collision
stacks; if they are also empty, the processor may “steal”
work from others (as described in Sect. III-B). The LT is
implemented using an atomic compare and swap primitive,
while locks are only used to protect the access to the other
shared data structures – the shared work and collision stacks
– which are not resource contention points.

Finally, termination can be easily detected by testing the
vector recording the states of processors; the algorithm may
safely finish if there is no more state to explore, that is
if the stacks of all the processors are empty and if all the
processors are idle.

IV. EXPERIMENTS

We implemented our algorithm using the C language with
Pthreads [6] for concurrency and the Hoard Library [4] for
parallel memory allocation. We developed a library for the
Localization Table with support for concurrent insertions
and we used Bob Jenkins’s hash function [14] to generate
hash keys from states. The Experimental results presented
here are obtained using a Sun Fire x4600 M2 Server,
configured with 8 dual core opteron processors and 208GB

of RAM memory, running the Solaris 10 operating system.
This machine is classified as Non-Uniform Memory Access
(NUMA) because the shared memory is physically divided
among the processors.

For the benchmark, we used models taken from two
sources. We have three classical examples: Dining Philoso-
phers (PH); Flexible Manufacturing System (FMS); and
Kanban – taken from [16] – together with 5 Puzzles models:
Peg-Solitaire (Peg); Sokoban; Hanoi; Sam Lloyd’s puzzle
(Fifteen); and 2D Toads and Frogs puzzle (Frog) – taken
from the BEEM database [19]. All these examples are based
on finite state systems modelled using Petri Nets [17]. This
means that, in these cases, a state is a marking, that is a
tuple of integers. Our algorithm may be adapted to other
formalisms, for instance including data, time, etc.

With our computer setup, we are able to tackle examples
with approximately 10 billions of states, but we selected
models with less than 500 millions of states in order to
complete our experiments in reasonable time. (A complete
run of our benchmark takes more than a week to finish.)

We study the performance of our implementation on
different aspects. While speedup is the obvious criteria, we
also study the memory footprint of our approach and the
physical distribution of states among processors.

A. Speedup and Physical Distribution

In Fig. 3 we give the observed speedup of our algorithm
on a set of examples. We give the absolute speedup, mea-
sured as the ratio between the execution time using N pro-
cessors (TN ) and the time of an optimized, sequential ver-
sion. Our implementation delivers some promising speedups.
The results also show different behaviors according to the
model. For instance, our efficiency1 may vary between
90% (Hanoi model) and 51% (Kanban model), whereas the
system occupancy rate2 is consistently over 95%. Clearly,
the algorithm depends on the “degree of concurrency” of
the model – it is not necessary to use lots of processors for
a model with few concurrent actions – but this is an inherent
limitation with parallel state space construction [9], which
is an irregular problem.

Concerning the use of memory, we can measure the
quality of the distribution of the state space using the mean
standard deviation (σ) of the number of states among the
processors. In our experiments, we observe that the value
of σ is quite small and that it stays stable when we change
the number of processors (see Fig. 8). For instance, we have
σ ≈ 1.5% for the Hanoi model and σ ≈ 7% for Kanban.
The difference between values of σ can be explained by the
difference in the “degree of concurrency”. It may also be
affected by the processor’s performance, that is, a processor
that handles “simpler states”, or smaller work units, may

1Efficiency is computed as the ratio between speedup, TN , and the
number N of processors.

2The occupancy rate measures the utilization of the machine CPUs



Figure 3. Speedup analysis.

dynamically assign more states than others. Finally, our
experiments are also affected by the Non-Uniform Memory
Access (NUMA) architecture of our machine, where the
latency and bandwidth characteristics of memory actions
depend on the processor or memory region being accessed.

B. Localization Table Configuration and Memory Footprint

The LT data structure is configured using two parameters:
its dimension (n) and the number of hash-functions keys
(k). The values of these parameters have an impact on the
performance. If the dimension is to small, the LT will get
quickly saturated and the number of collisions will increase.
Ideally, a LT of size n is sufficient for a space of n states.
However, hash functions are not perfect (uniform), which
affects our structure just like with standard hash table. In
our experiments, we observe that LT behaves well for load
factors (ratio between the number of states in the LT and its
dimension) lower than 0.7.

In Fig. 4, we display the ratio (in percentage) between the
number of collisions and the size of the state space, on the
Kanban model, for three different values of the load factor
and for different values of k.

Likewise, in Fig. 5 we show the impact of different load
factors (choice of the size of the LT) on the execution time
of the algorithm for a fixed model. Once again, we observed
that our LT gives better results when the load factor is in
average smaller than 0.7.

For the speedup results given in this Section, we have
adjusted the dimension of the LT to obtain load factors
smaller than 0.5 for every models and we have chosen to
limit ourselves to at most four hash-functions keys (k ≤ 4).
We decided to fix these settings beforehand in order to not
artificially improve our results and also to show the memory
efficiency of our solution. To illustrate this point, we may
observe that in the experiments of Fig. 5, the size of the LT
is of 1GB (that is approximately one billions data items) for
a load factor of 0.36, which is the only significant memory
overhead used by our solution.

C. Comparison With Other Tools and Other Algorithms

We conclude this section with a comparison with other
algorithms. We developed our own implementation of some

Figure 4. Collisions vs LT load factor.

Figure 5. Performance vs LT load factor.

classical parallel algorithms based on the use of hash tables.
In Fig. 6, we briefly describe the different implementations
used for this comparison. We decided to skip a comparison
with our previous work [23] because our current results are
at least twice as best.

Name Description
LT Distributed Table instrumented

with our Localization Table
Vector Vector of integers like structure: Localization

Table with only one key
Static States are distributed using

a static slicing function
Lockless Lockless shared hash table as

the shared space
TBB Unordered hash map as the shared space,

from Intel-Threading Building Blocks library

Figure 6. Algorithms selected for benchmark comparison.

Figure 7 shows the average speedups, over all models, for
the different implementations. The Lockless implementation
has the best performance but it is an unsafe solution, since
states may be skipped [3]. All the other implementations
are safe. We include the results for Lockless since it
provides a good reference for performance. Our algorithm
(LT) performs better than all the other implementations
for all models. As we mentioned earlier, the difference in
performance between Vector and LT is mainly due to the
non-uniformity of hash functions. This different is significant
especially for Sokoban and Kanban models (see Kanban
analysis at Fig 5). Concerning Static, an explanation for the
better performances is that we exchange less states between



processors: in some experiments with Static, we can observe
that up to 96% of the states have not been found by their
owner. The gain in performance compared to TBB (based
on an lockless, non-lossy hash table found in the Intel-
TBB [21]) may be explained by the adequacy of our data
structure to our targeted application (state space generation).
Indeed, in this application, we have many more reads than
writes (state spaces have more transitions than states). The
LT has several benefits in this case: (1) it delivers a low
complexity mechanism to grant exclusive write access for
the local hash-table; (2) the structure is cache-friendly since
data are stored in-place (avoiding pointers); and (3) the use
of local hash tables improves memory affinity, which is
important for NUMA machines.

Figure 7. Average Speedup analysis.

Figure 8. Average Mean-Standard Deviation analysis.

Concerning the memory distribution, we display the av-
erage mean-standard deviation for all implementations in
Fig. 8. The results show that the best distribution, by far,
is from the Static version. We can observe that all other
implementations have similar distributions. (The anomalous
values for N = 16 can be explained by the fact that, in
this case, we use all the processors of our computer.) In
the context of this work, we use no heuristics to ensure an
uniform partition of states, so the quality of the distribution
depends on the model “degree of concurrency” and the
performance of processors. A complete report on the results
of our benchmark is available in [22].

We have also compared our implementation with “state of
the art” verification tools that provide a parallel implemen-
tation. We looked both at the Spin and DiVinE tools. We
give some performance results but it is difficult to make a

fair comparison. For one thing, it has proved difficult to port
available implementations on the configuration used for our
experiment. For instance, our benchmark with DiVinE and
Spin are based on Linux instead of Solaris, which means that
we take advantage of more efficient librairies. On the other
hand, a major discrepancy lies in the fact that we compare an
algorithm with a tool. For instance, we do not make use of
any “general optimizations” techniques, such as local caches,
data-alignment optimizations, etc. Also, while Spin work
with compiled models, we currently use interpreted models.
DiVinE accepts both models but we use for this comparison
their interpreted variant. After these words of caution on
the significance of the comparison, we give some results
obtained on the Sokoban model. Using the parallel version
of Spin on our benchmarks, we observe a maximum speedup
of 3.6 using 8 cores (73s). Nonetheless, the sequential
performance of Spin (264s) is about 3 times better than our
prototype implementation of LT. In our experiments, LT is
marginally faster than Parallel Spin when both are running
on 12 cores and is faster using the 16 available cores. The
computation for Spin is of 81.2s for 12 cores and 82.3 for
16 cores, while we generate the state space in 80s with 12
cores and 64s with 16 cores using LT. Concerning DiVinE –
whose sequential performance is about 40% better than our
prototype implementation – LT matches the performance of
DiVinE when both are using 10 cores and outperforms it of
about 20% using 16 cores. More precisely, the running time
for DiVinE is of 96.5s with 10 cores – while LT time is of
96s – and 84.9s with 16 cores. It is possible to connect
this result with the comparison given in Fig. 7. Indeed,
DiVinE is based on a static slicing function to distribute
the states – as in the Static implementation of Fig. 6 – and
the difference of performance between LT and Static is of
about 30% on 10 cores and of almost 70% for 16 cores.
These preliminary results against two of the most popular
parallel model-checker are very encouraging since we have
a prototype implementation of LT.

V. CONCLUSION

We define a new parallel state space construction al-
gorithm targeted at shared memory machines. The main
innovation lies in a new data structure, named Localization
Table, that is used to coordinate a network of local hash table
in order to obtain an efficient concurrent hash map. This new
structure replaces the Bloom Filter that was used in one
of our previous work [23]. The LT is used to dynamically
assign newly generated states and behaves as an associative
array that returns the identity of the processor that owns a
given state.

A first implementation of our algorithm shows promising
results as we observed speedups consistently better than with
other parallel algorithms. For instance, our experimental
results show that efficiency varies between 90% and 50%,
depending on the “degree of concurrency” of the model. In



addition, our memory footprint is almost negligible when
compared to the total memory used for storing the state
space. For example, in the worst case (the Kanban model,
with 25GB) we consume less than 4% of the memory for the
LT and the different stacks used by our algorithm. That is
approximately 1GB of memory. The same benchmark also
shows that our implementation fares well when compared
with related tools. Indeed, our experiments show that our
solution performed very well against an industrial strength
lockless hash table, the concurrent hash map implementation
provided in the Intel-TBB. This may be explained by the fact
that we provide a concurrent data structure for encoding sets
that is optimized for the case where deletions are very rare
and the same item may be inserted several times, whereas the
Intel-TBB provide a general implementation. This is a very
encouraging since we obtained these results with minimal
optimizations (i.e. without resorting to global caches, data-
alignment optimizations, etc.), so there is still room for
improvements. Altogether, our solution fullfilled our goal
of having both the best temporal and spatial balance as
possible.

For future works, we are investigating a probabilistic
version of our current exhaustive algorithm. In this context,
the adjective probabilistic stands for an algorithm that builds
an underapproximation of the global state space, with a very
high probability of building the exact state space (by very
high, we mean a probability of failure less than 10−30).
The idea, basically, is to use an enhanced Localization Table
where only potential false positives are stored.

To conclude, we believe that our Localization Table can
be of great interest outside the domain of parallel model-
checking algorithm. For this reason, we are planning to
provide a functional API of our distributed hash table, com-
pletely self contained, that could be used in other situations
and that will only require minimal configuration.
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