
HAL Id: hal-00523188
https://hal.science/hal-00523188v1

Preprint submitted on 4 Apr 2011 (v1), last revised 9 Aug 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dynamic, Lock free Data Dictionary for Parallel State
Space Construction

Rodrigo Tacla Saad, Bernard Berthomieu, Silvano Dal Zilio

To cite this version:
Rodrigo Tacla Saad, Bernard Berthomieu, Silvano Dal Zilio. A Dynamic, Lock free Data Dictionary
for Parallel State Space Construction. 2010. �hal-00523188v1�

https://hal.science/hal-00523188v1
https://hal.archives-ouvertes.fr


A Dynamic, Lock free Data Dictionary

for Parallel State Space Construction

Rodrigo T. Saad, Silvano Dal Zilio and Bernard Berthomieu

CNRS; LAAS; 7 ave. Colonel Roche, F-31077 Toulouse, France

Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

{rsaad, dalzilio, bernard}@laas.fr

Abstract—We propose a novel algorithm for parallel state
space construction based on an original data structure, called
a localization table, that aims at better space and temporal
balance.

Our proposal is close in spirit to algorithms based on
distributed hash tables with the distinction that states are
dynamically assigned to processors; we do not rely on an
a-priori static partition of the state space. Distribution of
the states space and coordination between processes is made
through the shared access to a localization table, that is designed
to be a highly efficient, thread safe data structure. In our
solution, every process keeps a share of the global state space.
The localization table is used to dynamically assign newly
discovered states and behaves as an associative array that
returns the identity of the processor that owns a given state.
With this approach, we are able to consolidate a network of
local dictionaries into an (abstract) distributed data structure
without sacrificing memory affinity – data that are ”logically
connected” are physically close to each others – and without
incurring performance costs associated to the heavy use of locks
to ensure data integrity.

We evaluate the performance of our algorithm based on
experimental results obtained on different benchmarks and
compare these results with other solutions proposed in the
literature.

I. INTRODUCTION

Verification by way of model-checking is a very demand-

ing activity in terms of computational resources. Therefore,

it is not surprising that the extensive need for memory and

computation power has resulted in the definition of model

checking algorithms that target parallel and distributed

machines. Variations between these algorithms are often

explained by differences between the targeted architectures

– shared-memory versus distributed memory, clusters, ... –

or differences on the criteria to optimize – achieving better

spatial balance between processes, lowering synchronization

costs, ...

We propose an algorithm for parallel state space construc-

tion intended for shared memory, multiprocessor machines.

Our goal is to build the state space of a system concurrently

in such a way that: (1) the share of state space build by

each processor is uniform; and (2) the processor occupancy

This work has been supported by the French AESE project Topcased and
by région Midi-Pyrénées

is maximal. We are only interested here in the exhaustive

generation of the state space of finite-state transition sys-

tems, often a preliminary step for model-checking. The basic

idea behind a state space construction algorithm is pretty

simple: take a state that has not been explored (a fresh state);

compute its successors and check if they have already been

found before; iterate. A key point is to use an efficient data

structure for storing the set of generated states and for testing

membership in this set.

Our algorithm builds on previous work [20] and is based

on the same simple design: the global state space is stored

in a set of distributed dictionaries (e.g. AVL trees or hash

tables), each controlled by a single processor, while only a

small part of the shared-memory is used for coordinating

the state space exploration. This is close in spirit to algo-

rithms based on distributed hash tables, with the distinction

that states are dynamically assigned to processors; we do

not rely on an a-priory static partition of the state space.

Distribution of the states space and coordination between

processes is made through the shared access to a novel data

structure named localization table, that is designed to be a

highly efficient thread safe data structure. In our solution,

processes keep disjoint shares of the global state space.

The localization table is used to dynamically assign newly

discovered states and behaves as an associative array that

returns the identity of the processor that owns a given state.

With this approach, we are able to consolidate a network of

local dictionaries into an (abstract) distributed data structure

without sacrificing memory affinity – data that are ”logically

connected” and physically close to each others – and without

incurring performance costs associated to the heavy use of

locks to ensure data integrity.

The paper is organized as follows. In Section II we

review the related work. Section III details our algorithm

and defines the data structure for localization tables. Before

concluding, we report on experimental results obtained on a

set of typical benchmarks and compare our approach with

solutions already proposed in the literature. (Experiments

have been performed on a shared memory multiprocessors

computer, but our algorithm may be adapted to different

parallel or distributed architectures.) Our preliminary results

are very promising. We observe performances close to those



obtained using an algorithm based on lockless hash tables

(that may be unsafe) and outperforms an implementation

based on an industrial lockless hash table (the Intel Thread-

ing Building Blocks[18]).

II. RELATED WORK

Several approaches have been proposed, since the early

1990s, for exhaustive parallel state space exploration. These

early solutions adopt, in their vast majority, a common

paradigm that could be labeled as “homogeneous” paral-

lelism – a Single Program Multiple Data (SPMD) program-

ming style – such that each processor performs the same

steps concurrently. Most of these approaches were intended

for execution on parallel computers.

Subsequent proposals have addressed the problem of

using shared memory machines [1, 6]. Allmaier et al. [1]

were among the first to implement a parallel state space

construction algorithm for shared memory systems. In their

design, states are stored in a concurrent balanced-tree and

data consistency is solved by using locks together with a

“splitting-in-advance” scheme to reduce contention. Later,

with the advent of fast network connections, commodity

desktop machines were used to create affordable clusters,

delivering not only more memory but also more compu-

tational power. This shift in hardware industry trends was

accompanied by a very active period for algorithmic research

on formal verification. Many of the solutions proposed in

this period [1, 15, 7, 9, 10, 17, 21] rely on slicing functions

– that is functions that statically assign a state to a processor

– and basically only differ by the nature of these functions.

The choice of slicing functions has a major influence on the

load balance and data locality of the algorithms.

Since the mid 2000s, research have been impacted by

another shift in the computer hardware industry, with the

advent of affordable multicore processors. As a conse-

quence, new parallel algorithms for model checking have

been proposed. We can mention the work of Inggs et al [12],

which propose a parallel algorithm based on a work stealing

scheduling paradigm to provide dynamic load balancing

without a blocking phase. In their case, the data structure

– the dictionary – used to store already visited states is a

global hash table. Unlike [1], access to the dictionary is not

protected by locks, hence it is not possible to ensure data

integrity (see [2] for a discussion on using shared hash tables

for model-checking). Another interesting work is [11] – the

first, to our knowledge, that specifically focus on processor

– which uses the notion of irreversible transitions to divide

the state graph into disjoint sub-graphs.

In the context of this work, we propose an extension of

an algorithm that we defined in [20], which is based on

two data structures: (1) a lock-free, shared Bloom filter to

coordinate the data distribution ; and (2) local dictionaries

– we use AVL trees in our implementation – to explicitly

store the data. The Bloom filter is used to represent, in

a very compact way, the set of states that have already

been found (and to efficiently test whether a given state has

already been found). Due to the probabilistic nature of the

Bloom Filter, the algorithm is based on multiple iterations

in order to perform an exhaustive, deterministic, state space

exploration. In the first phase (exploration), the algorithm is

guided by the Bloom filter until no new states can be found.

During this phase, states found by a processor are stored

locally in two dictionaries: one for states that, according to

the Bloom filter, have also been found by another processor;

the other for fresh states. Since the Bloom filter may, in rare

cases, falsely report that a state has already been visited

(what is called a false positive), we need to handle these

collision states in a special way. This is done in the second

phase of the algorithm (collision resolution) where collisions

are analyzed to find possible false positive. The algorithm

stops when there are no more states to explore and no more

collisions.

The algorithm proposed in this paper follows a similar

design but replaces the Bloom Filter by a dedicated data

structure, the localization table. Unlike Bloom Filters, this

data structure can be used to find the processor that owns

a given state. This simple addition significantly enhance the

performance of our previous algorithm and also simplifies its

logic. Indeed, it is now possible to solve possible collisions

on-the-fly and to get rid of the collision resolution phase.

While this addition may seem minor, the real contribution

lies in the definition of the localization table, that provides

an efficient implementation of a safe, lock free, distributed

dictionary.

A. Contributions

Our contributions are of interest for two broad domain

of computer science. First, in the formal verification com-

munity, we define a new algorithm for parallel state space

construction able to outperforms related solutions. Our al-

gorithm is based on an efficient lockless solution that is able

to exploit parallelism in all possible cases without compro-

mising data integrity (it is thread safe). Moreover, unlike

algorithms based on slicing functions or heuristic rules,

our solution is compatible with dynamic load-balancing

techniques. Second, in the parallel computing community,

we present a new implementation for a (safe) lock free,

distributed, data-balanced, dictionary. Indeed, we believe

that our definition of localization table may be interesting in

its own right as a space-efficient data structure. In particular,

our experiments show that localization table performs very

well against industrial strength lockless hash table (the Intel

Threading Building Blocks[18]

III. DESCRIPTION OF THE PARALLEL ALGORITHM

Our new algorithm fallows the same guidelines then

our previous one, it is elaborated on the work-stealing

paradigm and the “homogeneous” parallelization approach,



where each processor performs the same steps concurrently.

Work is distributed homogeneously between processors and

each processor handles its own local view of the state space.

Coordination between the processors is based on our new

data structure called Localization Table (sec III-A). This

structure is primarily used to dynamically distributes the

newly discovered states among the processors according to

the exploration pace; second, it behaves like an associative

array for states already assigned, returning the identify of

the processor that holds this state.

Figure 1 succinctly presents the algorithm structure. In

Brief, the main concept of our novel solution is the encap-

sulation of local dictionaries through the shared Localization

Table. The basic idea behind is pretty simple, take a state

and ask to the Localization Table if it is new or old. If

it is a newly discovered state, it will be assigned to the

discoverer processor, otherwise, the Localization Table will

return the identifier of the process owner. According to

this, it is possible to recover this state by accessing the

respective local dictionary, in other words, the dictionary that

belongs to the process addressed by the given identifier. This

procedure enables us to isolate each local dictionary and

grant exclusive writing privilege(but concurrent read access

are allowed). As a result, this isolation raises the requirement

of critical sections for writing without compromise data

integrity.

The first advantage of this design is a legacy of previous

work, that is the absence of heavy locks. Our Localization

Table is almost as simple as the Bloom Filter and its

implementation can be easily accomplished using atomic

actions, ensuring secure access to data. Second,the Local-

ization Table is a cache friendly data structure because it

stores all data in-place. Hence, such a structure will benefit

state spaces that have more transitions than states, that is to

say, models where the Localization Table is used mostly to

recover the process id that holds a given state.

Our Localization Table is presented at Section III-A.

Section III-B introduces the memory disposition scheme

of our algorithm. In Section III-C, we discuss the work-

sharing techniques used in our algorithm. The pseudo-code

and further explanations about the algorithm is given at

section III-D.

In the remainder of the text, we assume that there are

N processors and that each processor is given a unique id,

which is an integer in the interval 0..N − 1.

A. Localization Table

Our method is based on a novel data structure that

assigns states and keeps a directory of this distribution. This

structure is basically a simple ”table“ where processors id

are correlated with hash keys. Its operation is simple, it

receives as input a state and returns an id. It would be

simple to implement an exact directory using a Vector of

integers, correlating every position (hash key) to a unique

Figure 1. Algorithm abstract view.

processor identifier. Although this may be very straightfor-

ward to implement and use, it will not ensure a fine dynamic

distribution of states due to the high number of collisions,

for instance, states that have the same hash key. Of course,

it could be circumvented by a long vector but it would

result in extra memory consumption. Consequently, inspired

by the Bloom Filter, we developed a new space-efficient

probabilistic data structure in order to have a better dynamic

distribution without increase the vector size. This new struc-

ture is an enriched Bloom Filter named Localization Table

because for every state already member of the set, it returns

a list of processors identifiers (id numbers).

In brief, a Bloom filter ([4]) is a space-efficient data

structure for encoding set membership that supports two

operations: insertion of an element in the set and test that

an element is in the set. A filter B of size n is implemented

as a vector of n bits and is associated with a series of

k independent hash function (hi)i∈1..k with image in the

interval 1..n. An empty set is represented by a vector with

all bits set to 0. Insertion of the element x in B is performed

by setting the bits hi(x) of the vector to 1 for all i in 1..k.

Reciprocally, to query whether an element y is in B, we test

that the bits (hi(y))i∈1..k are all set to 1 in the vector. If

it is not the case, then we are sure that y is not in the set

encoded by B. If all these bits are set to 1, then we only have

a probabilistic result: in the case where y is actually not in

the set, we say we have a false positive. The probability

of false positive is a function of the size, n, number of

hash functions, k, and number of elements inserted so far.

Hence the parameters n and k should be carefully chosen in

an implementation. Figure 2 illustrates insertion and query

operations on a Bloom filter with size n = 16 and k = 3.

Starting from an empty set (above), we show the result after

the insertion of two elements, x and y. Element z is an

example of false positive.

Our Localization Table inherits the same operations and

properties from a normal Bloom Filter. It differs only

because it is implemented as a vector of bytes instead of bits,

providing the capacity of storing small pieces of information

for each one of k independent hash functions (hi)i∈1..k.

This information is the unique id number used to identify

a given processor. The insertion of an element x over the



Figure 2. Illustration of some operations on a Bloom filter.

Localization Table LT is performed by setting the bytes

hi(x) with the processor id value for all i in 1..k. We

define two types of insertion: complete, when all bytes are

set (has the same id) and incomplete, when at least one

of the bytes had already been set by a previous insertion

operation (another id). The test operation is not only used

to know if a given element is already a member of the set, it

also returns the possible processors id that may hold it. To

query whether an element y is in LT , we test that the bytes

(hi(y))i∈1..k are all set. If an element had been add through

a complete insertion operation, the test operation is going

to return only one id. On the other hand, if it had been add

through an incomplete insertion operation, it will return as

many different id it had found. In both cases, complete or

incomplete, only one of the processors has the element. With

respect to false positive elements, our Localization Table

has the same probability as a normal Bloom Filter and,

by convention, our algorithm will route all false positive

elements to the first id found (see sec III-D). Figure 3

illustrates the insertion and test operation over three elements

(x, y, z) for three processors (N = 3,which are {P1, P2 and

P3}) using three independent hash function (k = 3).

With respect to its limitations, it is not possible to guar-

antee that duplications will never happen. Although it is

implemented using atomic actions for an individual hash-

function insertion, it is impossible to control the data race

condition when two (or more) processors are inserting the

same state. It can be explained by the fact that it will imply

the insertion of the same sequence of k hash-functions,

characterizing a classical race condition.

B. Shared and Local Data

Figure 4 illustrates the shared and local data structures

used in the algorithm. It presents almost the same archi-

tecture from our previous work. In addition to the shared

Localization Table and the private local dictionaries, each

processor also manages two stacks of unexplored states for

work-sharing: one for local work; the other for sharing work

with idle processors. With respect to false positives states,

they had been been separated into a different stack because

they represent element collisions. Accordingly, these ele-

a)Insertion Operation

a)Test Operation

Figure 3. Illustration of some operations on a Localization Table.

ments are not part yet of the set and they are going to be

forward to the first processor id returned by the Localization

Table. Such procedure will handle these elements as static

assignments, forwarding it every time a different processor

found one of these elements. Finally, in order to detect

termination, we also manage a shared vector that stores the

current state of processors (either idle or busy).

Figure 4. Shared and Private Data Model Scheme.

C. Work-Sharing Techniques

Our algorithm relies on two different work-sharing tech-

niques to balance the working load between processors.

We use these mechanisms alternately during the exploration

phase in accordance with the processor occupancy. First,

we use an active technique very similar to the work-stealing

paradigm of [12]. This mechanism uses two stacks: a private

stack that holds all states that should be worked upon; a

shared stack for states that can be borrowed by idle proces-

sors. The shared stack is protected by a lock to take care of

concurrent access. The second technique can be described as

passive and has the benefit to avoid useless synchronization

and contention caused by the active technique. In the passive

mode, an idle processor waits for a wake-up signal from

another processor willing to give away some work instead



of polling other shared stacks. The shift between the passive

and active modes is governed by two parameters:

• the private minimum workload (pr work load), which

defines the minimal charge of work that should be

kept private. The processor will share work only if the

charge in its private stack is larger than pr work load;

• the share workload (sh work load), which defines the

ratio of work that should be added in the shared

stack if the load in the private stack is larger than

pr work load.

Our implementation of the work-stealing paradigm differs

from [12] by its use of unbounded shared stacks and the

sh work load parameter.

D. Algorithm

As mentioned before, our solution makes use of our

shared Localization Table to test whether a state may have

already been discovered before, otherwise, to recovery which

processor had stored it (processor id). To overcome the

problem of false positives inherited from our inspired data

structure (Bloom Filter), these elements are forward to

a given processor according to the first id returned by

the Localization Table. This procedure will prevent others

processors from storing this state many times, handling these

states as static assignments. The rest of the algorithm works

like a common exploration engine, that is, if the membership

test fails for a given state, it explores its successors until

exhaustion.

In the remaining of this section, we define our algorithm

using pseudo-code. The data structures used in the algo-

rithm are composed of shared and local elements. Shared

variables are: (1) the Localization Table LT, used to test

whether a state had already been discovered or not; (2)

the bitvector V, that stores the state of the processor (0 for

idle and 1 for busy); (3) the shared stacks Shared Stack[0],

. . . , Shared Stack[N-1]; and (4) the false positive stacks

Positive Stack[0], . . . , Positive Stack[N-1]. Processor-local

variables are the private stack, private stack, of unexplored

states and one Hash Table, local table, to store states

discovered by this processor.

1) Pseudo-code: The state space exploration proceeds

until no new states can be added to the Localization Table

LT. During the exploration, all states appointed by LT as

newly discovered states are stored locally in the local table.

On the opposite, every time LT returns a list of id’s, the

process performs look-up operations over the local table of

the processors identified by these id’s. If the state had not

been found in one of these processors, it will be labeled as

a false positive and forward, through the Positive Stack, to

the first id returned by LT. These states are marked with a

special tag because they bypass the LT membership test and

are directly inserted at the local table. Figure 5 depicts the

algorithm pseudo-code.

2) Termination Detection: Termination detection is en-

sured through a simple test over the bit vector V, which holds

the states of processors, and consumes no resources. The

algorithm may safely finish if all stacks of all processors are

empty, in other words, if there is no more states to explore.

IV. EXPERIMENTS

We implemented our algorithm using the C language with

Pthreads [5] for concurrency and the Hoard Library [3] for

parallel memory allocation. We developed our Localization

Table with supports for concurrent insertion. The library

makes use of Bob Jenkins’s hash function [13]. Experimental

results presented in this section were obtained on a Sun

Fire x4600 M2 Server, configured with 8 dual core opteron

processors and 208GB of RAM memory, running the Solaris

10 operating system.

The finite state systems chosen for our benchmarks were

took from two sources. We experiment three classical ex-

amples of Petri Nets from [14] together with 5 Puzzles

models from the BEEM database [16]. Figure 6 presents all

selected models highlighting their respective version. The

first column illustrates the abbreviations used fallowed by

a brief description. The version chosen for each model was

motivated by the number of states, we selected models with

less than 5.108 states. The last columns gives the source

from where each model was extracted. We give several

results detailing the performance of our implementation.

While speedup is the obvious criteria when dealing with

parallel algorithm, we also study the memory footprint of

our approach and the physical state distribution over all

processors.

Model Description Parameter Source

States

PH Dining 13 subnets [14]

14.107 Philosophers

FMS Flexible initial marking [14]

24.107 Manufacturing System weight 8

Kanban Kanban System initial marking [14]

38.107 weight 9

PEG Peg-Solitaire version=2, [16]

18.107 Game crossways=1

Sokoban Computer version=2 [16]

7.107 Maze Game

Hanoi Tower of n=17 [16]

38.107 Hanoi puzzle

Fifteen Sam Lloyd’s cols=4, [16]

23.107 fifteen puzzle rows=3

Frog 2D Toads and n=6, [16]

53.107 Frogs puzzle m=5

Figure 6. Benchmark Examples.

A. Localization Table Configuration and Memory Footprint

The Localization Table (LT) is configured by setting

two parameter: its dimension (n) and the number of hash-

functions keys (k). These setting must take into account the



while least one process

is busy do

while private_stack is not empty do

s := pop(private_stack);

if s is not tagged

// Question LT about s
result := LT.test_or_insert_with_my_id(s,my_id)

else

// False Positive, bypass LT
result := 0

endif

if list_size(result) <> 0

// Old Value, iterate over i processors
// Initialize bool variable named found
found := false

for each i of result

if search s over local_table of processor i

// s found at processor i
found := true

endif

endfor

if not found

// False Positive state, forward it
mark s with special tag

// Get the first id from the list
first_id := list_head(result)

insert s in the false positive stack of processor first_id

endif

else

// New Value, insert at local table
search_and_insert s into local_table;

let s1,..,sj,...,sn = successors(s) where

j = shared_work_load x n

if size(private_stack)

> private_work_load then

// Share a percentage of new work

// Protected action by locks

insert s1,...,sj in my shared_stack

insert sj+1,...,sn in my private_stack

if some processor is sleeping

wake him up

endif

else

insert s1,...,sn in my private_stack

endif

endlet

endif

endwhile

// private stack empty
if my shared stack is not empty then

transfer work from my shared to my private stack

else if my false_positive stack is not empty then

transfer work from my false_positive to my private stack

else

look for a non empty shared_stack

to transfer work ;

if all shared_stacks are empty

and at least one processor busy

then enter into sleep mode

endif

endif

endwhile

// Everybody is idle
wake up all processors and Terminate

Figure 5. Algorithm pseudo-code.



size of the state space in order to prevent the saturation of LT

before the exploration is finished. If the LT got saturated -

almost all bytes are set, it will increase the number of false

positive states and, by consequence, the size of the false

positive stacks (Positive Stack). As mentioned at section

III-D, false positive states are handled as static assignments

and therefore the performance will be severely affected. For

this benchmark, we worked with a LT with the size of 1GB

(n = 1.109 bytes) and up to 18 hash-functions (k = 18). Our

LT had been adapted to automatically adjust the number of

hash-functions keys up to a user defined number, as long

as the seeds are provided. In all of ours experimentation,

we never needed to change these settings. In practice, this

means that users do not need to adjust any parameter of the

tool before using it. Indeed, these configuration is related to

the available memory space, in our case, we dimensioned

our benchmark according to our machine which represents

examples with 5.108 states.

With respect to the memory footprint of our algorithm, the

only significant extra memory come from the memory space

occupied by Localization Table itself. As an illustration, we

have an extra memory usage of 1GB for the configuration

employed in this benchmark.

B. Speedup

Figure IV-B gives the observed speedup of our algorithm

when generating the state space for the models presented

at Figure 6 with different number of processors. We give

the relative speedup, measured as the ration between the

execution time using N processors (TN ) and the time of

the same algorithm on one processor. Note that, although

our algorithm delivers some promising speedups, it shows

different behaviors according to the model employed. While

we obtained an efficiency1 of 97% for the Hanoi model,

for the Kanban example we observed a efficiency of 52%.

Clearly, the algorithm is very dependent on the “degree of

concurrency” of the model: it is not necessary to use lots

of processors for a model with few concurrent actions. This

is an inherent limitation of parallel state space construction

algorithm [8].

C. State Distribution

The parallel state space construction must take into ac-

count the state space distribution, that is to say, an homo-

geneous distribution of states per processor. Our algorithm

primes for the dynamic distribution according to the explo-

ration pace. In addition to the “degree of concurrency” of

the model, the state space distribution may also be affected

by the processor performance, that is, a processor that

handles simple states, smaller work units, may assign more

states than others. Our experiments are also affected by the

Non-Uniform Memory Access (NUMA) architecture of our

1Efficiency is computed as the ratio between speedup, TN , and the
number N of processors.

Figure 7. Speedup analysis.

machine, where the latency and bandwidth characteristics of

memory actions depend on the processor or memory region

being accessed. Practically, this means that the shared,

addressable memory space is divided into several regions,

reachable through physically different buses. Consequently,

the distribution of states is by nature non-deterministic and

there is no guarantee for an homogeneous distribution.

In order to evaluate the quality of the distribution, Figure

IV-C depicts the mean standard deviation in % for every

experimentation. This percentage shows how much variation

there is from the ”average” and it is obtained by dividing the

standard deviation α =
√

∑

N

i=1
(si − s)2/N by the mean

value s = S/N , where S is the size of the state space.

The analysis of this measure shows that the distribution is

affected by the concerned model and it is not possible to

guarantee an homogeneous distribution. To demonstrate this

variation, Figure IV-C presents the distribution of states over

16 processors for the Sokoban and Hanoi models, these are

the best and the worst distribution obtained, respectively.

As you can notice, the Sokoban model presents a complete

irregular distribution where the first two processors have,

in average, 40% more states then the mean value (s). By

contrast, the Hanoi model presents a regular distribution

with a mean standard deviation smaller than 3%.

D. Comparison

We conclude this section on experimental results with

a comparison with previously existing algorithms. It has

proved difficult to port available implementations on the

configuration used for our experiment. As a result, we devel-

oped our own implementation of some classical algorithms

described in the literature. To start with, we implemented

a variant of our code using a Vector of integers as the

Localization Table to compare which one holds a better

dynamic distribution using the same amount of memory (see



Figure 8. Mean Standard Distribution Analysis.

Figure 9. Physical State Distribution over 16 processors.

section III-A). In the second place, we have the well known

static hash partition solution, which had been widely used

by the community because of its simplicity and satisfactory

results. Moreover, even if the lockless shared hash table as

the shared space is not a safe solution, it is still part of

our comparison because it is a good reference for perfor-

mance comparison. We conclude our benchmark with an

implementation using an industrial lockless non-lossy hash

table (Intel TBB [18]) to demonstrate all the potential or our

solution. It is important to mention that we decided to skip

a comparison with our previous work because our results

are at least twice as better. This gain is performance was

achieved by removing the phased characteristic of the algo-

rithm, which implied in superfluous overheads. Figure IV-D

briefly illustrates all implementations with their respective

abbreviations and descriptions.

Figure 11 depicts the results obtained from Kanban and

Hanoi models for all 5 algorithm versions. The rest of the

Name Description

Dist Distributed Table instrumented

with our Localization Table

Vector Localization Table replaced

by a simple Vector of integers

Static States are distributed according

to a static Hash function

Lockless Lockless shared hash table as

the shared space

TBB Unordered hash map as the shared space,

which is part of the Intel-threading blocs library

Figure 10. Algorithms selected for benchmark comparison.

benchmark is presented at appendix A. The first column

shows the absolute speedup, which takes into account the

time of a sequential optimized version instead of the time

of the same algorithm on one processor. We decide to use the

absolute speedup rather than the relative in order to provide a

fairer comparison. As can be noticed, not only our algorithm

(DIST) matched the performance of TBB, Static and Vector

for all models but also yields a better performance of 10%

for 6 (over 8) models from our benchmark. As might be

expected, the Lockless version holds the best performance

for all models. Even so, among the safe solutions presented

here, this benchmark position our algorithm as the most

effective for parallel state space construction. The second

column depicts the mean standard deviation of all algorithm

in order to evaluate the quality of the distribution. This

second analysis shows that the best distribution is given by

far from the Static version. Thereafter, it is hard to state

which one has the second best distribution. Note that the

Dist and TBB systematically alternate the position of second

best distribution. As an illustration, our solution holds the

second best distribution (in average) for Peg, Fifteen, Frog

and Sokoban models. Regarding the Lockless version, it

consistently holds the worst distribution for all models. In

what concerns the number of collisions and false positives

of our algorithm, they are practically negligible. To put in

figure, in the worst case (Frog) we got in average 1 collision

for each 25.107 states and less then 1000 false positives

states for 5.108 states. All the information concerning this

benchmark is available at [19].

V. CONCLUSION

We presented a new parallel state space construction

algorithm target at shared memory machines. This algorithm

is an extension of a previous work [20] based on a singular

architecture defined as a small shared space supplemented

by local dictionaries. It innovates by proposing a novel

data structure, named Localization Table, to replace the

Bloom Filter previously used for the shared space. This

new data structure is used to dynamically assign newly

discovered states and behaves as an associative array that



Figure 11. Algorithm Comparison for Kanban and Hanoi models.

returns the identity of the processor that owns a given state.

Consequently, it eliminates the need of an phased algorithm

because the collisions are solved on-the-fly. Moreover, our

algorithm delivers a new type of distributed hash table with

the distinction that states are dynamically assigned; without

use of locks and open for different types of work-sharing

techniques.

From the benchmark performed, our algorithm proved

capable of promising speedups whenever was possible. For

instance, the results show that our efficiency varies between

95% and 50%, depending on the “degree of concurrence”

of the model. In addition, our memory footprint is almost

negligible when compared to all memory expanded, for

example, it represented in the worst case (Kanban - 60GB)

less then 1.7% of the memory used. Regarding the number

of duplications, it proved really rare to happen, and when

it happened it was in the order of 1 for each 25.107

states. This benchmark also showed that our algorithm is

well positioned when compared with related solutions. Our

algorithm not only matched all safe solution but also yielded

a better performance of 10% for 6 (over 8) models from our

benchmark. Altogether, it shows that our solution attended

our expectations of having the best temporal and spatial

balance as possible.

For future works, we are investigating a probabilistic

version of our current exhaustive algorithm. In this context,

the adjective probabilistic stands for an algorithm that builds

an underapproximation of the global state space, with a very

high probability of building the exact state space – by very

high, we mean a probability of failure less than 10−30. The

idea, basically, is to use an enhanced Bloom Filter data-

structure, like our Localization Table, where only potential

false positives are stored. Finally, we understand that our

Localization Table can be of great interesting for a broader

community. For this reason, we are planning to provide a

functional API of our distributed hash table, completed self

contained, where the user will just configure its dimension

(n) and the max number of hash-functions keys (k). This

configuration will be required only once and it will be related

to the amount of available memory.

REFERENCES

[1] Allmaier, S., Kowarschik, M., Horton, G.: State space

construction and steady-state solution of GSPNs on a

shared-memory multiprocessor. In: Workshop on Petri

Nets and Performance Models (1997)



[2] Barnat, J., Rockai, P.: Shared hash tables in paral-

lel model checking. Electronic Notes in Theoretical

Computer Science 198(1) (2008), proceedings of the

6th International Workshop on Parallel and Distributed

Methods in verification (PDMC 2007)

[3] Berger, E., McKinley, K., Blumofe, R., Wilson, P.:

Hoard: A scalable memory allocator for multithreaded

applications. ACM SIGPLAN Notices 35(11) (2000)

[4] Broder, A., Mitzenmacher, M.: Network applications

of bloom filters: A survey. Internet Mathematics 1(4)

(2004)

[5] Butenhof, D.: Programming with POSIX threads.

Addison-Wesley (1997)

[6] Caselli, S., Conte, G., Bonardi, F., Fontanesi, M.:

Experiences on SIMD massively parallel GSPN anal-

ysis. In: Computer Performance Evaluation Modelling

Techniques and Tools. LNCS, vol. 794. Springer (1994)

[7] Ciardo, G., Gluckman, J., Nicol, D.: Distributed state

space generation of discrete-state stochastic models.

INFORMS Journal on Computing 10(1) (1998)

[8] Ezekiel, J., Lüttgen, G.: Measuring and evaluating

parallel state-space exploration algorithms. In: Parallel

and Distributed Methods in verification. ENTCS, vol.

198 (2008)

[9] Flavio Lerda, R.S.: Distributed-memory model check-

ing with spin. In: Theoretical and Practical Aspects of

SPIN Model Checking. Springer (1999)

[10] Garavel, H., Mateescu, R., Smarandache, I.: Paral-

lel State Space Construction for Model-Checking.

In: SPIN workshop on Model checking of software.

LNCS, vol. 2057 (2001)

[11] Holzmann, G., Bosnacki, D.: Multi-core model check-

ing with SPIN. HIPS-TopModels 2007, short paper

(2007)

[12] Inggs, C.P., Barringer, H.: Effective state exploration

for model checking on a shared memory architecture.

In: Parallel and Distributed Model Checking. ENTCS,

vol. 68(4) (2002)

[13] Jenkins, B.: Hash Functions. ”Algorithm Alley”. Dr

Dobb’s Journal (1997)

[14] Miner, A., Ciardo, G.: Efficient reachability set gen-

eration and storage using decision diagrams. In: Ap-

plication and Theory of Petri Nets. LNCS, vol. 1639.

Springer (1999)

[15] Nicol, D., Ciardo, G.: Automated Parallelization of

Discrete State-Space Generation* 1. Journal of Parallel

and Distributed Computing 47(2), 153–167 (1997)

[16] Pelánek, R.: Beem: benchmarks for explicit model

checkers. In: Proceedings of the 14th international

SPIN conference on Model checking software. pp.

263–267. Springer-Verlag, Berlin, Heidelberg (2007)

[17] Petcu, D.: Parallel explicit state reachability analysis

and state space construction. In: Symposium on Paral-

lel and Distributed Computing. IEEE (2003)

[18] Reinders, J.: Intel threading building blocks. O’Reilly

(2007)

[19] Saad, R.T.: Benchmark comparison of safe and unsafe

solutions for parallel state space construction. (Aug

2010), http://homepages.laas.fr/rsaad/

[20] Saad, R.T., Zilio, S.D., Berthomieu, B.: A general

lock-free algorithm for parallel state space construction

(2010), proceedings of the 9th International Workshop

on Parallel and Distributed Methods in verification

(PDMC 2010)

[21] Stern, U., Dill, D.: Parallelizing the Murφ verifier.

In: Computer Aided Verification. LNCS, vol. 1254.

Springer (1997)



APPENDIX

This appendix complement the benchmark analysis of section IV-D. It presents the speed-up and mean standard distribution

measures for the FMS, PH, Solitaire, Fifteen, Sokoban and Frogs models. As you can note, except for model Frog, our

solution holds better performance when compared to related safe algorithms.

Figure 12. Algorithm Comparison for FMS, PH and Solitaire models



Figure 13. Algorithm Comparison for Fifteen, Frog and Sokoban models


